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1.1 Algebraic subsets
Let k be an algebraically closed field, An(k) = {(a1, . . . , an) ∈ kn} the affine n-space.
Let R = k[x1, . . . , xn] be the polynomial ring.

Notation 1.1.1. For f ∈ R, Z(f) = {P ∈ An(k), f(P ) = 0}. Similarly, for T ⊆ R,
Z(T ) = {P ∈ An(k) : f(P ) = 0,∀f ∈ T}.

Remark 1.1.2. Z(T ) = Z(I), where I is the ideal generated by T .

Theorem 1.1.3 (Hilbert Basis). R is a Noetherian ring.

Remark 1.1.4. Every ideal I ⊆ R is finitely generated. For I = (f1, . . . , fm), we
have Z(I) = ⋂

i Z(fi).

Proposition 1.1.5. Some properties:

(1) If I1 ⊆ I2, then Z(I1) ⊇ Z(I2).

(2) Z(∑i Ii) = ⋂
Z(Ii).

1
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(3) Z(I1 ∩ I2) = Z(I1) ∪ Z(I2).

(4) Z(0) = R, Z(R) = ∅.

Proof. 3: it is easy to see Z(I1 ∩ I2) ⊇ Z(I1) ∪ Z(I2). We see I1I2 ⊆ I1 ∩ I2. Thus
we have Z(I1 ∩ I2) ⊆ Z(I1I2). Let P /∈ Z(I1), P /∈ Z(I2). By definition, we have
f ∈ I1, f(P ) 6= 0, g ∈ I2, g(P ) 6= 0. But fg ∈ I1I2 and f(P )g(P ) 6= 0.

Definition 1.1.6 (Zariski Topology and Algebraic Subsets). The above properties
ensure that the Z(I) are the closed subsets of a topology on An(k), called the Zariski
topology. Closed subsets in An(k) are called algebraic subsets.

Example 1.1.7. (1) A0(k) = pt.

(2) Consider A1(k). Since k[x] is a PID, every ideal I = (f). Then Z(I) consists
of the roots of f . Therefore algebraic subsets ( A1(k) are precisely finite
subsets. This topology is called the cofinite topology. Since k is infinite,
this topology is not Hausdorff.

(3) In An(k), every point is closed. P = (a1, ..., an) is defined by the ideal mP =
(x1 − a1, ..., xn − an). Actually mP is a maximal ideal. This shows An(k) is a
T1 space.

(4) Consider A2(k). As a set, it is in bijection with A1(k)×A1(k). But its Zariski
topology does not agree with the product topology. For example Z(x − y) is
closed in A2(k) but not in the product topology.

Notation 1.1.8. For Y ⊆ An(k), I(Y ) = {f ∈ R : f(P ) = 0,∀P ∈ Y }. It is the
same thing as ⋂P∈Y mP .

Proposition 1.1.9. Properties of I(Y ):

(1) If Y1 ⊆ Y2, then I(Y1) ⊇ I(Y2);

(2) I(⋃i Yi) = ⋂
i I(Yi);

(3) Z(I(Y )) = Y (closure in An(k) for the Zariski topology).

Proof. 3: It is clear Z(I(Y )) ⊇ Y , hence contains its closure. Suppose Y ⊆ Z(I),
then ∀f ∈ I, f is zero on Y , thus I ⊆ I(Y ), hence Z(I) ⊇ Z(I(Y )). Hence Z(I(Y ))
is the closure of Y .

Theorem 1.1.10 (Hilbert’s Nullstellensatz). For each ideal I, we have I(Z(I)) =√
I.

Corollary 1.1.11. There is an order-reversing one-to-one correspondence between
algebraic subsets of An(k) and radical ideals of R, given by

Y 7→ I(Y )
Z(I)←[ I
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Corollary 1.1.12. Every maximal ideal in R has the form mP for some P ∈ An(k).

Corollary 1.1.13. For every ideal I in R, we have
√
I = ⋂

m⊇I m.

A ring satisfying the above property is called a Jacobson ring.

Lemma 1.1.14. Let K be a field (not necessarily algebraic closed). Let E be a
finitely generated K-algebra. Suppose E is also a field. Then E/K is a finite field
extension.

For a proof, see [AM, Corollary 5.24].

Proof of the Nullstellensatz. We have I(Z(I)) ⊇
√
I. Suppose f /∈

√
I, then in Rf ,

IRf is not unit ideal. Choose a maximal ideal m ⊇ IRf , then Rf/m is a finitely
generated k-algebra which is also a field, hence Rf/m = k. Now R → Rf →
Rf/m = k defines a ring homomorphism and a maximal ideal nP such that nP ⊇ I
and f /∈ nP , hence P ∈ I(Z(I)) but f is not zero on P . Thus f /∈ I(Z(I)).

Notation 1.1.15. For a ring A, we let Max(A) denote the set of all maximal ideals
of A. This set is called the maximal spectrum of A.

From the Nullstellensatz, there are bijections

An(k) ' Max(R)
Z(I) ' Max(R/I)

We find that an algebraic subset is in bijection with the maximal spectrum of a
finitely generated k-algebra.

1.2 Spectrum of a ring
For a ring homomorphism f : A→ B, there is no natural map Max(B)→ Max(A)
in general. The pull back of a maximal ideal is a prime ideal but not necessarily
maximal. This shows the maximal spectrum behaves badly.

Notation 1.2.1. For a ring A, we let Spec(A) denote the set of all prime ideals of
A. We call Spec(A) the (prime) spectrum of A.

Every ring homomorphism φ : A→ B induces a map

Spec(φ) : Spec(B)→ Spec(A)
p 7→ φ−1(p)

Notation 1.2.2. For T ⊆ A, let V (T ) = {p ∈ Spec(A) : T ⊆ p}. For f ∈ A, let
D(f) = Spec(A)\V (f).

Remark 1.2.3. V (T ) = V (I), where I is the ideal generated by T .

Proposition 1.2.4. (1) For I1 ⊆ I2, we have V (I1) ⊇ V (I2);

(2) V (∑i Ii) = ⋂
i V (Ii);
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(3) V (I1 ∩ I2) = V (I1) ∪ V (I2).

Proof. 3. It is clear V (I1 ∩ I2) ⊇ V (I1) ∪ V (I2). Also, V (I1I2) ⊇ V (I1 ∩ I2).
Consider a prime ideal p not in V (I1) ∪ V (I2), that is I1 ( p, I2 ( p, then there
exists f ∈ I1, g ∈ I2 such that f, g /∈ p, hence fg ∈ I1I2 but fg /∈ p. This shows
p /∈ V (I1I2).

We equip Spec(A) with the topology for which the closed subsets are exactly
subsets of the form V (I). We call it the Zariski topology.

Notation 1.2.5. For Y ⊆ Spec(A), let I(Y ) = ⋂
p∈Y p. This is an ideal of A.

Proposition 1.2.6. Properties of I(Y ):

(1) If Y1 ⊆ Y2, then I(Y1) ⊇ I(Y2)

(2) I(⋃i Yi) = ⋂
i I(Yi);

(3) V (I(Y )) = Y ;

(4) for an ideal I, I(V (I)) =
√
I.

Corollary 1.2.7. There is an order-reversing one-to-one correspondence between
closed subsets of Spec(A) and radical ideals of A, given by

Y 7→ I(Y )
V (I)← [ I

Moreover, the closed points of Spec(A) are the maximal ideals of A.

Example 1.2.8. (1) A = 0⇔ Spec(A) = ∅.

(2) Let k be a field. Then Spec(k) = pt.

(3) A1
k = Spec(k[x]). The closed points are of the form (f), where f is an irre-

ducible polynomials. The generic point is (0). Closed subsets are either the
whole space or a finite set of closed points. It is not even a T1 space, but it is
a T0 space.

(4) Consider Spec(Z). The closed points are of the form (p), where p is a prime
number. The generic point is (0). The topology is similar to that of A1

k.

Corollary 1.2.9. Spec(A) is quasi-compact (namely, every open cover has a finite
subcover).

Proof. Suppose ⋂V (Ii) = ∅. Then
√∑

Ii = A, thus 1 ∈ ∑ Ii, hence there are some
i1, . . . , in such that 1 = a1 + · · · + an where aj ∈ Iij , hence Ii1 , . . . , Iin generate A,
hence V (Ii1) ∩ · · · ∩ V (Iin) = ∅.

Notation 1.2.10. Let Ie = IB and J c = φ−1(J) denote the extension and contrac-
tion ideals with respect to certain ring homomorphism φ.
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Lemma 1.2.11. Let φ : A→ B be a ring homomorphism and f = Spec(φ) : Spec(B)→
Spec(A). Then

(1) f−1(V (I)) = V (Ie) for every ideal I of A;

(2) f(V (J)) = V (J c) for every ideal J of B.

Proof. (1) For q ∈ Spec(B), f(q) ∈ V (I) means qc ⊇ I, which is equivalent to
q ⊇ Ie. Hence f−1(V (I)) = V (Ie).

(2) We have I(f(V (J))) = ⋂
J⊆q φ

−1(q) = φ−1(⋂J⊆q q) = φ−1(
√
J) =

√
φ−1(J).

Applying V , we get f(V (J)) = V (J c).

Proposition 1.2.12. Let φ : A→ B be a ring homomorphism. Then Spec(φ) : Spec(B)→
Spec(A) is continuous.

Proof. This follows immediately from Part 1 of the above lemma.

Example 1.2.13. (1) For I an ideal in A, the quotient map π : A→ A/I induces
to Spec(π) : Spec(A/I)→ Spec(A), which is a closed embedding.

(2) Suppose S is a multiplicative subsets in A. The localization map φ : A→ S−1A
induces Spec(φ) : Spec(S−1A)→ Spec(A), which is also an embedding.

Lemma 1.2.14. Let φ : A→ B be a ring homomorphism. Then Spec(φ) identifies
Spec(B) with a subspace of Spec(A) if and only if every ideal J ∈ B satisfies

√
J =√

J ce.

Proof. It is easy to see that f = Spec(φ) is an embedding if and only if f−1(f(F )) =
F for every closed subset F ⊂ Spec(B), which translates to the corresponding
condition on ideals.

It is easy to verify that A → A/I and A → S−1A satisfy the condition in the
lemma.



6 CHAPTER 1. SCHEMES

Date: 9.17
Recall we define Spec(A) as prime ideals of A with Zariski topology. A basis

D(f) = {p ∈ Spec(A)|f /∈ p}, f ∈ A.
For a ring homomorphism φ : A→ B, we have

φ∗ : Spec(B)→ Spec(A)
q 7→ qc

Some examples: π : A → A/I and φ : A → S−1A, where S is a multiplicative
system in A. The image of π∗ is V (I) and the image of φ∗ is ⋂f∈S D(f). If A is an
integral domain, S = A\{0}, then S−1A = Frac(A). Spec(Frac(A)) is a point, and
its image in Spec(A) is the generic point of Spec(A), given by the zero ideal of A.

Example 1.2.15. Consider

k[x, y]

k[x] k[y]

We have

Spec(k[x, y]) = A2
k

Spec(k[x]) = A1
k Spec(k[y]) = A1

k

This defines a continuous map A2
k → A1

k ×top A1
k (product space). This is surjective

but not injective, since the points (0) and (x − y) in Spec(k[x, y]) both map to
((0), (0)) in A1

k ×top A1
k.

Example 1.2.16 (Tangent Space). Consider k[x1, . . . , xn]/(f1, . . . , fm), I = (f1, . . . , fm).
Let P = (a1, . . . , an) ∈ Z(I), then ,∀i, fi(P ) = 0. Consider mP = (x1− a1, . . . , xn−
an)/I. Define

TP = {(t1, . . . , tn) ∈ kn |
∑
i

∂f

∂xi
(P )ti = 0}

which is a linear subspace of kn.
We can write it in algebraic form. Let k[ε]/(ε2) = {a + bε, a, b ∈ k}. Consider

the diagram of rings
A A/mP = k

k[ε]/ε2

ψ

φ
ρ

where ρ sends ε to 0 and ψ(xi) = ai. A homomorphism φ is defined by φ(xi) = ai+tiε.
It factors through I if and only if

0 = fj(a1 + t1ε, ..., an + tnε) = fj(a1, ..., an) +
∑
i

∂f

∂xi
(P )tiε =

∑
i

∂f

∂xi
(P )tiε
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in k[ε]/(ε2). This is the same thing as a tangent vector defined above. Thus we have
a bijection

TP ' {φ : A→ k[ε]/(ε2) | ρφ = ψ}.
However, TP cannot be read off from the induced maps of topological spaces:

Spec(A) Spec(k)

Spec(k[ε]/(ε2))

ψ∗

ρ∗
φ∗

Indeed, ρ∗ is a homeomorphism.

1.3 Sheaves
Let X be a topological space, C a category.
Definition 1.3.1. Let Open(X) = ({open subsets of X},⊆). It is a poset and can
be viewed as a category: there is a unique morphism U → V if U ⊆ V and no such
morphism otherwise.
(1) A presheaf on X with values in C is a contravariant functor Open(X)op → C.

Denote PShv(X, C) = Fun(Open(X)op, C).

(2) A morphism between two sheaf F ,G is a natural transformation φ : F → G.

In details, a presheaf F : Open(X)op → C consists of F(U) ∈ Ob(C) for each
open sets U , and ρUV : F(V ) → F(U) a morphism (called restriction) in C for
U ⊆ V . We require them to satisfy:
(1) ρUU = idF(U),

(2) For U ⊆ V ⊆ W , we have ρUV ◦ ρVW = ρUW

A morphism φ : F → G consists of φU : F(U) → G(U) for each open set U that
satisfies for U ⊆ V :

F(U) G(U)

F(V ) G(V )

φU

ρFUV

φV

ρGUV

In the rest of this section we assume that C is Set, Ab, or Ring. Elements of
F(U) are called sections. For the morphism ρUV : F(V ) → F(U), s ∈ F(V ), we
sometimes write s|U for ρUV (s) ∈ F(U).
Definition 1.3.2. A sheaf is a presheaf F satisfying the following gluing property:
∀U ⊆ X open, {Ui} an open cover of U ,

F(U) ∏
iF(Ui)

∏
i,j F(Ui ∩ Uj)

is an equalizer diagram. The latter two maps are induced respectively by two inclu-
sions Ui ∩ Uj ⊂ Ui and Ui ∩ Uj ⊂ Uj.
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In other words, ∀si ∈ F(Ui), if si|Ui∩Uj = sj|Ui∩Uj then ∃!s ∈ F(U) such that
s|Ui = si. Note that uniqueness is equivalent to the injectivity of F(U)→ ∏

iF(Ui).
A presheaf satisfying the uniqueness is called separated.

Remark 1.3.3. Consider the empty set ∅. The empty cover is a cover of ∅. Now
by definition, empty product is the terminal object and the equalizer of a pair of
endomorphism of the terminal object is terminal. This shows that for any sheaf F ,
F(∅) is a terminal object of C.

Example 1.3.4. Let X, Y be topological spaces. Then FY (U) = Mapcont(U, Y )
defines a presheaf FY on X. It is easy to see this is also a sheaf.

(1) If Y is discrete, then YX = FY is called the constant sheaf : YX(U) =
{f : U → Y | f locally constant}

Example 1.3.5. Let f : Z → X be a continuous map. For U ⊂ X open, define
hZ(U) as the set of continuous sections s of f |U : f−1(U)→ U (namely, continuous
maps s : U → f−1(U) satisfying f |U ◦ s = id):

f−1(U) Z

U X

f |U f

j

s

Such sections correspond bijectively to continuous maps s : U → Z such that f ◦s =
j. This defines a sheaf on X.

Take Z = X × Y and p : Z → X the projection, then p−1(U) = U × Y :

U × Y X × Y

U X

and a section s : U → U × Y is determined by U → Y . Thus hX×Y = FY .

Example 1.3.6. Let X be a complex manifold. We have sheaves CX → OX → FC
defined by

CX(U) OX(U) FC(U)

{U → C locally constant} {U → C holomorphic} {U → C continuous}

Example 1.3.7. Let X = pt, then

Set ∼= Shv(pt, Set)
F(pt)←[ F

S 7→
{
∅ 7→ {∗}
pt 7→ S.
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Proposition 1.3.8. Let F be a presheaf. Then ∃ a sheaf F and ν : F → F+ such
that ∀ sheaf G and a morphism of presheaves φ : F → G, there exists a unique
φ+ : F+ → G such that

G

F F+

φ

ν

φ+

Definition 1.3.9. We call F+ the sheafification of the presheaf F . It is also called
the sheaf associated to F and sometimes denoted aF .

Construction. For any open cover {Ui} of an open subset U , consider

Eq
( ∏

iF(Ui)
∏
i,j F(Ui ∩ Uj)

)
.

We define a presheaf F ′ on X by

F ′(U) = colim
Cov(U)op

Eq
( ∏

iF(Ui)
∏
i,j F(Ui ∩ Uj)

)
The category Cov(U) of open covers of U is defined as follows. An object is an
open cover {Ui}i∈I . A morphism between two covers {Ui}i∈I → {Vj}j∈J is a map
f : I → J such that Ui ⊆ Vf(i).

It is easy to see that F ′ is a separated presheaf. Moreover, F ′ is a sheaf if F is
separated. We take F+ = (F ′)′.

Categorical point of view: We have Hom(F , ιG) ∼= Hom(aF ,G).

PShv Shv a a ι
a

ι

Example 1.3.10. Let X be a topological space, A a set. Define the constant
presheaf Apsh by Apsh

X (U) = A. Then (Apsh
X )+ = AX is the constant sheaf.

Definition 1.3.11 (Functoriality). Let f : X → Y be a continuous map.

(1) For F ∈ PShv(X), define f∗F(V ) = F(f−1(V )), f∗F ∈ PShv(Y ). If F is a
sheaf, then f∗F is also a sheaf. This is called pushforward or direct image.

(2) for G ∈ PShv(Y ), define

(f−1
pshG)(U) = colim

f(U)⊂V
F(V )

It is clear f−1
psh(G) ∈ PShv(X). This is called pullback or inverse image. We

have Hom(f−1
pshG,F) ∼= Hom(G, f∗F).

(3) Unfortunately, even if G is a sheaf on Y , f−1
psh(G) may not be a sheaf. So we

define f−1G = (f−1
pshG)+. We have f−1 a f∗. Form the commutative diagram

PShv(X) Shv(X)

PShv(Y ) Shv(Y )

f∗ f∗

ι

ι
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Taking left adjoints, we obtain the following diagram, which commutes up to
natural isomorphism:

(1.3.1)
PShv(X) Shv(X)

PShv(Y ) Shv(Y )

a

a

f−1
psh f−1

Example 1.3.12. Consider j : U → X open. Then j−1
pshF(V ) = F(V ∩ U). We

usually denote it by F|U . We have j−1F = j−1
pshF if F is a sheaf.

Example 1.3.13. We have f−1AY ' AX by (1.3.1) applied to Apsh
Y .

Example 1.3.14. Consider ix : pt→ X, pt 7→ x ∈ X.
(ix)−1

psh(F)(x) = colim
x∈U

F(U)

= {(U, s)|x ∈ U, s ∈ F(U)}/ ∼
where the equivalence relation is defined as follows: (U, s) ∼ (V, t) if and only if
∃x ∈ W ⊂ U ∩ V such that s|W = t|W . The same formula holds for i−1

x .
This is also called the stalk of F at x and is denoted by Fx. For each x ∈ U ,

we have
F(U)→ Fx

s 7→ [(U, s)]
The image of s is called the germ of s at x and denoted sx. We have F+

x ' Fx by
(1.3.1).
Lemma 1.3.15. Suppose F a sheaf, s, t ∈ F(U) such that sx = tx ∈ Fx,∀x ∈ U .
Then s = t.
Proof. By definition, for each x ∈ U , s, t agree on some neighborhood Wx of x.
These Wx cover U when x varies in U , hence s, t agree on an open cover of U , hence
they agree on U .
Proposition 1.3.16. Let F ,G be sheaves.
(1) Suppose φ, ψ : F → G morphisms of sheaves such that φx = ψx,∀x ∈ X. Then

φ = ψ.

(2) Suppose φ : F → G, φx is bijective for all x ∈ X. Then φ is an isomorphism.
Proof. (1) For U open, s ∈ F(U), then φ(U)(s)x = ψ(U)(s)x, ∀x ∈ U , by above

Lemma, we have φ(U)(s) = ψ(U)(s), hence φ = ψ.

(2) We construct ψ to be the inverse of φ. For t ∈ G(U), and x ∈ U , since φ(U)x
is bijective, there exists open set x ∈ Vx ⊂ U and sx ∈ F(Vx) such that
φ(Vx)(sx) = t|Vx . Consider x, y ∈ U , ∀z ∈ Vx ∩ Vy, we have sx|z = t|z = sy|z,
hence sx|Vx∩Vy = sy|Vx∩Vy , hence sx ∈ F(Vx) glue to s ∈ F(U).

Consider continuous maps f : X → Y and g : W → X. Then g−1f−1 = (fg)−1.
In the case where W = pt and g = ix, we get

(f−1G)x = Gf(x).
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Limits and Colimits
Recall that C = Set, Ab, or Ring.

The category PShv(X, C) admits arbitrary small limits and colimits.

(lim
i
Fi)(U) = lim

i
Fi(U)

(colim
i

pshFi)(U) = colim
i

pshFi(U)

It is easy to see the limit defined above takes sheaves to sheaves. But for colimits
of sheaves, we need to sheafify: colimiFi = (colimpsh

i Fi)+. The category Shv(X, C)
also admits small limits and colimits. The sheafification functor commutes with
colimits and the functor ι commutes with limits.

Recall that filtered colimits in C commute with finite limits, hence finite limits of
sheaves do not need to sheafification. The same remark shows that the sheafification
functor is left exact, and hence exact. (Recall that a functor is called left (resp.
right) exact if it commutes with finite limits (resp. finite colimits). A functor is
called exact if it is left and right exact.)

The following special case will be used very often.

Definition 1.3.17. Let ϕ : F → G be a morphism of Abelian sheaves.

(1) ker(ϕ) is defined to be (ker(ϕ))(U) = ker(ϕ(U)). It is already a sheaf.

(2) coker(ϕ) is the sheafification of the presheaf U 7→ coker(ϕ(U)).

Proposition 1.3.18. Shv(X,Ab) is an Abelian category.

Proof. We first check that Shv(X,Ab) is an additive category:

(1) It has a zero object (namely, an object that is initial and final): the constant
sheaf 0;

(2) Finite coproducts and finite products exist and coincide: we have F × G '
F ⊕psh G ' F ⊕ G.

(3) The commutative monoid Hom(F ,G) admits inverses: (−φ)U(s) = −φU(s).

Recall that an abelian category is an additive category admitting kernels, coker-
nels, and such that coimages coincides with images. The last property means that
for every morphism φ : F → G, the canonical morphism ψ : coker(i) → ker(p) is an
isomorphism, where

ker(φ) F G coker(φ).i f p

Since sheafification commutes with taking kernels, ψ is the sheafification of ψpsh : cokerpsh(i)→
ker(ppsh), where ppsh : G → cokerpsh(φ). Since ψpsh

U is an isomorphism for every U , ψ
is an isomorphism.

Let f : X → Y be a continuous map. The functor f−1 commutes with colimits
and f∗ commutes with limits.
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Proposition 1.3.19. Let f : X → Y be a continuous map between topological
spaces. Then f−1 : Shv(Y, C)→ Shv(X, C) is an exact functor.

In particular, taking stalks at a point is an exact functor.

Proof. It suffices to show that f−1 is left exact. By definition,

(f−1
pshG)(U) = colim

f(U)⊂V
G(V )

which is a filtered colimit, hence commutes with finite limits. The the sheafification
functor also left exact, hence the result.

Proposition 1.3.20. A sequence F φ−→ G ψ−→ H in Shv(X,Ab) is exact if and only
if it is exact on stalks: Fx

φx−→ Gx
ψx−→ Hx is exact for every x ∈ X.

Proof. This follows from the exactness of taking stalks. For the “if” part, we also
need Proposition 1.3.16.

Example 1.3.21. Consider i : Y ⊂ X a closed embedding, G a sheaf on Y . Then
i∗G(U) = G(U ∩ Y ). For x ∈ X,

(i∗G)x = colim
x∈U

G(U ∩ Y )

=

∗, x /∈ Y
Gx, x ∈ Y,

where ∗ denotes a final object of C. It follows that the functor i∗ : Shv(Y,Ab) →
Shv(X,Ab) is exact. (The functor i∗ : Shv(Y, Set)→ Shv(X, Set) does not preserve
initial objects unless i is a homeomorphism.)

Let φ : i−1i∗G → G be the canonical morphism. Then φy can be identified with
idGy . Hence φ is an isomorphism. In the other direction, for every an abelian sheaf
F on X, the canonical morphism ψ : F → i∗i

−1F is an epimorphism. This is easy
to check on stalks.

Warning 1.3.22. An epimorphism of sheaves is not surjective on sections in gen-
eral. Let X be a connected topological space, Y = {x, y} two distinct closed points
in X, ι : Y → X. Consider the constant sheaf ZX on X. Then ZX(X) = Z since
X is connected. But (ι∗ι−1ZX)(X) ' ZY (Y ) ' Z × Z. The map ψX : ZX(X) →
ι∗ι
−1ZX(X) is not surjective.

Let us describe epimorphisms of sheaves of sets or abelian groups. A morphism
of sheaves φ : F → G is an epimorphism if and only if ∀U open in X, s ∈ G(U),
∃{Ui} an open cover of U and ti ∈ F(Ui) such that φUi(ti) = s|Ui .
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Remark 1.3.23. We have defined for every continuous map f : Z → X between
topological spaces, a sheaf of sections F = hZ such that hZ(U) is the set of con-
tinuous sections U → Z of f over U . Conversely, every sheaf of sets has the form
F ' hZ . Here Z = ∐

x∈X Fx. An element in Z has the form (x, s), where x ∈ X,
s ∈ Fx. We equip Z with the strongest topology such that for all U ⊂ X open and
s ∈ F(U), the map

ϕs : U → Z

x 7→ (x, sx)
is continuous. A basis for the topology is given by the subsets ϕs(U). The space Z
is called the espace étalé of F .

1.4 Schemes
Let A be a ring and let X = Spec(A). We now proceed to equip X with a sheaf
of rings OX such that OX(X) = A and for f ∈ A, OX(D(f)) = Af . Recall
D(f) = {p ∈ A | f /∈ p}.

Consider the poset B = ({D(f) | f ∈ A},⊆). Define a functor

Bop → Ring
D(f) 7→ Af

If D(f) ⊆ D(g), we have V (f) ⊇ V (g) hence
√
f ⊆ √g, which means that fn = ga

for some n ≥ 1 and a ∈ A. This implies that g is invertible in Af and there is a
natural ring morphism Ag → Af . This finishes the definition of functor.

Lemma 1.4.1. Let X be a topological space, B an open basis such that U, V ∈ B ⇒
U ∩ V ∈ B and ∅ ∈ B. We let Shv(B, C) denote the category of B-sheaves, namely
the full subcategory of Fun(Bop, C) spanned by functors F satisfying the following
gluing condition: for every open cover {Ui} of U ∈ B with Ui ∈ B,

F(U) ∏
iF(Ui)

∏
i,j F(Ui ∩ Uj)

is an equalizer diagram. Then the restriction functor

Φ: Shv(X, C)→ Shv(B, C)

is an equivalence of categories, where (∗) denotes

Proof. We first prove that Φ is fully faithful, which means that for F ,G sheaves on
X, we have Hom(F ,G) ∼= Hom(F|B,G|B). This is clear by the gluing condition for
sheaves on X, since B is a basis.

We next prove essential surjectivity. Let G be a B-sheaf. We define a sheaf F
on X by

F(U) = colim
{Ui}∈Cov(U)op

Eq
( ∏

i G(Ui)
∏
i,j G(Ui ∩ Uj).

)
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Here Cov(U) is the category of open covers of U in B. In more detailed words, an
element s ∈ F(U) is an equivalence class of pairs ({Ui}i∈I , {si}i∈I), where {Ui} is an
open cover of U in B and si ∈ G(Ui). We require {si}i∈I to be compatible, namely
si|Ui∩Uj = sj|Ui∩Uj . Two pairs ({Ui}i∈I , {si}i∈I) and ({Vj}j∈J , {tj}j∈J) are equivalent
if there exists a common refinement {Wk}k∈K in B of {Ui}i∈I and {Vj}j∈J such that
{si} and {tj} restrict to the same family on {Wk}.

Proposition 1.4.2. Let X = Spec(A), B = {D(f) | f ∈ A}. Then the functor

Bop → Ring
D(f) 7→ Af

extends uniquely to a sheaf OX on X up to isomorphism. Moreover, ∀p ∈ X,OX,p =
Ap.

Proof. The second assertion is clear. For the first assertion, let U = D(f) be open
and {D(fi)}i∈I an open cover of U . Since D(f) = Spec(Af ), we may assume U = X.
The gluing property in this case says that

A
∏
iAfi

∏
i,j Afifj

λ

is an equalizer diagram.
Let us first show that the general case follows from the case of a finite cover.

Since X is compact, there exists a subset J ⊂ I such that {D(fj)}j∈J covers X.
The injectivity of λ follows from the case of a finite cover. Let (si) ∈

∏
Afi such

that si|D(fifj) = sj|D(fifj) for all i, j ∈ I. By the case of a finite cover, there exists
s ∈ A such that sj = s|D(fj) for all j ∈ J . Then, for all i, si|D(fifj) = s|D(fifj) and
si = s|D(fi) by the injectivity of λ for the cover {D(fifj)}j∈J of {D(fi)}.

Thus we may assume that I is finite. In this case λ is fully faithful and the result
follows from Proposition 1.4.3 below. We also give a more direct proof as follows.
Let a ∈ A such that a|D(fi) = 0 for all i. Then for each i, there exists mi such that
fmii a = 0. But {D(fi)} = {D(fmii )} cover X, so that fmii generates the unit ideal.
Therefore, 1 annihilates a and a = 0. It remains to check that every (si) ∈

∏
iAfi

satisfying si|D(fifj) = sj|D(fifj) for all i, j ∈ I is in the image of λ. Write si = bi
f
mi
i

. We
may multiply bi with powers of fi to assume ∀i,mi = m. We have bi

fmi
= bj

fmj
∈ Afifj .

Hence there exists r such that (fifj)r(bifmj − bjfmi ) = 0. Up to replacing bi by bif ri
and m by m + r, we may assume bifmj − bjfmi = 0. Since D(fmi ) cover X, we have
1 = ∑

aif
m
i . Let s = ∑

aibi. Then, on D(fi), sfmi = ∑
j ajbjf

m
i = ∑

j ajbif
m
j = bi,

so that s|D(gi) = si.

Proposition 1.4.3. Let φ : A→ B be a faithfully flat ring homomorphism. Then

A B B ⊗A B
φ i1

i2

is an equalizer diagram in the category A-Mod. The morphism i1, i2 are defined by
i1(b) = b⊗ 1 and i2(b) = 1⊗ b.
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Recall that φ : A→ B is called faithfully flat if for every sequence of A-modules

M N P,

it is exact if and only if it is exact after tensoring with B:

M ⊗A B N ⊗A B P ⊗A B.

Note that φ is faithfully flat if and only if φ is flat and Spec(φ) is surjective ([AM,
Exercise 3.16], [M2, Theorem 7.3]).

Proof. Since φ is faithfully flat, we only need to prove that the diagram is an equal-
izer after tensoring with B on the right:

B B ⊗A B B ⊗A B ⊗A B
φ⊗B i1⊗B

i2⊗B

Define
f : B ⊗A B → B

b1 ⊗ b2 7→ b1b2

g : B ⊗A B ⊗A B → B ⊗A B
b1 ⊗ b2 ⊗ b3 7→ b1 ⊗ b2b3

One readily checks that
f ◦ φ = id

g ◦ (i1 ⊗B) = id
φ ◦ f = (i2 ⊗B) ◦ g

This is called a split equalizer and one can show directly that a split equalizer is
an equalizer.

Next we consider the functoriality of the sheaf of rings defined above with respect
to ring homomorphisms. Let φ : A → B a ring homomorphism. We have the
corresponding continuous map

φ∗ : Spec(B)→ Spec(A)
q 7→ qc

Let X = Spec(B), Y = Spec(A). For g ∈ A, we have

(φ∗)−1(D(g)) = D(φ(g))
OY (D(g)) = Ag

φ∗OX(D(g)) = OX(D(φ(g)) = Bφ(g)

The homomorphism φ naturally induces a homomorphism Ag → Bφ(g). This de-
fines a morphism of sheaves f [ : OY → φ∗OX , which corresponds by adjunction to
f ] : φ−1OY → OX . For p ∈ Spec(B), f ] induces OY,φ(p) ' (φ−1OY )p → OX,p.
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Definition 1.4.4. A ringed space consists of a pair (X,OX), where X is a topo-
logical space and OX is a sheaf of rings on X. A locally ringed space is a ringed
space such that ∀x ∈ X, OX,x is a local ring.

A morphism of ringed spaces is a pair (f, f ]) : (X,OX)→ (Y,OY ), where f : X →
Y is a continuous map and f ] : f−1OY → OX is a morphism of sheaves of rings. A
morphism of locally ringed spaces is a morphism of ringed spaces such that ∀x ∈ X,
f ]x : OY,f(x) → OX,x is a local ring homomorphism. (Recall that a homomorphism
between local rings φ : B → A is called local if φ(mB) ⊆ mA, or, equivalently,
φ−1(mA) = mB.) For two morphisms of locally ringed spaces

(X,OX) (Y,OY ) (Z,OZ)(f ,f]) (g,g])

the composition is (gf, (gf)]), where (gf)] is defined by

(g ◦ f)−1OZ ∼= f−1g−1(OZ) f−1OY OX .
f−1(g]) f]

Definition 1.4.5. An affine scheme is a locally ringed space that is isomorphic to
(Spec(A),OSpec(A)) for some ring A. A scheme X is a locally ringed space (X,OX)
such that there exists an open cover {Ui} of X such that the restriction (Ui,OX |Ui)
is an affine scheme for all i. For schemes X and Y , a morphism of schemes X → Y
is a morphism of locally ringed spaces.

We denote the category of schemes by Sch, which is a full subcategory of the
category of locally ringed spaces.
Proposition 1.4.6. The functor

Spec : Ringop → Sch
A→ (Spec(A),OSpec(A))

is fully faithful.
Proof. For A,B rings, we need to check that the map

Ψ: HomRing(A,B)→ HomSch(Spec(B), Spec(A))

is a bijection. Let X = Spec(A), Y = Spec(B). We define

Φ: HomSch(Y,X)→ HomRing(A,B)

by (f, f ]) 7→ f [Y : A = OX(X) → OY (Y ) = B. It is easy to see Φ ◦ Ψ = id. It
remains to show Ψ ◦ Φ = id. Let (f, f ]) : Spec(B) → Spec(A) be a morphism and
let φ = Φ(f, f ]) : A→ B. For q ∈ Spec(B), we have a natural commutative diagram
defined by restricting to stalks:

A B

Af(q) Bq

φ

f]q

Since f ] is a local ring morphism we have f(q) = φ−1(q). Moreover, by the universal
property of localization, f ]q must be the morphism induced by φ. This concludes
that Ψ ◦ Φ = id.
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If we did not require f ] to induce local homomorphisms, then the above propo-
sition would fail to hold. For example, HomRing(Z,Q) has only one element, but for
every p ∈ Spec(Z), we can define a morphism of ringed spaces (f, f ]) : Spec(Q) →
Spec(Z) of image {p} with f ]Spec(Q) given by Zp → Q.

Example 1.4.7. (1) Spec(0) = ∅ is the initial object of Sch.

(2) For a field k, Spec(k) is a point equipped with the constant sheaf of value k.

(3) For A = k[ε]/(ε2), Spec(A) is a point equipped with the constant sheaf of value
A.

(4) For a discrete valuation ring (DVR) A, X = Spec(A) = {η, s} where η = (0)
and s = m is the unique maximal ideal of A. We have OX(η) = Frac(A),
OX(X) = A.

(5) Spec(Z).

(6) For a ring A, An
A := Spec(A[x1, . . . , xn]) is called the affine n-space over A.

For n ≥ 2, not all opens are principal (see below).

Definition 1.4.8. Let X be a scheme, U an open subset of X. It is easy to see that
(U,OX |U) is a scheme. This is called an open subscheme of X.

A morphism of scheme f : Y → X is called an open immersion if f identifies
Y with an open subscheme of X, i.e. f is a composition Y g−→ U

j−→ X, where g is
an isomorphism and j is the inclusion of an open subscheme.

Not all schemes are affine.

Example 1.4.9. Let X = A2
k, U = X\V (x, y). Namely U is the open subset formed

by removing the origin. We observe that U = D(x) ∪D(y), so that O(U) is

Eq (O(D(x))×O(D(y)) O(D(x) ∩D(y)))

k[x, y, x−1]× k[x, y, y−1] k[x, y, x−1, y−1]

The equalizer is k[x, y, x−1] ∩ k[x, y, y−1] = k[x, y]. Thus the map

Φ: HomSch(X,U)→ HomRing(OU(U),OX(X))

defined by (f, f ]) 7→ f [U is not surjective. In particular, U is not affine.

Example 1.4.10. For a family of schemes {Xi}i∈I , the coproduct is X = ∐
iXi,

equipped with OX defined by OX(∐i Ui) = ∏
iOXi(Ui). If I is infinite and Xi is

non-empty for all i, then X is not quasi-compact, and hence not an affine scheme.
On the other hand, if I is finite with Xi = Spec(Ai), then X ∼= Spec(∏iAi).
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Definition 1.4.11. Let X be a topological space, {Ui} an open cover. A Glu-
ing Datum consists of a family of sheaves Fi over Ui and a family of morphisms
γij : Fi|Ui∩Uj → Fj|Ui∩Uj . such that

(1) γii = id and

(2) γik = γjk ◦ γij on Ui ∩ Uj ∩ Uk.

A morphism of gluing data (Fi, γij) → (Gi, δij) is a family of morphisms of sheaves
φi : Fi → Gi such that

Fi Gi

Fj Gj

φi

γij δij

φj

is commutative.

Lemma 1.4.12 (Gluing sheaves). We have an equivalence of categories Shv(X, C) ∼=
{gluing data}.

Proof. Let (Fi, γij) be a gluing datum. Define

F(U) = Eq
( ∏

iFi(U ∩ Ui)
∏
ij Fi(U ∩ Ui ∩ Uj)

π1

π2

)

where π1 is induced by the restriction Fi(U ∩ Ui) Fi(U ∩ Ui ∩ Uj) and π2

is induced by Fi(U ∩ Ui) Fi(U ∩ Ui ∩ Uj) Fj(U ∩ Uj ∩ Ui)
γij .

Lemma 1.4.13 (Gluing morphisms of schemes). Let X, Y be schemes, {Ui}i∈I an
open cover of X. Then

HomSch(X, Y ) ∏
i HomSch(Ui, Y ) ∏

ij HomSch(Ui ∩ Uj, Y )

is an equalizer diagram. More generally, U 7→ HomSch(−, Y ) is a sheaf of sets on
X.

Proof. Let (fi : Ui → Y ) be a compatible family of morphism. We first glue them
in the category of topological spaces and get a continuous map f : X → Y . Then
f ]i : (f−1OY )|Ui → OX |Ui is a compatible family of morphisms of sheaves, namely a
morphism of gluing data and the previous lemma tells us that there exists a unique
f ] : f−1OY → OX that restricts to f ]i .

Remark 1.4.14. The above lemma implies that if X is a scheme and {Ui} is an
open cover, Uij = Ui ∩ Uj, then∐

ij Uij
∐
i Ui X

is a coequalizer diagram in the category Sch.
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Lemma 1.4.15 (Gluing schemes). Let {Xi}i∈I be a family of schemes. Let Xij ⊆ Xi

be open sub-schemes and fij : Xij → Xji isomorphisms of schemes for all i, j ∈ I.
We require

(1) fii = id

(2) fij(Xij ∩Xik) = Xji ∩Xjk

(3) fik = fjk ◦ fij on Xij ∩Xik.

Then there exists a scheme X and open immersions fi : Xi → X such that

Xij Xi

Xji Xj X

fij
fi

fj

and has the universal property: For every scheme Y and a family of morphisms of
schemes gi : Xi → Y satisfying

Xij Xi

Xji Xj Y

fij
gi

gj

then there exists a unique g : X → Y such that

Xi X

Y

fi

gi g

is commutative.

Proof. Let X = ∐
iXi/ ∼, where x ∈ Xi ∼ y ∈ Xj ⇔ y = fijx. This makes a

topological space X with open subsets Xi ⊆ X. We have a sheaf OX,i on each Xi,
and we glue them to get OX .

Example 1.4.16. Consider An
k = Spec(k[x1, . . . , xn]), n > 1 and the origin O =

V (x1, . . . , xn). Let X0 = X1 = An
k , X01 = X10 = An

k\{O}. We then glue them by
X01 X10

id . The resulting scheme X is called the affine n-space with doubled
origin. We have

OX(X) = Eq
(
O(X0)×O(X1) O(X0 ∩X1)

)
= k[x1, . . . , xn].

Since the two morphisms fi : An
k = Xi → X, i = 0, 1 induce the same ring homo-

morphism on global sections, the map

Φ: HomSch(An
k , X)→ HomRing(OX(X),OAn

k
(An

k))

is not an injection. This shows that X is not affine.
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Example 1.4.17. Let X0 = X1 = A1
k, X01 = X10 = A1

k\{O}. Write X01 =
Spec(k[x, x−1]), X10 = Spec(k[y, y−1]). Gluing them by x 7→ y−1, we get the projec-
tive line P1

k over k.

Example 1.4.18. More generally, letA be a ring,Xi = Spec(A[T−1
i T0, . . . , T

−1
i Tn]) '

An
A. Let Xij = D(T−1

i Tj) ⊂ Xi. Then

Xij = Spec(A[T−1
i Tk, T

−1
j Ti]nk=0) = Spec(A[T−1

j Tk, T
−1
i Tj]nk=0) = Xji.

Gluing them by the identity morphisms, we get X = PnA, the projective n-space over
A. It can be shown from the construction that OX(X) = ⋂

iA[T−1
i T0, . . . , T

−1
i Tn] =

A. For A 6= 0 and n ≥ 1, PnA is not affine.

Proposition 1.4.19. Let X be a scheme, Y = Spec(A) an affine scheme. Then the
map HomSch(X, Y )→ HomRing(OY (Y ),OX(X)) sending f to f [Y is a bijection.

Proof. Let X = ⋃
i Ui, Ui open affine. Then by gluing morphisms of schemes, we

have

HomSch(X, Y ) = Eq
( ∏

i HomSch(Ui, Y ) ∏
ij HomSch(Ui ∩ Uj, Y )

)
Write Ui ∩ Uj = ⋃

k Uijk with Uijk open affine, then

HomSch(X, Y ) = Eq
( ∏

i HomSch(Ui, Y ) ∏
ijk HomSch(Uijk, Y )

)
but for X affine, we have HomSch(X, Y ) ∼= HomRing(OY (Y ),OX(X)). Therefore the
above equalizer diagram is isomorphism to

Eq
( ∏

i HomRing(OY (Y ),OX(Ui))
∏
ijk HomSch(OY (Y ),OX(Uijk))

)
Since

OX(X) ∏
iOX(Ui)

∏
ijkOX(Uijk)

is an equalizer diagram by the sheaf condition, we get the desired equalizer diagram
by applying HomRing(OY (Y ),−).

Remark 1.4.20. We have

Sch Ringop Γ a Spec,
Γ

Spec

where Γ is the functor sending X to OX(X). It follows that Spec transforms colimits
in Ring to limits in Sch. Moreover, Spec is fully faithful and equivalently Γ◦Spec ∼=
id.

Example 1.4.21. (1) Since Z is initial in Ring, Spec(Z) is the final object of Sch.

(2) Pushouts in Ring are given by tensor product. Hence Spec(B ⊗A C) ∼=
Spec(B)×Spec(A) Spec(C).
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Example 1.4.22.

HomSch(X, Spec(Z[T ])) HomRing(Z[T ],OX(X)) OX(X)

f Γ(f) Γ(f)(T )

∼= ∼=

Recall the Yoneda embedding. Let C be a locally small category. For ev-
ery object X, consider the functor hX = HomC(−, X) : Cop → Set. The Yoneda
embedding is the functor

h : C → Fun(Cop, Set), X 7→ hX ,

which is fully faithful.
In the case of Ringop and Sch, we have functors

Ringop Sch

Fun(Ring, Set) Fun(Schop, Set)

Spec

h h

◦ Spec

The diagram commutes up to isomorphism by the full faithfulness of Spec. The
functor ◦ Spec is not fully faithful. However, by gluing morphisms of schemes one
obtains the following.

Proposition 1.4.23. The functor

Sch −→ Fun(Ring, Set)
Y 7−→ (B 7→ HomSch(Spec(B), Y ))

is fully faithful.

Proof. Let X and Y be schemes. Denote the functor

B 7→ HomSch(Spec(B), X)

by FX . We construct an inverse of the map f 7→ Ff as follows. Let ϕ be a natural
transformation from FX to FY . Cover X by open affine subsets {Ui} and cover
Ui ∩ Uj by open affine subsets Uijk. Then by Remark 1.4.14,

∐
ijk Uijk

∐
i Ui X

is a coequalizer diagram. Apply ϕ we get a corresponding diagram involving Y and
a unique morphism f making the diagram commutative:∐

ijk Uijk
∐
i Ui X

Y

f

One then checks that ϕ 7→ f is the desired inverse.
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Remark 1.4.24. The proposition implies that a morphism of schemes f : X → Y is
an isomorphism if and only if for every ringB, HomSch(Spec(B), X)→ HomSch(Spec(B), Y )
is an isomorphism.

We sometimes regard Sch via these fully faithful functors as subcategories of
Fun(Ring, Set) or Fun(Schop, Set).

Definition 1.4.25. Let S be a scheme. The category Sch/S of S-schemes or schemes
over S is defined as follows. An object of Sch/S is a scheme X equipped with a
morphism of schemes f : X → S. A morphism from (X, f : X → S) to (Y, g : Y →
S) is a morphism of schemes h : X → Y such that

X Y

S

h

f

g

is commutative.
For two S-schemes T → S and X → S, the set of T -points of X is defined by

X(T ) = HomSch/S(T,X). For T = Spec(A), we write X(A) := X(Spec(A)) and we
refer to Spec(A)-points as A-points.

Example 1.4.26. Let An
A = Spec(A[x1, . . . , xn]) and let a : An

A → Spec(A) be the
canonical morphism. In Sch/A := Sch/ Spec(A), an A-point of An

A is a morphism
s : Spec(A)→ An

A that makes

Spec(A) An
A

Spec(A)

f

id
a

commutative, namely a section of a. This corresponds to an A-algebra homomor-
phism φ : A[x1, . . . , xn] → A, which is uniquely determined by (φ(x1), . . . , φ(xn)) ∈
An. Thus the set An

A(A) can be identified with An.

1.5 Topology of schemes
Lemma 1.5.1. Let X be a scheme. Then OX(X) = 0 if and only if X = ∅.

Proof. Let X be a scheme such that OX(X) = 0. Take U open affine subset, since
OX(X) → OX(U) is a ring homomorphism, it sends 1 = 0 to 1, hence OX(U) = 0
and U = Spec(0) = ∅.

Definition 1.5.2. Let X be a scheme, f ∈ OX(X). Define Xf = {x ∈ X | fx ∈
O×X,x}.

Example 1.5.3. (Spec(A))f = D(f). If U = Spec(A) ⊂ X is an open affine, then
Xf ∩ U = D(f |U). It follows that Xf ⊆ X is open.
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Remark 1.5.4. It is easy to see that Xf ∩ Xg = Xfg, Xf+g ⊆ Xf ∪ Xg, X0 = ∅,
and Xf = X for f ∈ O(X)×.

Proposition 1.5.5. For any scheme X, we have a bijection

{Open and closed subsets of X} ∼= {idempotent elements in OX(X)}.

Proof. Let U be open and closed. Then X = UqU c, where U c is the complement of
U . Let eU ∈ OX(X) such that eU |U = 1 and eU |Uc = 0. Then eU is an idempotent
element.

Let e ∈ OX(X) be an idempotent element and consider Xe and X1−e. By the
remark preceding the proposition, X = Xe qX1−e. Thus Xe is open and closed.

It is clear that XeU = U . Moreover, let s = eXe . The only idempotents in a local
ring are 0 and 1. It follows that the germs of s and e agree at every point. This
implies s = e.

We say that a scheme is connected if its underlying topological space is connected.

Corollary 1.5.6. A scheme X is connected if and only if the only idempotents of
OX(X) are 0, 1.

Definition 1.5.7. A topological space X is called irreducible if it is nonempty
and if X = F1 ∪ F2 with F1, F2 closed implies X = F1 or X = F2.

Remark 1.5.8. • Irreducible ⇒ connected.

• A Hausdorff space cannot be irreducible unless X is a point.

Lemma 1.5.9. Let X be a topological space, Y ⊆ X.

(1) Y is irreducible if and only if Y is nonempty and whenever Y ⊆ F1 ∪ F2, for
closed subsets F1, F2 in X, we have Y ⊆ F1 or Y ⊆ F2.

(2) Y is irreducible if and only if Y is irreducible.

Lemma 1.5.10. Let X be a nonempty topological space. Then X is irreducible
if and only if every non-empty open subset U is dense in X. In that case, U is
irreducible as well.

Example 1.5.11. Let X = Spec(k[x, y]), Y = V (xy). Then Y is not irreducible
since Y = V (x) ∪ V (y).

Definition 1.5.12. Let X be a topological space. If X = {η}, then we call η a
generic point of X.

If X has a generic point, then X is irreducible.

Lemma 1.5.13. Let A be a ring, I ⊆ A an ideal. Then V (I) is irreducible if and
only if

√
I = p is a prime ideal. In that case, p is the only generic point of V (I).

Proof. Up to replacing A by A/
√
I we may assume that I = 0 and is radical. Then

Spec(A) is irreducible if and only if wheneverD(f), D(g) 6= ∅, we haveD(f)∩D(g) =
D(fg) 6= ∅ if and only if whenever f, g 6= 0, we have fg 6= 0. Moreover, if p = (0) is
a prime, then {p} = V (p) = Spec(A), so that p is the generic point.
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Definition 1.5.14. Let X be a topological space. We say that X is sober if every
irreducible subset has a generic point. We say that X is a T0 space (or Kolmogorov
space) if for all x 6= y ∈ X, there exists either an open neighborhood U of x such
that y /∈ U or an open neighborhood V of y such that x /∈ V .

Consider the map

F : X → {irreducible closed subsets of X}
x 7→ {x}

Observe that X is T0 if and only if F is injective, and X is sober if and only if F is
bijective. Thus we have sober ⇒ T0.

Proposition 1.5.15. The underlying topological space of every scheme is sober.

This follows from Lemma 1.5.13 and the following.

Lemma 1.5.16. Any locally closed subspace of a sober space is sober. A topological
space admitting an open cover by sober spaces is sober.

Proof. Exercise.

Definition 1.5.17. Let X be a scheme. We say that X is irreducible if its un-
derlying topological space is irreducible. We say that X is reduced reduced if for
every open subset U , OX(U) is reduced. (Recall that a ring A is called reduced
if
√

(0) = (0)). We say that X is integral if X 6= ∅ and for every nonempty open
subset U , OX(U) is an integral domain.

Proposition 1.5.18. Let X be a scheme, then

(1) X is reduced if and only if ∀x ∈ X,OX,x is reduced.

(2) X is integral if and only if X is irreducible and reduced.

Proof. (1) ⇒ since localization preserves reduced.
⇐ Let s ∈ OX(U) and sn = 0. For all x ∈ U , since OX,x is reduced, we have
sx = 0. It follows that s = 0.

(2) ⇒ X is easily seen to be reduced. Suppose U1, U2 6= ∅ and U1 ∩U2 = ∅. Then
OX(U1 ∪ U2) ' OX(U1)×OX(U2) is not a domain.
⇐ It suffices to show that OX(X) is integral. Suppose f, g ∈ OX(X), fg = 0.
Then Xf ∩Xg = ∅, and hence Xf = ∅ or Xg = ∅. Say Xf = ∅. Then for each
open affine subset V = Spec(A), V ∩Xf = D(f |V ) = ∅. This implies that f |V
is nilpotent. Since V is arbitrary, f must be 0.

Warning 1.5.19. It is not true in general without assuming X quasi-compact that
a global section of OX is nilpotent if and only if every germ of it is nilpotent.

Example 1.5.20. (1) Spec(A) is reduced if and only if A is reduced.
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(2) Spec(A) is irreducible if and only if
√

0 is a prime ideal.

(3) Spec(A) is integral if and only if A is integral.

Definition 1.5.21. A spectral space is a sober, quasi-compact space such that

(1) quasi-compact opens form a basis.

(2) Finite intersections of quasi-compact opens are quasi-compact.

A continuous map between spectral spaces f : X → Y is called spectral if ∀V
quasi-compact open of Y , f−1(V ) is quasi-compact.

We denote by Sp the category of spectral spaces and spectral maps.

Theorem 1.5.22 (Hochster). The essential image of the functor Spec : Ring→ Top
is Sp.
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Lemma 1.5.23. Let X be an integral scheme with a generic point η. Then

(1) OX,η is a field called the function field of X.

(2) For U ⊆ X open, the natural map OX(U)→ OX,η is injective.

Proof. To see that OX,η is a field, we may take an arbitrary nonempty open affine
subset U = Spec(A) and observe that OX,η = A(0) is the fraction field of A.

For the second statement, we may replace U by an nonempty open affine subset
and reduce to the case where U = Spec(A) is affine. In this case OX(U) = A →
Frac(A) = OX,η is injective.

Corollary 1.5.24. For X integral and open subsets ∅ 6= U ⊆ V ⊆ X, the restriction
map O(V )→ O(U) is injective.

Recall that every topological space X is the disjoint union of connected compo-
nents. Each connected component is closed but not necessarily open.

Definition 1.5.25. Let X be a topological space, an irreducible component of
X is a maximal irreducible subset of X.

An irreducible component is necessarily closed. By Zorn’s Lemma, every irre-
ducible subset is contained in some irreducible component. Since every point is
irreducible, every topological space X is the union of its irreducible components.

Lemma 1.5.26. Let X = ⋃n
i=1 Yi be a finite union of irreducible closed subsets.

Then the irreducible components of X are the maximal elements of the family {Yi}ni=1.
In particular, if there are no inclusions among the Yi’s, then the irreducible compo-
nents of X are {Yi}ni=1.

Proof. Indeed, every irreducible subset of X is contained in some Yi.

Example 1.5.27. For A = k[x, y]/(xy), Spec(A) = V (x) ∪ V (y). The irreducible
components of Spec(A) are V (x) and V (y).

Example 1.5.28. Let S be a profinite set and k a field. Consider the constant
sheaf kS on S and A = kS(S) = {f : S → k locally constant}. It is easy to see
that Spec(A) ∼= (S, kS). Thus, for S an infinite profinite set (e.g. the Cantor set),
Spec(A) has infinitely many irreducible components.

In the case k = F2, kS can be identified with the Boolean algebra of open closed
subsets of S.

Definition 1.5.29. Let X be a topological space, x, y ∈ X. We say that x spe-
cializes to y or y generizes to x and we write x y, if y ∈ {x}.

Let X be a T0 space. Generization defines a partial order: x 6 y ⇐⇒ x ∈
{y} ⇐⇒ {x} ⊆ {y}.

• The minimal points are the closed points.
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• If X is sober, then the maximal points are the generic points of irreducible
components.

Example 1.5.30. In Spec(A), {xp} = V (p). Here xp ∈ Spec(A) denotes the point
corresponding to the prime ideal p. We have

p ⊆ q⇔ {xp} ⊇ {xq}
⇔ xp  xq.

Thus we have a bijection

{irreducible components of Spec(A)} ←→ {minimal primes of A}
V (p)←[ p.

Warning 1.5.31. Schwede gave an example of a scheme without a closed point.
The underlying topological space looks like x0  x1  . . . . Note that an affine
scheme must have closed points which correspond to maximal ideals.

Noetherian Spaces
Definition 1.5.32. A topological space X is calledNoetherian if its closed subsets
satisfy the descending chain condition, i.e. if Y1 ⊇ Y2 ⊇ . . . is a descending chain
of closed subsets, there exists N such that YN = YN+1 = . . . . Equivalently, any
nonempty family of closed subsets admits a minimal element.

Example 1.5.33. If A is a Noetherian ring, then Spec(A) is Noetherian space.

Warning 1.5.34. If Spec(A) is a Noetherian space, Amay not be a Noetherian ring.
Let A = ⋃

n k[[x1/n]] be a union of rings of formal power series. Then Spec(A) =
{η, s} is a Noetherian space. Here η corresponds to the 0 ideal and s corresponds
to the ideal generated by x1/n, n ∈ N. The ring A is not Noetherian.

Lemma 1.5.35. Let X be a topological space. The following are equivalent:

(1) X is Noetherian.

(2) Every open subset of X is quasi-compact.

(3) Every subset of X is quasi-compact.

Proof. (3)⇒ (2) is obvious.
For (2) ⇒ (1), note that the union U of an ascending chain of open subsets

U1 ⊆ U2 ⊆ . . . is open, hence is quasi-compact by assumption (2).
For (1)⇒ (3), let Y ⊆ X be a subset and Z1 ⊇ Z2 ⊇ . . . be a descending chain

of closed subsets in Y . Then Zi∩Y = Zi where Zi is the closure in X, and Zi forms
a descending chain of closed subsets in X.

Corollary 1.5.36. If X is Noetherian, Y ⊆ X with subspace topology. Then Y is
Noetherian.

Corollary 1.5.37. X is Noetherian and sober ⇒ X is a spectral space.
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Lemma 1.5.38. X is Noetherian ⇒ X has only finitely many irreducible compo-
nents.

Proof. Consider F = {Y ⊆ X | Y is not a finite union of irreducible closed subsets}.
If it is not empty, we can find a minimal element Y by Noetherian hypothesis. Y
cannot be irreducible, hence Y = Y1 ∪ Y2 with Y1, Y2 proper closed subset. But
at least one of Y1, Y2 must be in F , hence there exists a smaller one, say Y1 ∈ F ,
violating the minimal property of Y .

Definition 1.5.39. Let X be a scheme.

• X is quasi-compact if its underlying space sp(X) is quasi-compact.

• X is locally Noetherian if X can be covered by open affine subsets Ui =
Spec(Ai) with Ai Noetherian rings.

• X is Noetherian if X is quasi-compact and locally Noetherian.

Proposition 1.5.40. Let X be a locally Noetherian scheme and U = Spec(A) is
an open affine subset. Then A is a Noetherian ring. In particular, a ring A is
Noetherian if and only if Spec(A) is a Noetherian scheme.

Definition 1.5.41. Let P be a collection of rings. We say that P is local if it
satisfies the following properties:

(1) A ∈ P implies for any f ∈ A,Af ∈ P .

(2) If there are fi ∈ A, 1 6 i 6 n such that Spec(A) = ⋃n
i=1D(fi) and Afi ∈ P ,

then A ∈ P .

Lemma 1.5.42. Let P be a local collection of rings, and X a scheme with an open
affine cover {Ui}i∈I with Ui = Spec(Ai), where each Ai ∈ P. Then for every open
affine subset U = Spec(A), we have A ∈ P.

The proof relies on the following technical result.

Lemma 1.5.43. Let X be a scheme and U = Spec(A), V = Spec(B) open affine
subsets. Then U ∩ V can be written as a union of open affine subsets which are
principal open subsets of both U and V .

Proof. For x ∈ U ∩ V , choose a principal open subset W of U that covers x and is
contained in V . Up to replacing U by W , we may assume U ⊆ V . Choose f ∈ B
such that Vf = Spec(Bf ) ⊆ U . We observe that Vf = Uf̄ = Spec(Af̄ ) is also a
principal open subset of U . Here f̄ = f |U .

Proof of Lemma 1.5.42. Let U = Spec(A) be an open affine subset. Then U =⋃
i(U ∩ Ui). By the previous lemma, U ∩ Ui can be covered by open affine subsets

Uij which are both principal in U and Ui. By hypothesis 1 of P , each Uij is the
spectrum of a ring in P . Since U is quasi-compact, we may choose finitely many of
them and apply hypothesis 2 in the definition.
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Proof of Proposition 1.5.40. It remains to show that P = {Noetherian rings} is a
local collection. The first condition is easy to verify. For the second one, let fi ∈ A,
1 6 i 6 n, satisfying Spec(A) = ⋃

iD(fi) with each Afi Noetherian. We will show
that every ideal I ⊆ A is finitely generated. For each i, the ideal IAfi ⊆ Afi is
finitely generated. Let {aij}mij=1 be a family of generators of IAfi in I. Then {aij}i,j
generates I. Indeed, if φ : Am1+···+mn → I denotes the homomorphism of A-modules
given by {aij}i,j, then φfi is a surjection for every i, which implies that φ is a
surjection.

Remark 1.5.44. If X is a Noetherian scheme, then its underlying space sp(X) is
Noetherian.

Warning 1.5.45. There exists a Noetherian space which is not the underlying space
of any Noetherian scheme.

In fact, it follows from Krull’s principal ideal theorem that a Noetherian scheme
of dimension ≥ 2 (see below for the definition of dimension) must have infinitely
many points. Thus spaces such as X = {x  y  z} cannot be the underlying
space of a Noetherian scheme.

Warning 1.5.46. For a Noetherian scheme X, OX(X) is not a Noetherian ring in
general. Consider the projective space P3

k over a field k, with homogeneous coordi-
nates [x0 : x1 : x2 : x3]. Let D = V (x0) and E = V (x1) be distinct planes of P3

k and
let l = V (x0, x2) 6= D ∩E be a projective line on D. Let Y = D ∪E and X = Y \l.
Then X is a Noetherian scheme. We have X = (D\l) ∪ (E\O), where O = E ∩ l.
We have OX(D\l) = k[x, y], where x = x1

x2
and y = x3

x2
, and OX(E\O) = k. The

restriction map OX(D\l)→ OX((D\l)∩E) is given by substituting x = 0. One can
deduce that OX(X) ∼= k+ xk[x, y] ⊆ k[x, y]. This is not a Noetherian ring: there is
an ascending chain of ideals (x) ⊆ (x, xy) ⊆ (x, xy, xy2) ⊆ . . . .

Dimension
Definition 1.5.47. Let X be a topological space. The dimension of X, denoted
by dimX, is define to be

sup
n
{n | ∃Y0 ( Y1 ( · · · ( Yn such that Yi are irreducible closed}

Let Y ⊆ X be an irreducible closed subset. The codimension codim(Y,X) of Y is
defined to be

sup
n
{n | ∃Y = Y0 ( Y1 ( · · · ( Yn such that Yi are irreducible closed}

If Y is an arbitrary closed subset, we define its codimension as

inf{codim(Y ′, X) | Y ′ ⊆ Y irreducible and closed}

Example 1.5.48. dim ∅ = −∞, codim(∅, X) =∞.

Lemma 1.5.49. Let X be a topological space.
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• dimX = sup{dimXi | Xi ⊆ X are irreducible components}

• If Z ⊆ X, dimZ 6 dimX.

• If {Ui} is an open cover of X, then dimX = supi(dimUi).

If X is a sober space,

dimX = sup{n | ∃xn  xn−1  · · · x0 with all xi distinct}

codim({x}, X) = sup{n | ∃xn  xn−1  · · · x0 = x with all xi distinct}

Example 1.5.50. Let X = Spec(A).

• dim(X) = dim(A) = sup{n | ∃p0 ( p1 ( · · · ( pn}.

• For a prime ideal p, codim(V (p), X) = ht(p) = sup{n | ∃p = p0 ) p1 ) · · · )
pn}

Theorem 1.5.51. Let A be a Noetherian ring.

• For every prime ideal p, ht(p) <∞.

• If A is local, then dimA <∞.

Warning 1.5.52. A Noetherian ring may have dimension ∞ (Nagata).

1.6 Morphisms and base change
In this section, we talk about properties between morphisms of schemes.

Definition 1.6.1. Let : Y → X be a morphism of schemes.

• f is called locally of finite type if X = ⋃
i Ui with each Ui = Spec(Ai) open

affine subset and for each i f−1(Ui) = ⋃
j Vij with each Vij = Spec(Bij) open

affine subset such that Bij is a finitely generated Ai-algebra.

• f is called quasi-compact if X = ⋃
i Ui with each Ui open affine such that

f−1(Ui) is quasi-compact.

• f is of finite type if f is locally of finite type and quasi-compact.

• f is called affine if X = ⋃
i Ui with each Ui = Spec(Ai) open affine subset such

that f−1(Ui) is also affine.

• f is called finite if X = ⋃
i Ui with each Ui = Spec(Ai) open affine and for

each i f−1(Ui) = Spec(Bi) such that Bi is a finite Ai-algebra. (Recall that an
A-algebra B is finite if B is finitely generated as an A-module.)

Remark 1.6.2. In the definition above, the existence of an open affine cover can
be replaced by “for every open affine cover”.
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We clearly have the following implications:

affine

finite quasi-compact

of finite type locally of finite type

Example 1.6.3. Let A be a DVR with fractional field K and residue field k. Then
the natural morphisms Spec(k) → Spec(A) is finite but Spec(K) → Spec(A) is of
finite type. Note that if π is a uniformizer of A, then K = A[π−1].

Example 1.6.4. Spec(Q)→ Spec(Z) is not locally of finite type.

Example 1.6.5. Let A be a ring. Then An
A → Spec(A) and PnA → Spec(A) are

both of finite type.

Definition 1.6.6. Let k be a field.

• An affine k-variety is an integral scheme equipped with an affine morphism
of finite type to Spec(k).

• A k-variety is an integral scheme equipped with a separated morphism of
finite type to Spec(k).

It is clear that we have an equivalence of categories

{affine k-varieties} ∼= {finitely generated k-algebras that are domains}op.
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We first supplement some results on dimension:

Fact 1.6.7. Let A be a Noetherian ring.

• dimA[x] = dimA+ 1 ([AM, Exercise 11.7], [M2, Theorem 15.4]).

• If A is a finitely generated k-algebra which is also a domain, then dimA =
tr.deg(Frac(A)/k) [M2, Theorem 5.6].

• Krull’s principal ideal theorem: Let f ∈ A. Then for each minimal prime p
containing f , ht(p) 6 1 [AM, Corollary 11.16]. Moreover, for A 6= 0, ht(f) = 0
if and only if f is a zero divisor [AM, Proposition 4.7].
Repeatedly applying Krull’s principal ideal theorem, we get that for each mini-
mal prime p containing (f1, ..., fr), ht(p) 6 r. In particular, ht(f1, ..., fr) 6 r.

Lemma 1.6.8. Let X be a topological space and Y ⊆ X a closed subset. Then
dimX > dim Y + codim(Y,X).

Proof. Take Z ⊆ Y irreducible closed. By definition,

dimX > dimZ + codim(Z,X) > dimZ + codim(Y,X).

We conclude by taking supremum over Z ⊆ Y .

Example 1.6.9. Let A be a DVR and let m = (π) be the maximal ideal. Con-
sider the ideal p = (πx − 1) in B = A[x]. This is a maximal ideal, since B/p =
A[1/π] = Frac(A). From Fact 1.6.7, dimB = dimA + 1 = 2 and ht(p) = 1,
hence ht(p) + dimB/p < dimB. In geometric form, we have dim Spec(B) >
dim{p}+ codim({p}, Spec(B)).

Definition 1.6.10. Let X be a topological space.

• We call X equidimensional if all irreducible components have the same di-
mension.

• Assume that X is T0. We call X equicodimensional if all closed points have
the same codimension.

Example 1.6.11. Suppose dimX = dim Y + codim(Y,X) holds for all Y ⊆ X
closed.

• Take Y to be an irreducible component of X. Then codim(Y,X) = 0, hence
dim Y = dimX. Thus X is equidimensional.

• Assume that X is T0. Take Y = {x} to be a closed point. Then dim{x} = 0,
hence codim({x}, X) = dimX. Thus X is equicodimensional.

The example B = A[x] in Example 1.6.9 is not equicodimensional.
By contrast, we have the following result.
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Theorem 1.6.12. Let S = Spec(k), k a field or let S be an integral Noetherian
scheme of dimension 1 which has infinitely many points. For any equidimensional
scheme X equipped with a finite type morphism X → S, the equality dimX =
dim Y + codim(Y,X) holds for every closed subset Y ⊆ X. In particular, X is
equicodimensional.

For a proof, see [G, IV 10.6.1].

Definition 1.6.13. Let φ : A→ B be a ring homomorphism.

• We call B a finite A-algebra if B is a finitely generated A-module.

• We call B an integral A-algebra if ∀x ∈ B, φ(A)[x] is a finitely generated
A-module.

We have B is a finite A-algebra ⇔ B is finitely generated and integral.

Definition 1.6.14. Let f : Y → X be a morphism of schemes. We say that f is
integral if there exists an cover X = ⋃

Ui with Ui = Spec(Ai) affine open such that
f−1(Ui) = Spec(Bi) and Bi integral over Ai.

For f : Y → X, we have f finite ⇔ f integral and locally of finite type.

Theorem 1.6.15. An integral morphism is a closed map.

Proof. Let f : Y → X be integral. Since a subset is closed if and only if its inter-
section with every member of an open cover is closed, we may assume X = Spec(A)
is affine. In this case Y = Spec(B) is affine as well and f is induced by φ : A→ B.
Let J ⊆ B be an ideal, V (J) ⊂ Spec(B) a closed subset. Let I = φ−1(J). We have
A/I → B/J is integral as well. From the fact that every prime ideal in A/I is a
contracted ideal [AM, Theorem 5.10] (which implies the going-up theorem), we have
f(V (J)) = V (I). Therefore, f is closed.

Fiber Products
Recall a fiber product of a diagram X

a−→ S
b←− S is an object X×S Y equipped with

two morphisms p, q indicated below, which satisfies the following universal property:
For any object Z equipped with two morphisms f, g such that af = bg, there exists
a unique morphism h such that ph = f , qh = g.

Z

X ×S Y

X Y

S

h

f

g

p

q

a b



34 CHAPTER 1. SCHEMES

Proposition 1.6.16. Fiber products exist in the category of schemes.

Proof. Let a : X → S and b : Y → S be given.

Case 1: S = Spec(A), X = Spec(B), Y = Spec(C) are all affine.
Define X ×S Y = Spec(B ⊗A C). For any scheme Z, we have Hom(Z,X) '
Hom(B,OZ(Z)) and similarly for Y and S. The universal property for X×SY
translates into the universal property of B ⊗A C in the category of rings.

Case 2: X = ⋃
Xi with Xi ⊆ X open such that Xi ×S Y exists.

For any U ⊆ Xi, U ×S Y exists and can be identified with the inverse image
of U along Xi ×S Y → Xi, as shown in the diagram with Cartesian squares

U ×S Y X ×S Y Y

U X S

Let Xij = Xi ∩ Xj. Then Xij ×S Y exists and we can glue Xi ×S Y along
Xij ×S Y and get X ×S Y .

Case 3: S and Y are affine and X is general.
Cover X by affine open subsets and apply Cases 1 and 2.

Case 4: S affine and X, Y general.
Cover X by affine open subsets and apply Cases 2 and 3 (with X and Y
swapped).

Case 5: The general case.
Let S = ⋃

Si be an affine open cover. Let Xi = a−1(Si), Yi = b−1(Si). Then
Xi ×Si Yi exists by Case 4. But we have Xi ×Si Yi ∼= Xi ×S Y as shown in the
diagram below

Xi ×Si Yi Yi Y

Xi Si S

b

Thus we can glue them to get X ×S Y .

Warning 1.6.17. The natural map sp(X×SY )→ sp(X)×sp(S)sp(Y ) is not injective
in general.

Definition 1.6.18. Let f : X → S be a morphism of schemes and let s ∈ S. Define
the fiber Xs of f at s

Xs = X ×S Spec(κ(s)) X

Spec(κ(s)) S

f



1.6. MORPHISMS AND BASE CHANGE 35

Proposition 1.6.19. The map Xs → f−1(s) is a homeomorphism.

Proof. Without loss of generality, we may assume S = Spec(A), X = Spec(B),
and f is induced by φ : A → B. Let s ∈ S be defined by the prime ideal p. We
have κ(s) = κ(p) = Ap/pAp. Hence Xs = Spec(B ⊗A (Ap/pAp)) = Spec(Bp/pBp).
Elements of Spec(Bp/pBp) correspond bijectively to primes of q of B such that
q ⊇ φ(p) and q does not intersect φ(A\p). This is equivalent to φ−1(q) = p. Thus
the map g : Xs → f−1(s) is a bijection. Since Spec(Bp/pBp)→ Spec(Bp)→ Spec(B)
are successive embeddings and f−1(s) is endowed with the subspace topology, g is
a homeomorphism.

We may view a morphism f : X → S as a family of fibers Xs parameterized by
s ∈ S.

Example 1.6.20. Consider f : X = Spec(k[t, y, x]/(xy−t))→ S = Spec(k[t]). The
fiber at a rational point t = a of S is Spec(k[x, y]/(xy − a)). For a 6= 0, the fiber is
a hyperbola isomorphism to Spec(k[x, x−1]). For a = 0, the fiber is the union of the
coordinate axes of the affine plane and, in particular, is not irreducible.

Definition 1.6.21. Let P be a class of morphisms. We call P stable under base
change if for every f : X → S in P and every morphism Y → S, the base change
f ×S Y : X ×S Y → Y belongs to P .

Example 1.6.22. The following classes of morphisms are stable under base change

• locally of finite type

• quasi-compact

• affine

• integral

• of finite type

• finite

Lemma 1.6.23. Surjective morphisms are stable under base change.

Proof. Let f : X → S be a surjective morphism and S ′ → S a morphism. Let
X ′ = S ×S S ′. Take s′ ∈ S ′. We need to show that the fiber X ′s′ 6= ∅.

X ′s′ X ′ X

Xs

Spec(κ(s′)) S ′ S

Spec(κ(s))

f

f ′

Since f is surjective, Xs 6= ∅. We are thus reduced to showing that for any k-scheme
X 6= ∅ and any field extension k′/k, we have X ⊗k k′ := X ×Spec(k) Spec(k′) 6= ∅.
We may assume X = Spec(A) is affine. In this case it suffices to observe that
A⊗k k′ 6= 0.
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Warning 1.6.24. Injectivity and bijectivity are not stable under base change. For
example, Spec(C)→ Spec(R) is bijective. After base change to C, we have C⊗RC =
C ⊗R (R[x]/(x2 + 1)) = C[x]/(x2 + 1) ∼= C × C, which has two prime ideals. Thus
Spec(C⊗R C)→ Spec(C) is not injective or bijective.

Warning 1.6.25. Closed morphisms are not stable under base change. For example,
A1
k → Spec(k) is closed but A2

k = A1
k ×k A1

k → A1
k is not closed, since the image of

V (xy − 1) is the open subset A1
k\{0}, which is not closed.

Definition 1.6.26. Let f be a morphism of schemes.

• f is called universally closed if every base change of f is a closed mapping.

• f is called a universal homeomorphism if every base change of f is a
homeomorphism.

• f is called universally injective or radiciel if every base change of f is
injective.

Example 1.6.27. An integral morphism is universally closed.

Proposition 1.6.28. Let f : X → Y be a morphism of schemes. The following are
equivalent

(a) f is radiciel.

(b) f is injective and ∀x ∈ X, κ(x)/κ(f(x)) is purely inseparable.

(c) For every fieldK, f(K) : X(K)→ Y (K) is injective, where X(K) = HomSch(Spec(K), X).

Note that X(K) can be identified with the set of pairs (x, ι), where x ∈ X and
ι : κ(x)→ K is a field embedding.

Proof. (a) ⇒ (c). Let t1, t2 ∈ X(K) such that f(K)(t1) = f(K)(t2). Consider the
Cartesian square in the following diagram

X ×Y Spec(K) X

Spec(K) Y

f ′ fs

t1

t2

Each ti corresponds to a section si of f ′ by the universal property of fiber product.
f ′ is injective, the image of s1 coincides with the image of s2. For any morphism
g : Z → Spec(K), sections s of g are uniquely determined by the image of s. Thus
s1 = s2 and hence t1 = t2.

(c)⇒ (a). For any Y ′ → Y , if we writeX ′ = X×Y Y ′, thenX ′(K) = X(K)×Y (K)
Y ′(K), which injects into Y ′(K).

Spec(K) X ′ X

Y ′ Y

f ′ f
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Therefore, it suffices to prove that f is injective itself. Let x, x′ ∈ X such that
f(x) = f(x′) = y. There exists a field K and field embeddings κ(x) ι−→ K

ι′←− κ(x′)
making

K

κ(x) κ(x′)

κ(y)

ι ι′

commutative. This defines (x, ι), (x′, ι′) ∈ X(K) satisfying f(K)(x, ι) = f(K)(x′, ι′).
Hence (x, ι) = (x′, ι′) and in particular x = x′.

For the equivalence (b)⇔ (c), recall that, in the category of fields, k → k′ is an
epimorphism if and only if k′/k is purely inseparable.

(c) ⇒ (b). We have already proven that f is injective. It suffices to show
that φ : κ(f(x)) → κ(x) is an epimorphism of fields. Let ι, ι′ : κ(x) → K be field
embeddings satisfying ιφ = ι′φ. Then f(K)(x, ι) = f(K)(x, ι′). Hence (x, ι) =
(x, ι′), namely ι = ι′.

(b) ⇒ (c). This is similar to the last step. Let (x, ι), (x′, ι′) ∈ X(K) such that
f(K)(x, ι) = f(K)(x′, ι′). In other words, f(x) = f(x′) and ιφ = ι′φ. Since f is
injective, we have x = x′. Since φ is an epimorphism of fields, we have ι = ι′.

Remark 1.6.29. We have integral + surjective + radiciel ⇒ universal homeomor-
phism. The converse also holds by a result of Deligne [G, IV 18.12.11].

Example 1.6.30. Let k′/k be a purely inseparable field extension. Then Spec(k)→
Spec(k′) is integral, surjective, radiciel, and hence a universal homeomorphism.

Definition 1.6.31. Let P be a class of morphisms. We say P is stable under
composition if whenever X f−→ Y

g−→ Z with f, g ∈ P , we have gf ∈ P .

Example 1.6.32. The classes in Example 1.6.22 are stable under composition.

Lemma 1.6.33. Let X Y Z
f g .

(1) If gf is locally of finite type, then so is f .

(2) If gf is quasi-compact and f is surjective, then g is quasi-compact.

Proof. The first statement boils down to the following property of rings: if the
composition A B C

φ ψ is of finite type, then so is ψ.
For the second statement, let V be a quasi-compact open subset of Z. Then

(gf)−1(V ) is quasi-compact and g−1(V ) = f((gf)−1(V )) is quasi-compact.
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Date: 10.8
We first continue our discussion about topology.
Let f : X → Y be a continuous map. For x, x′ ∈ X and x  x′, we have

f(x)  f(x′). Indeed, for every closed subset F of Y containing f(x), we have
f−1(F ) 3 x and consequently f−1(F ) 3 x′ and F 3 f(x′).

Definition 1.6.34. Let f : X → Y be a continuous map.

• f is called specilizing if ∀y  y′ ∈ Y , ∀x ∈ f−1(y), ∃x′ ∈ f−1(y′) such that
x x′.

• f is called generizing if ∀y  y′ ∈ Y , ∀x′ ∈ f−1(y′), ∃x ∈ f−1(y) such that
x x′.

Example 1.6.35. f closed⇒ f specializing. This is easily deduced from f({x}) ⊇
{f(x)}.

Let X be a scheme. Then Spec(OX,x) maps homeomorphically onto the subspace
{x′ ∈ X | x′  x} of X. To see this, we may assume that X = Spec(A) is affine.
Let x correspond to a prime ideal p. Then

{x′ ∈ X | x′  x} = {q ∈ Spec(A) | q ⊆ p} ' Spec(Ap).

From this, we deduce:

Lemma 1.6.36. A morphism of schemes f : X → Y is generizing if and only if
∀x ∈ X, Spec(OX,x)→ Spec(OY,f(x)) is surjective.

Definition 1.6.37. A morphism of schemes f : X → Y is called flat if ∀x ∈ X,
f ]x : OY,f(x) → OX,x is flat.

Recall that a ring homomorphism φ : A→ B is flat ⇔ ∀q ∈ Spec(B), Aφ−1(q) →
Bq is flat.

Flat morphisms are stable under composition and base change.

Lemma 1.6.38. Every flat local homomorphism φ : A→ B of local rings is faithfully
flat. In other words, φ induces a surjective map Spec(φ) : Spec(B)→ Spec(A).

Proof. This follows from the fact that a flat homomorphism of rings A → B is
faithfully flat if and only if for every maximal ideal m of A, we have mB ( B
([AM, Exercise 3.16], [M2, Theorem 7.2]).

Corollary 1.6.39. Every flat morphism of schemes is generizing.

Remark 1.6.40. Let f : X → Y be a morphism of schemes.

(1) If f is generizing, then every maximal point of X lies above a maximal point
of Y .
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(2) Assume that Y is irreducible with generic point η. We have an injective map

IrrComp(Xη)→ IrrComp(X),
Z → Z

whose image consists precisely of the irreducible components intersecting Xη.
In particular, if f is generizing, then the above map is a bijection.

In particular:

Lemma 1.6.41. Let f : X → Y be a morphism of schemes. Suppose Y is irreducible
with generic point η. Then

(1) X irreducible ⇒ Xη irreducible or empty.

(2) If f is generizing, then X irreducible ⇐⇒ Xη irreducible.

Consider k′/k a field extension, X/k a k scheme, denote X ⊗k k = X ×Spec(k)
Spec(k′).

Remark 1.6.42. Let k′/k be a field extension.

(1) X ⊗k k connected ⇒ X connected.

(2) X ⊗k k irreducible ⇒ X is irreducible.

(3) X ⊗k k reduced ⇒ X reduced.

(4) X ⊗k k integral ⇒ X integral.

(1) and (2) follow from the surjectivity of X ⊗k k′ → X. To see (3), we may assume
X = Spec(A) is affine. Then A ↪→ A⊗k k′ and the latter is assumed to be reduced.
For (4), combine (2) and (3).

Definition 1.6.43. Let X be a scheme over a field k and let k be an algebraic
closure of k.

• X is called geometrically connected if X ⊗k k is connected.

• X is called geometrically irreducible if X ⊗k k is irreducible.

• X is called geometrically reduced if X ⊗k k is reduced.

• X is called geometrically integral if X ⊗k k is integral.

Remark 1.6.44. If k is separably closed, then

X connected ⇐⇒ X geometrically connected
X irreducible ⇐⇒ X geometrically irreducible

Indeed, in this case k/k is purely inseparable and Spec(k)→ Spec(k) is a universal
homeomorphism.
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Proposition 1.6.45. Let X/k be a scheme over a field. The following are equiva-
lent.

(1) For every finite separable extension k′/k, X ⊗k k′ is irreducible.

(2) X is geometrically irreducible.

(3) X is irreducible with generic point η and the separable closure of k in κ(η) is
k.

Proof. (2)⇒ (1) is clear, since X ⊗k k → X ⊗k k′ is surjective.
(1) ⇒ (3). X is clearly irreducible. For every finite separable extension k′/k,

since X ⊗k k′ is irreducible, (X ⊗k k′)η = Spec(κ(η) ⊗k k′) is irreducible. Let
α ∈ κ(η) be a separable algebraic element over k with minimal polynomial P (x).
Let k′ = k(α). Then κ(η)⊗k k′ = (κ(η)⊗k k′[x]/(P (x)) = k(η)[x]/(P (x)). We have
P (x) = (x−α)Q(x) with Q(x) ∈ k(η)[x]. Then k(η)[x]/(P (x)) = k(η)[x]/(x−α)⊕
k(η)[x]/(Q(x)), which implies Q(x) = 1 and α ∈ k.

(3) ⇒ (2). The projection X ⊗k k → X is a base change of Spec(k) → Spec(k)
and hence is flat and generizing. Thus X⊗kk is irreducible if and only if (X⊗kk)η =
Spec(κ(η) ⊗k k) is irreducible. Let ksep be a separable closure of k. Since k/ksep is
purely inseparable, it suffices to show that Spec(κ(η)⊗k ksep) is irreducible. By the
lemma below applied to the Galois extension, ksep/k κ(η)⊗k ksep is a field.

Lemma 1.6.46. Let k′/k be a field extension and K/k a Galois extension. Assume
k′ ∩K = k in the composite field k′ ·K. Then k′ ⊗k K is a field.

Proof. Since K is a union of Galois extensions of k, we may assume K/k is a
finite Galois extension of degree d. Consider the surjection φ : k′ ⊗k K → k′ ·K is
surjective. Note that k′ ·K/k′ is a Galois extension of Galois group Gal(k′ ·K/k′) '
Gal(K/k′ ∩K) = Gal(K/k). Thus dimk′(k′ ·K) = d = dimk′(k′ ⊗k K). It follows
that φ is an isomorphism.

We give some examples which are not geometrically irreducible.

Example 1.6.47. Spec(C) → Spec(R) is not geometrically connected, since we
have shown its base change to C is two points. This can also be seen from criterion
(3), since C/R is a separable algebraic extension.

Example 1.6.48. Let A = R[x, y]/(x2 + y2) and X = Spec(A) → Spec(R). Since
x2+y2 is irreducible in R[x, y], X is irreducible. Since x2+y2 factors as (x+iy)(x−iy)
in C, the base change of X to C is C[x, y]/(x + iy)(x − iy), which is the union
of two lines intersecting at a point. Thus X is geometrically connected but not
geometrically irreducible.

Let η be the generic point of η. In κ(η) = Frac(A), we have (x/y)2 + 1 = 0.
Thus the separable closure of R in κ(η) can be identified with C.

Next, we study geometrically reduced schemes. We start with the case of field
extensions.

Definition 1.6.49. A field extension K/k is said to be separable if Spec(K) is
geometrically reduced over Spec(k).
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Let k be the algebraic closure of k. By definition, K/k is separable if and only
if K ⊗k k is reduced.

Since K = ⋃
α∈K k(α), K/k is separable if and only if k(α)/k is separable for all

α ∈ K. We have

k(α)⊗k k =

k(α) α transcendental
k[x]/(P (x)) α algebraic with minimal polynomial P(x)

Note that k[x]/(P (x)) is reduced if and only if P (x) is a separable polynomial
(namely, a polynomial with only simple roots in k). We have proved the following.

Lemma 1.6.50. K/k is separable if and only if ∀α ∈ K, α is either transcendental
over k or separable algebraic over k.

Remark 1.6.51. In particular,

(1) Definition 1.6.49 extends the usual notion of separable algebraic extensions.

(2) Any purely transcendental extension is separable.

(3) If k is a perfect field, then any field extension K/k is separable.

Lemma 1.6.52. Let L/K/k be a tower of field extensions.

(1) K/k is separable ⇐⇒ for every finite field extension k′/k, K ⊗k k′ is reduced.

(2) L/K and K/k separable =⇒ L/k separable.

(3) L/k separable =⇒ K/k separable.

Proof. (1) and (3) are trivial.
(2) For any finite field extension k′/k, L ⊗k k′ = L ⊗K (K ⊗k k′). Since K/k is

separable, K ⊗k k′ is a finite direct sum of finite field extensions of K. We conclude
by the assumption that L/K is separable.

Warning 1.6.53. Unlike the case of separable algebraic extensions, for a tower
L/K/k of field extensions, L/k separable does not imply L/K separable. Here is
an example: L = k(x), K = k(xp), where p = char(k) > 0. Then L/k is separable
but L/K is purely inseparable.

Definition 1.6.54. Let K/k be a separable extension. A separating transcen-
dence basis is a transcendence basis B for K/k such that K/k(B) is separable.

Lemma 1.6.55. Let K = k(x1, . . . xn)/k be a finitely generated separable extension.
Then K admits a separating transcendence basis contained in {x1, . . . xn}.

Proof. This is proved in [M2, Theorem 26.2]. Note that the definition there a priori
differs from ours. We give a proof here for completeness.

We may assume char(k) = p > 0. We proceed by induction on n. We may assume
that x1, . . . , xr is a transcendence basis. If r = n, we are done. Suppose r < n. Then
x1, . . . , xr+1 are algebraically dependent. There exists a nonzero P ∈ k[X1, . . . , Xr+1]
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with least degree such that P (x1, . . . , xr+1) = 0. The minimality of the degree
implies that P is irreducible.

Let us prove P /∈ k[Xp
1 , . . . , X

p
r+1]. Assume otherwise. Then P = Qp with

Q ∈ k1/p[X1, . . . , Xr+1]. Write Q = ∑
α cαX

α, where α = (α1, . . . , αr+1) and Xα =
Xα1

1 · · ·X
αr+1
r+1 . Let I = {α | cα 6= 0}. Since (∑ cα⊗xα)p = 0 in k⊗kK and k⊗kK is

reduced, we have ∑α∈I cα ⊗ xα = 0 in k ⊗k K. This implies that (xα)α∈I is linearly
dependent over k. Thus there exists R ∈ k[X1, . . . , Xr+1] of degree ≤ deg(Q) <
deg(P ) such that R(x1, . . . , xr+1) = 0, a contradiction.

Thus we may assume P /∈ k[Xp
1 , X2, . . . , Xr+1]. Then x1 is separable over

k(x2, . . . , xr+1), hence separable over k(x2, . . . , xn). By assumption k(x2, . . . , xn)
has a separating transcendence basis B ⊆ {x2, . . . , xn}. Then B is a separating
transcendence basis for K/k.

Warning 1.6.56. A separating transcendence basis does not exist in general. For
example, for char(k) = p > 0, K = ⋃

n∈N k(x1/pn) is a separable extension of k of
transcendence degree 1. However, for any y ∈ K transcendental over k, K/k(y) is
not separable.

Now we come to the general case.

Proposition 1.6.57. Let X/k be a k-scheme. The following are equivalent:

(1) X ⊗k k′ is reduced for every finite purely inseparable extension k′/k.

(2) X is geometrically reduced.

(3) X ×k Y is reduced for every reduced k-scheme Y .

(4) X is reduced and for every maximal point x ∈ X, κ(x)/k is separable.

Recall that a maximal point of a scheme is the generic point of an irreducible
component.

Proof. (3)⇒(2). Take Y = Spec(k).
(2)⇒(4). X is clearly reduced. Let x ∈ X be a maximal point. Since X is

reduced, we have κ(x) = OX,x. Since X ⊗k k̄ is reduced, OX,x ⊗k k is reduced. In
other words, κ(x)/k is separable.

(4)⇒(3). We may assume that X = Spec(A) and Y = Spec(B) are affine. It
suffices to show that A⊗k B is reduced.

Since B is a union of finitely generated k-algebras, we may assume that B itself
is finitely generated and reduced. In this case, B is Noetherian and has finitely
many minimal prime ideals q. Since B is reduced, we have B ↪→ ∏

qB/q ↪→
∏

q κ(q)
and the product is finite. Tensoring with A, we get A⊗k B ↪→ ∏

A⊗k κ(q). We are
reduced to proving that A⊗k k′ is reduced for any field extension k′/k.

Since A is reduced, we have

A ↪→
∏
p

(A/p) ↪→
∏
p

κ(p),

where the product is taken over all minimal prime ideals. Tensoring with k′, we get

A⊗k k′ ↪→ (
∏
p

κ(p))⊗k k′ ↪→
∏
p

(κ(p)⊗k k′).
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(To see the injectivity of the last map, take a k-linear basis of k′.)
Thus it suffices to show that for any separable extension K/k, K⊗kk′ is reduced.

Since K = ⋃
α∈K k(α), we may assume K = k(α). If α is separable algebraic over

k of minimal polynomial P (x), then k(α) ⊗k k′ = k′[x]/(P (x)) is reduced. If α is
transcendental over k, then k(α)⊗k k′ is a localization of k′[x] and hence reduced.

(2)⇒(1). Clear.
(1)⇒(2). Let kperf be the perfection of k. By assumption, Y = X ⊗k kperf

is reduced. Now k/kperf is separable. Applying (4)⇒(3) to Spec(k̄), we get that
X ⊗k k̄ ' Y ⊗kperf k̄ is reduced.

Corollary 1.6.58. If k is a perfect field, then a k-scheme X is reduced if and only
if X is geometrically reduced.

Immersions
Recall that a morphism of schemes f : Z → X is an open immersion if and only if
sp(f) is an open embedding and f ] : f−1OX ∼= OZ .

Definition 1.6.59. Let f : Z → X be a morphism of schemes.

(1) f is called a closed immersion if f is a closed embedding and f ] : f−1OX →
OZ is epimorphism of Abelian sheaves, i.e. ∀z ∈ Z, f ]z : OX,f(z) → OZ,z is
surjective.

(2) f is called an immersion if f factorizes as Z → U → X where Z → U is a
closed immersion and U → X is an open immersion.

Lemma 1.6.60.

• A morphism of schemes f : Z → X is an immersion if and only if f is a locally
closed embedding and ∀z ∈ Z, f ]z : OX,f(z) → OZ,z is surjective.

• Immersions are stable under composition.

• Immersions are monomorphisms.

Example 1.6.61. Let A be a ring, I an ideal. Then Spec(A/I)→ Spec(A) induced
by A → A/I is a closed immersion. Indeed, ∀p ⊇ I, Ap → Ap/IAp ' (A/I)p is
surjective.

Definition 1.6.62. Let X be a scheme.

• A closed subscheme of X is an equivalence class of pairs (Z, f), where Z is
a scheme and f : Z → X is a closed immersion. Two pairs (Z, f) and (Z ′, f ′)
are said to be equivalent if ∃ϕ : Z ∼−→ Z ′ making

Z X

Z ′

f

ϕ
f ′

commutative. ϕ is necessarily unique.
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• A subscheme of X is an equivalence class of pairs (Z, f), where Z is a scheme
and f : Z → X is an immersion. Two pairs (Z, f) and (Z ′, f ′) are said to be
equivalent if ∃ϕ : Z ∼−→ Z ′ making

Z X

Z ′

f

ϕ
f ′

commutative.

By Lemma 1.6.60, we get:

Lemma 1.6.63. An immersion that is closed is a closed immersion.

Warning 1.6.64. An immersion that is open is not an open immersion in gen-
eral. For example, if A is a non-reduced ring, then Spec(A/

√
(0)) → Spec(A) is a

homeomorphism and a closed immersion, but not an open immersion.

Warning 1.6.65. If I 6= J are ideals of A such that
√
I =
√
J , then Spec(A/I) and

Spec(A/J) have the same underlying subspace of Spec(A), but are not the same as
closed subscheme.

Warning 1.6.66. Let f : Z → X be an immersion. It is not possible in general to
factorize f as Z → Y → X where Z → Y is an open immersion and Y → X is a
closed immersion. See [SP, 078B] for an example. For a positive result, see Lemma
1.9.27 later.

Warning 1.6.67. Not all monomorphisms are immersions. For example, the monomor-
phism Spec(Q)→ Spec(Z) is not an immersion since it is not locally closed. In the
same vein, a subobject of a scheme is not a subscheme in general.

An important class of immersions is given by the diagonal construction.

Diagonals, Separation axioms
For any morphism of schemes f : X → Y , consider the diagram

X

X ×Y X X

X Y

∆f

p1

p2

f

f

We sometimes write ∆ or ∆X/Y for ∆f .

Proposition 1.6.68. ∆f is an immersion.

Before proving the proposition, we first consider an illuminating example.
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Example 1.6.69. Let X = Spec(B), Y = Spec(A), and f = Spec(φ), where
φ : A→ B. Then ∆f : X → X ×Y X corresponds to

∇φ : B ⊗A B → B

b1 ⊗ b2 7→ b1b2

This is clearly surjective. Hence ∆f is a closed immersion.

Proof of Proposition 1.6.68. Let Y = ⋃
Vi, Vi affine open subsets. Let f−1(Ui) =⋃

Uij, Uij affine open. Let Wij = p−1
1 (Uij) ∩ p−1

2 (Uij) ' Uij ×Vi Uij and W = ⋃
Wij.

We have ∆f (Uij) ⊆ p−1
1 (Uij) ∩ p−1

2 (Uij) = Wij. Thus ∆f factorizes as X δ−→ W ⊆
X ×Y X. Now ∆−1

f (Wij) = ∆−1
f (p−1

1 (Uij))∩∆−1
f (p−1

2 (Uij)) = Uij and the restriction
of δ to Uij → Wij can be identified with ∆fij , where fij : Uij → Vi is the restriction
of f . By the example above, each ∆fij is a closed immersion. Thus δ is a closed
immersion. It follows that ∆f : X → Y is an immersion.

Definition 1.6.70. Let f : X → Y be a morphism of schemes.

• f is called separated if ∆f is a closed immersion.

• f is called quasi-separated if ∆f is quasi-compact.

It is clear that we have affine ⇒ separated ⇒ quasi-separated.
The following graph construction will be very useful in the sequel. Let

X Y

S

f

g

be a morphism of S-schemes. The graph of f , denoted Γf , is defined as follows:

X X ×S Y Y

X S

Γf

f

idX

From the functorial point of view, we have Γf (x) = (x, f(x)).
We have a commutative diagram with Cartesian squares

X X ×S Y Y

Y Y ×S Y X S

Γf

f

f

f×idY p

q

g

∆g gf

Thus, we get the following Lemma:
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Lemma 1.6.71. If P is a class of morphisms that P is stable under base change
and composition, then gf,∆g ∈ P implies f ∈ P.

In particular, we have

Corollary 1.6.72. Let X Y Z
f g . If gf is quasi-compact and g is

quasi-separated, then f is quasi-compact.

Definition 1.6.73. • A scheme X is said to be separated if the morphism
X → Spec(Z) is separated.

• A scheme X is said to be quasi-separated if the morphism X → Spec(Z) is
quasi-separated.

Corollary 1.6.74. Let f : X → Y be a morphism of schemes with X quasi-compact
and Y quasi-separated. Then f is quasi-compact.

Proposition 1.6.75. A scheme X is quasi-separated if and only if for all quasi-
compact opens U and V of X, U ∩ V is quasi-compact.

Proof. =⇒. Since U is quasi-compact and X is quasi-separated, the open immersion
j : U → X is quasi-compact by Corollary 1.6.74. Therefore, U∩V = j−1(V ) is quasi-
compact.
⇐=.

X X ×Z X X

X Spec(Z)

∆

p1

p2

Let X = ⋃
i Ui be an affine open cover. LetWij = p−1

1 (Ui)∩p−1
2 (Uj). Then

⋃
ijWij =

X×Spec(Z)X. Each Wij ' Ui×Spec(Z)Uj is an affine scheme, and ∆−1(Wij) = Ui∩Uj
is quasi-compact. Thus ∆ is a quasi-compact morphism.

Example 1.6.76. Let X be a scheme

• If the underlying space of X is locally Noetherian, then X is quasi-separated.

• Let X be a scheme and let U ⊆ X be an open subset that is not closed. Let
Y = X

∐
U X be the scheme obtained by gluing two copies of X along U . Then

Y is not separated.
To see this, let j0 and j1 denote the two open immersions from X to Y . We
have an immersion f = (j0, j1) : X → Y ×Spec(Z) Y . Let ∆ = ∆Y/Spec(Z). The
inclusion f(X) ∩ ∆(X) ⊆ f(X) can be identified with the inclusion U ⊆ X,
which is not closed.

• Let X be a quasi-compact scheme and let U ⊆ X be an open subset that is
not quasi-compact (e.g. X is the Cantor set and U is the complement of a
point). Then the same argument as above shows that Y = X

∐
U X is not

quasi-separated.
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Warning 1.6.77. If α is transcendental over k and k′/k a field extension, then
k(α) ⊗k k′ is the localization of k′[α] with respect to the multiplicative set S =
k[α]\{0}. It is not a field in general.

We have seen that f : X → Y is separated if and only if ∆f (X) ⊆ X ×Y X is
closed. This is analogous to the fact in general topology that a topological space X
is Hausdorff if and only if ∆X(X) ⊆ X ×X is closed.

1.7 Quasi-coherent sheaves
The properties of a ring A are often reflected by the category of A-modules. In order
to better study a sheaf of rings OX , we now introduce the notion of OX-module.

Definition 1.7.1. Let (X,OX) be a ringed space.

• An OX-module or sheaf of OX-modules is consists of

– a sheaf of sets F on X;

– ∀U ⊆ X open, a structure of OX(U)-module on F(U)

such that for all U ⊆ V , the restriction map

F(V ) F(U)ρ

is a homomorphism of OX(V )-modules. Here F(U) is viewed as an OX(V )-
module via the restriction map OX(V )→ OX(U).

• A morphism of OX-modules φ : F → G is a morphism of sheaves of sets such
that ∀U ⊆ X, φU : F(U)→ G(U) is a homomorphism of OX(U)-modules.

Let F and G be OX-modules. The sheaf of local homomorphisms, or “sheaf
hom” for short, denoted HomOX (F ,G), is defined as

HomOX (F ,G)(U) = HomOX |U (FU ,GU)

It is easy to see that this is a sheaf of OX-module.
The tensor product F ⊗OX G is defined as the sheafification of

U → F(U)⊗OX(U) G(U)

The tensor product is again a sheaf of OX-modules.
The following properties are easy to verify.

Lemma 1.7.2. Let F ,G,H be sheaves of OX-modules.

(1) ∀x ∈ X, (F ⊗OX G)x ' Fx ⊗OX,x Gx.
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(2) HomOX (F ⊗OX G,H) ∼= HomOX (F ,HomOX (G,H)).

Recall that a morphism of ringed spaces f : (X,OX) → (Y,OY ) consists of the
following:

• a continuous map f : X → Y ;

• a morphism of sheaves of rings f ] : f−1OY → OX (or, equivalently by adjunc-
tion, f [ : OY → f∗OX).

For an OX-module F , f∗(F) is then naturally an f∗(OX)-module. We regard
f∗(F) as an OY -module via f [.

For an OY -module G, f−1G is an f−1OY -module. We define

f ∗(G) := f−1G ⊗f−1OY OX

Then f ∗(G) is an OX-module.
Combining the adjunction f−1 a f∗ and the adjunction between ⊗ and Hom, we

have
HomOX (f ∗G,F) ∼= HomOY (G, f∗(F).

In other words, we have f ∗ a f∗ between the categories of O-modules.

Warning 1.7.3. f ∗ is not exact in general. f ∗ is exact if f is flat, i.e. ∀x ∈ X,
OY,f(x) → OX,x is flat.

Definition 1.7.4. Let (X,OX) be a ringed space and F an OX-module.

• F is said to be free if it is isomorphic to a direct sum of copies of OX . OnX is
called a free OX-module of rank n. For I a set, we write O⊕IX := ⊕

i∈I OX .

• F is said to be locally free if there is an open cover X = ⋃
Ui such that F|Ui

is a free OX |Ui-module.

• F is said to be locally free of rank n if there is an open cover X = ⋃
Ui

such that F|Ui is a free OX |Ui-module of rank n.

• F is said to be invertible if it is locall free of rank 1.

Remark 1.7.5. • For F locally of rank n, its dual F∨ := Hom(F ,OX) is also
locally free of rank n.

• For F is invertible, we have F ⊗ F∨ ∼−→ OX . We let Pic(X) denote the set
of isomorphism classes of invertible OX-modules. (Pic(X),⊗) is an Abelian
group, called the Picard group of X.

Definition 1.7.6. An OX-module F is said to be quasi-coherent if there exists
an open cover X = ⋃

Ui such that F|Ui is a cokernel of free OX |Ui modules. i.e.

F|Ui ∼= coker(OX |⊕IiUi
→ OX |⊕JiUi

)
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Let A be a ring and M an A-module. Let X = Spec(A) and D(f) ⊆ X,
f ∈ A be a principal open subset. Define M̃(D(f)) = Mf , which is a module over
Af = OX(D(f)). If D(f) ⊆ D(g), then the homomorphism Ag → Af induces
Mg →Mf . Let B be the partially ordered set {D(f) | f ∈ A}.

Lemma 1.7.7. The functor
Bop → Ab

D(f) 7→Mf

extends uniquely to a sheaf of OX-module.

Proof. By Lemma 1.4.1, it suffices to verify the gluing property for a cover in B of
some D(f). Up to replacing A by Af , we may without loss of generality suppose
that the cover has the form X = ⋃

i∈I D(fi). Since X is quasi-compact, we may
assume as in the proof of Proposition 1.4.2 that I is finite. It suffices to show that

M →
⊕
i

Mfi ⇒
⊕
i,j

Mfifj

is an equalizer diagram. For this, one can repeat the arguments in either one of the
two proofs of Proposition 1.4.2.

We have
M̃p = colim

p∈D(f)
Mf = colim

f /∈p
Mf = Mp

Proposition 1.7.8. The functor

F : A-Mod→ Shv(X,OX)
M 7→ M̃

is exact, fully faithful and left adjoint to Γ(X,−).

Proof. Let F be an OX-module and M an A-module. We consider the map

Ψ: HomOX (M̃,F)→ Hom(M,F(X))

carrying φ : M̃ → F to φ(X) : M = M̃(X)→ F(X). For ψ : M → F(X), we define
φ = Φ(ψ) : M̃ → F by φ(D(f)) : M̃(D(f)) = Mf

ψf−→ F(X)f → F(D(f)) for each
f ∈ A. One checks Φ and Ψ are inverse to each other. This shows F a Γ(X,−).

Since Γ(X, M̃) = M , F is fully faithful. Finally, F is exact since the functor
M 7→Mf is exact ∀f ∈ A.

One checks the following properties:

Lemma 1.7.9. Let φ : A → B be a ring homomorphism, X = Spec(B), Y =
Spec(A), and f = Spec(φ) : X → Y .

(1) For A-modules M and M ′, we have M̃ ⊗OY Ñ ' (M ⊗A N)∼.

(2) For every A-module M , we have f ∗(M̃) ' (M ⊗A B)∼.
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(3) For every B-module N , we have f∗(Ñ) = ÃN , where AN is N considered as
an A-module via φ.

Proof. (1) The canonical morphism M̃ ⊗OY Ñ → (M ⊗A N)A∼ is an isomorphism
by taking stalks.

(2) Consider the canonical morphism f ∗(M̃) → (M ⊗A B)∼. Let q be a prime
in B and p = f(q) = φ−1(p). The stalk of the morphism at q is (f ∗M̃)q '
(f−1M̃)q ⊗f−1OY,q OX,q 'Mp ⊗Ap Bq ' (M ⊗A B)∼q .

(3) Indeed, ∀g ∈ B, we have f∗(Ñ)(D(g)) = Ñ(D(φ(g)) = Nφ(g).

Proposition 1.7.10. Let X = Spec(A). An OX-module F is quasi-coherent if and
only if F ∼= M̃ for some A-module M .

More generally, we have the following characterization of quasi-coherent sheaves
on schemes.

Proposition 1.7.11. Let X be a scheme and F an OX-module. Then the following
are equivalent

(a) F is quasi-coherent.

(b) ∃X = ⋃
Ui with Ui = Spec(Ai) affine open, such that for every i, F|Ui ∼= M̃i

for some Ai-module Mi.

(c) ∀U = Spec(A) ⊆ X affine open, we have F|U ∼= M̃ for some A-module M .

Proof. (b)⇒ (a). It suffices to show for every A-module M , M̃ quasi-coherent.
There is a presentation of M using free modules:

A⊕I A⊕J M 0.

Taking the associated sheaves, we get an exact sequence

∃ O⊕IX O⊕JX M̃ 0.

(c)⇒ (b). Trivial.
(a)⇒ (c). We may assume X = Spec(A) is affine. Let M = F(X). It suffices to

show that the canonical map Mf → F(D(f)) is an isomorphism for every f ∈ A,
which gives an isomorphism M̃

∼−→ F . The following lemma is a generalization of
this assertion.

Lemma 1.7.12. Let X be a quasi-compact scheme, f ∈ OX(X), and F quasi-
coherent OX-module.

(1) The map F(X)f → F(Xf ) is an injection.

(2) If X is quasi-separated, then F(X)f → F(Xf ) is bijective.
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Proof. Let X = ⋃n
i=1 Ui be an affine open cover with Ui = Spec(Ai) such that each

F|Ui is the cokernel of free module. Then F|Ui = M̃i for some Ai-module Mi.
Consider the commutative diagram:

0 F(X)f
∏n
i=1F(Ui)f

∏
i,j F(Ui ∩ Uj)f

0 F(Xf )
∏n
i=1F((Ui)f )

∏
i,j F((Ui)f ∩ (Uj)f )

u v

ϕ

w

ϕ′

where ϕ and ϕ′ are differences of the restrictions maps. Ui,f means Ui ∩ Xf . The
rows are exact by the sheaf condition and by the exactness of localization.

(1) We have F(Ui)f = (Mi)f = F((Ui)f ). Hence v is an isomorphism. This
implies that u is injective.

(2) Since X is quasi-separated, Ui ∩ Uj is quasi-compact and w is injective by
(1). It follows that u is an isomorphism by a simple diagram chase.

Example 1.7.13. For an open immersion j : U ↪→ X, j!OU is not a quasi-coherent
OX-module in general. Recall

(jpsh
! OU)(V ) =

OU(V ) V ⊆ U

0 V ( U
j!OU = (jpsh

! OU)+.

Indeed, if X is irreducible and V is an affine open satisfying V ( U , then j!OU(V ) =
0. This implies that j!OU is not quasi-coherent. Otherwise we would have (j!OU)|V =
0, which is absurd.

Corollary 1.7.14. Let X be a scheme. The full subcategory QCoh(X) ⊆ Shv(X,OX)
is stable under kernels and colimits.

Lemma 1.7.15. Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces.

(1) For quasi-coherent OY -modules F and G, F ⊗OY G is also a quasi-coherent
OY -module.

(2) For any quasi-coherent OY -module F , then f ∗F is a quasi-coherent OX-module.

Proof. We leave (1) as an exercise. For (2), note that f ∗ is right exact and preserves
cokernels of free modules.

Example 1.7.16. Let A be a DVR, K = Frac(A), X = Spec(A). Then ON
X =∏

n∈NOX is not quasi-coherent. Indeed, F(X) = AN and F(η) = KN, and the map
AN ⊗A K → KN is not an isomorphism.

Let f : Y = ∐
n∈NX → X. Then F = f∗(OY ). This shows f∗ does note preserve

quasi-coherent sheaves in general.

Proposition 1.7.17. Let f : X → Y be a qcqs (quasi-coherent and quasi-separated)
morphism of schemes and F a quasi-coherent OX-module. Then f∗(F) is a quasi-
coherent OY -module.
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Proof. If X = Spec(B) and Y = Spec(A), the assertion follows from Lemma 1.7.9.
In general, we may assume that Y is affine. Then X is quasi-compact and quasi-

separated (See Lemma 1.7.18 below). Let X = ⋃n
i=1 Ui be an affine open cover.

Then Ui ∩ Uj is quasi-compact and we can write Ui ∩ Uj = ⋃
Uijk with k finite

and Uijk affine open. Let ui : Ui ↪→ X and uijk : Uijk ↪→ X be the inclusions. The
sequence

0 F ⊕
i ui∗(F|Ui)

⊕
ijk uijk∗(F|Uijk)

is exact by sheaf condition. Applying f∗, we get an exact sequence

0 f∗F
⊕

i(fui)∗(F|Ui)
⊕
ijk(fuijk)∗(F|Uijk).

Since Ui is affine, (fui)∗(F|Ui) is quasi-coherent. Similarly (fuijk)∗(F|Uijk) is quasi-
coherent. It follows that f∗F is quasi-coherent.
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We supplement some properties of quasi-separated morphisms.

Proposition 1.7.18.

(1) Quasi-separated morphisms are stable under composition and base change.

(2) If X Y S
f g are morphisms such that gf is quasi-separated, then

f is quasi-separated.

Proof. For (1), we first consider base change. Suppose f is quasi-separated, and
g : Y ′ → Y is another morphism. Form the Cartesian square on the left. Then the
square on the right is also Cartesian.

X ′ Y ′

X Y

f ′

g

f

X ′ X ′ ×Y ′ X ′

X X ×Y X

∆f ′

∆f

Since quasi-compact morphisms are stable under base change, ∆f ′ is quasi-compact.
For composition, let X Y S

f g be morphisms of schemes. Consider
the diagram with pullback square:

X X ×Y X X ×S X

Y Y ×S Y

∆f

∆gf

∆′

∆g

∆′ is quasi-compact by base change. Thus ∆gf is the composition of quasi-compact
morphisms, and hence quasi-compact.

For (2), we apply Lemma 1.6.71. We have already proven the collection of quasi-
separated morphisms are stable under base change and composition. Since ∆g is
an immersion and an immersion is clearly quasi-separated, we get that f is quasi-
separated.

1.8 Relative spectrum
Definition 1.8.1. Let (X,OX) be a ringed space. An OX-algebra or a sheaef of
OX-algebra consists of

• a sheaf of sets A on X;

• ∀U ⊆ X open, a structure of OX(U)-algebra on A (U)
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such that ∀U ⊆ V ,
A (V ) A (U)

OX(V ) OX(U)

commutes as ring homomorphisms. A

morphism of OX-algebras φ : A → B is a morphism of sheaves of sets such that
∀U ⊆ X, φU : A(U)→ B(U) is a homomorphism of OX(U)-modules.

We say that an OX-algebra A is quasi-coherent OX-algebra if it is quasi-
coherent as an OX-module.

Example 1.8.2. If f : (X,OX) → (Y,OY ) is a morphism of ringed spaces, then
f∗(OX) is an OY -algebra via f [.

Example 1.8.3. Let X = Spec(B). Then we have an equivalence of categories

B-Alg ∼−→ {quasi-coherent OX-algebras}
A 7→ Ã

Construction 1.8.4. Let S be a scheme and A a quasi-coherent OS-algebra. We
construct a scheme X = Spec(A ) and an affine morphism f : Spec(A ) → S as
follows.

For U ⊆ S affine open, we consider fU : Spec(A (U)) → Spec(O(U)) ' U . For
any inclusion U ⊆ V of affine open subsets, we have a Cartesian square

Spec(A(U)) //

fU
��

Spec(A(V ))
fV
��

U // V.

One verifies that these data glue to a scheme X = Spec(A ) and an affine morphism
f : Spec(A )→ S.

By construction, (f∗OX)(U) = OX(f−1(U)) = A(U). Thus A ' f∗OX .

Example 1.8.5. Let F = OnS be a free OS-module. Let A = SymOS(F). If
U = Spec(B) ⊆ S is affine, then A (U) = B[x1, . . . , xn]. We call Spec(A ) the
affine n-space of S. We have An

S ' An
Z ×Spec(Z) S.

In general, for any quasi-coherentOS-module F , we call V(F) = Spec(SymOS(F))
the vector bundle over S associated to F . If F is locally free of rank n, V(F) is
locally isomorphic to an affine n-space over S. For n = 1, we speak of line bundle
instead of vector bundle.

Next we extend some properties of Spec to Spec.

Proposition 1.8.6. Let f : X → S be a morphism of schemes and A a quasi-
coherent OS-algebra. Then we have a canonical bijection

HomS(X, Spec(A )) ∼−→ HomOS-Alg(A , f∗(OX)).

This is a relative analogue of the bijection

HomSch(X, Spec(A)) ∼−→ HomRing(A,OX(X)).
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Proof. Let Y = Spec(A ). The map is constructed as follows. To any morphism of
S-schemes

X Y

S

h

f

g

we associate A ∼= g∗OY g∗h∗OX ∼= f∗OX
g∗h[ .

We will prove that for every open U ⊆ S,

(1.8.1) HomU(f−1(U), Spec(A |U)) ∼−→ HomOU -alg(A |U , f∗(OX)|U).

Since any morphism of S-schemes f−1(U) → Spec(A ) factors through Spec(A |U),
we have

HomU(f−1(U), Spec(A |U)) ∼= HomS(f−1(U), Spec(A )).

Now both sides of (1.8.1) are sheaves when U runs through all open subsets of S. In
order to show that the morphism of sheaves is an isomorphism, it suffices to check
that (1.8.1) is an isomorphism for every affine open subset U .

Thus we may assume that S = Spec(B) is affine and thus A = Ã with A a
B-algebra. Then

HomS(X, Spec(A )) = HomSpec(B)(X, Spec(A))
∼−→ HomB-alg(A,OX(X)) = HomOS-Alg(Ã, f∗(OX)).

Consider the functor

{schemes qcqs over S} → {quasi-coherent OS-algebras}op

(f : X → S) 7→ f∗(OX).

The above proposition shows Spec is a right adjoint of this functor. Moreover, Spec
is fully faithful since A ' f∗OSpec(A ).

Corollary 1.8.7. Let S be a scheme. There is an equivalence of categories

{quasi-coherent OS-algebras}op ∼−→ {schemes affine over S}
A 7→ Spec(A ).

Proof. It remains to check that for every affine morphism f : X → S, the morphism
X → Spec(f∗OX) is an isomorphism. For this we may assume that S is affine and
the assertion is then clear.

Immersions
Definition 1.8.8. Let (X,OX) be a ringed space. An ideal sheaf I of OX is a
OX-submodule of OX . This makes OX/I into an OX-algebra.



56 CHAPTER 1. SCHEMES

Proposition 1.8.9. Let X be a scheme. There is an order-reserving bijection

Φ: {quasi-coherent ideal sheaves of OX} ∼= {closed subschemes of X}
I 7→ Spec(OX/I)

IY = Ker(OX → i∗OY )← [ (i : Y → X)

IY is called the ideal sheaf of Y .

Proof. Let Ψ: (i : Y → X) 7→ IY . Since a closed immersion is qcqs, i∗OY is a sheaf
of OX and IY is quasi-coherent ideal sheaf of OX .

It is clear that ΨΦ = id. Indeed, for Y = Spec(OX/I) and i : Y → X, we have
i∗OY = OX/I. Thus Ψ is surjective.

It remains to prove that Ψ is injective. Since OX → i∗OY is an epimorphism of
sheaves of OX-modules, we have OX/IY ∼−→ i∗OY . Since i is a closed imbedding, we
have sp(Y ) = supp(i∗OY ) = supp(OX/IY ). Thus sp(Y ) is uniquely determined by
IY . Furthermore, OY ' i−1i∗OY is also uniquely determined by IY .

Corollary 1.8.10. For X = Spec(A), we have an order-reversing bijection

{ideals of A} ∼= {closed subschemes of Spec(A)}
I 7→ Spec(A/I)

This is not so obvious without using ideal sheaves.

Corollary 1.8.11. Closed immersions are finite and stable under base change.

Corollary 1.8.12. Immersions are stable under base change.

Proof. Both open immersions and closed immersions are stable under base change.

Proposition 1.8.13. (1) Separated morphisms are stable under composition and
base change.

(2) Let X Y S
f g be morphisms of schemes. If gf is separated, then

f is separated.

Proof. The proof of (1) is similar to that Proposition 1.7.18. We use the stability of
closed immersions under base change and composition.

For (2), we can apply Lemma 1.6.71 as before. Let us give a more direct proof.
Consider the diagram with pullback square:

X X ×Y X X ×S X

Y Y ×S Y

∆f

∆gf

∆′

∆g

Since ∆gf (X) is closed in X ×S X, ∆f (X) is closed in X ×Y X. This shows that f
is separated.
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Proposition 1.8.14. Let X be a scheme and T ⊆ X a closed subset. Then there
exists a unique reduced closed subscheme Y ⊆ X whose underlying space is T .

The closed subscheme structure of Y is called the reduced induced closed
subscheme structure on T .

Proof. Existence. Let I(U) = {f ∈ OX(U) | fx ∈ mx,∀x ∈ U ∩ T}. Then I ⊆ OX
is clearly an ideal. We prove that I is quasi-coherent. Let U = Spec(A) ⊆ X be an
affine open subset. Then T ∩U = V (J) with J radical. We have I(U) = ⋂

p⊇J p = J .
This remains true if we replace U by any principal open subset of U : ∀f ∈ A,
I(D(f)) = JAf . This shows I|U = J̃ and I is quasi-coherent. Thus I gives rise to a
closed subscheme Y = Spec(OX/I). The scheme Y is reduced, since for every affine
open U = Spec(A), OY (U) = A/J is reduced.

Uniqueness. Let Y ′ be another reduced closed subscheme with underlying space
T . To check Y = Y ′, it suffices to do so on each affine open subset. Thus we may
assume X = Spec(A) is affine. In this case Y = Spec(A/J) and Y ′ = Spec(A/J ′)
with J and J ′ radical and V (J) = T = V (J ′). Thus J = J ′.

Example 1.8.15. Taking T = X, we get a unique reduced closed subscheme Xred ⊆
X whose underlying subspace is X. The scheme Xred is called the reduced scheme
associated to X.

Normalization
Definition 1.8.16. A scheme X is said to be normal if for all x ∈ X, OX,x is an
integrally closed domain.

Proposition 1.8.17. [AM, Proposition 5.12] Taking integral closure is compatible
with localization: let φ : A→ B be a ring homomorphism and S ⊆ A a multiplicative
system. Let C be the integral closure of A in B. Then S−1C is the integral closure
of S−1A in S−1B.

Corollary 1.8.18. Let A be a domain. Then A is integrally closed if and only if
∀p ∈ Spec(A), Ap is integrally closed.

Corollary 1.8.19. Let A→ B is a morphisms of ring homomorphism. Then b ∈ B
is integral over A if and only if ∀p ∈ Spec(A), b is integral over Ap.

Construction 1.8.20. Let X be an integral scheme, K its function field, L/K a
field extension. Define

A (U) =

{f ∈ L | f integral over OX,x,∀x ∈ U} U 6= ∅
0 U = ∅

This is clearly an OX-algebra. For U = Spec(A) ⊆ X affine open, A (U) is the
integral closure A′ of A in L by Corollary 1.8.19. For any principal open subset
D(f) of U , A (D(f)) = A′f . This shows that A |U = Ã′. Thus A is quasi-coherent.

The scheme X ′ = Spec(A ) equipped with the morphism X ′ → X is called
the normalization of X in L. If L = K, then Xν := Spec(A ) is called the
normalization of X.
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From the construction, we see X ′ is integral and normal and the canonical mor-
phism X ′ → X is integral.

Example 1.8.21. X = Spec(k[x, y]/(y2 − x3)) has a cusp at the origin O. Since
(y/x)2 = x in the function field, X is not normal. Let z = y/x. Then Xν :=
Spec(k[x, z]/(z2−x)) ' Spec(k[z]) is the normalization of X. In this case, Xν → X
is a universal homeomorphism.

Example 1.8.22. X = Spec(k[x, y]/(y2 − x2(x + 1))) has a node at O. Since
(y/x)2 = x + 1 in the function field, X is not normal. Let y/x = z. Then Xν :=
Spec([x, z]/(z2 − (x + 1)) ' Spec(k[z]) is the normalization of X. The fiber of
Xν → X at the origin consists of the two rational points z = ±1.

Definition 1.8.23. An integral scheme X is said to be Japanese if for every finite
extension L of the function field K of X, the normalization X ′ of X in L is finite
over X.

A scheme X is said to be universally Japanese if every integral scheme locally
of finite type over X is Japanese.

Theorem 1.8.24. Let A be

• a field, or

• a Dedekind domain with fraction field K satisfying char(K) = 0, or

• a Noetherian complete local ring.

Then Spec(A) is universally Japanese.

1.9 Valuative criterion
Definition 1.9.1. A ring A is called a valuation ring if it is a domain and ∀x ∈
Frac(A), either x ∈ A or x−1 ∈ A.

Definition 1.9.2. Let f : X → S be a morphisms of schemes.

• f is said to satisfy the existence part of the valuation criterion if for every
valuation ring A with fraction field K, and all morphisms i : Spec(K) → X
and j : Spec(A) → S making the following square commutative, there exists
a morphism t : Spec(A)→ X making the two triangles below commutative:

Spec(K) X

Spec(A) S

i

f

j

t
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• f is said to satisfy the uniqueness part of the valuation criterion if when-
ever given i and j as above, there exists at most one t making the triangles
commutative. That is, for every commutative diagram

Spec(K) X

Spec(A) S

i

f

j

t1

t2

where A is a valuation ring with fraction field K, we have t1 = t2.

Remark 1.9.3. f : X → S satisfies the existence part of valuation criterion if and
only if for all valuation ring A with fraction field K, X(A) → X(K) ×S(K) S(A) is
surjective.

f : X → S satisfies the uniqueness part of valuation criterion if and only if for
all valuation ring A with fraction field K, X(A)→ X(K)×S(K) S(A) is injective.

Remark 1.9.4. If we are given a diagram as below,

Spec(K) X ×S S ′ X

Spec(A) S ′ S

f ′ f
t t′

then the dotted arrow t exists if and only if t′ exists and t is unique if and only if t′
is unique. This follows immediately form the universal property of fiber product.

Definition 1.9.5. A morphism of schemes f : X → S is universally specializing
if every base change of f is specializing.

Theorem 1.9.6. Let f : X → S be a morphism of schemes.

(1) f satisfies the existence part of valuation criterion ⇐⇒ f is universally
specializing.

(2) f satisfies the uniqueness part of valuation criterion ⇐⇒ ∆f is universally
specializing.

Proof. (1) =⇒ (2). We prove f satisfies uniqueness ⇐⇒ ∆f satisfies existence.
Consider the following diagram

Spec(K) X

Spec(A) X ×S X

∆f

(a,b)

c

Spec(K) X

Spec(A) S

f
a

b

The morphism c exists if and only if a = b. Thus the existence of ∆f corresponds
to uniqueness of f .
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Definition 1.9.7. Let K be a field and let A, B ⊆ K be local rings with maximal
ideals mA, mB. We say that B dominates A if A ⊆ B and mA ⊆ mB. We say that
A is a valuation ring of K if A is a valuation ring and Frac(A) = K.

Fact 1.9.8. (1) [AM, Exercise 5.27] Let A ⊆ K be a local domain. Then A is a
valuation ring of K if and only if A is maximal for the dominance relation
among local rings in K.

(2) [M2, Theorem 10.2] For any local ring B ⊆ K, there exists a valuation ring A
of K dominating B.

Proof of Theorem 1.9.6 (1). ⇐=. Since f is universally specializing, we may pull
back and reduce to the following lifting problem:

Spec(K) X

Spec(A) S

g

f
t

Write Im(g) = {x′}, s the closed point of S. Since f is specializing, and f(x′) s,
∃x′  x such that f(x) = s. Consider

K κ(x′) OX,x

A

φ

Since f(x) = s, A → OX,x is a local homomorphism. Thus φ(OX,x) dominates
A. Since A is a valuation ring, it is maximal for the dominance relation, hence
φ(OX,x) = A. Let ψ be φ regarded as a map OX,x → A. Then Spec(A) Spec(ψ)−−−−→
Spec(OX,x)→ X furnishes the desired morphism t.

=⇒. It suffices to show f specializing. Let x′ ∈ X and f(x′) = s′  s. We need
to find x′  x such that f(x) = s. Consider

K = κ(x′) OX.x′

OS,s′ OS,s

φ

Since φ(OS,s) is a local ring in K, there is a valuation ring A of K dominating it.
Thus we have

Spec(K) Spec(OX,x′) X

Spec(A) Spec(OS,s) S

f
t
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Since f satisfies the existence part of valuation criterion, there exists t making the
two triangles commutative. Let η and σ be the generic and closed points of Spec(A),
respectively. Let x = t(σ). Then f(x) = s and t maps the specialization η  σ to
x′  x as desired.

Proposition 1.9.9. (1) A closed map is specializing.

(2) Conversely, a specializing and quasi-compact morphism of schemes is closed.

Proof. (1) This was shown in Example 1.6.35.
(2) Let f : X → S be specializing and quasi-compact morphism of schemes. Let

Y ⊆ X be closed subset. Equip Y with the induced reduced subscheme structure.
We observe that the composition Y ↪→ X

f−→ S is specializing and quasi-compact.
We conclude that f(Y ) is closed by the following lemma.

Lemma 1.9.10. Let f : X → S be a quasi-compact morphism of schemes. Then
f(X) contains every maximal point of f(X). In particular, f(X) is closed if more-
over f(X) is closed under specialization.

Proof. We may assume that S = Spec(B) is affine. Then X is quasi-compact. Take
a finite affine open covering X = ⋃

i Ui, Ui = Spec(Ai). Then f(X) = ⋃
i f(Ui) =

Im(Spec(∏iAi) → Spec(B)). Thus we may assume X = Spec(A) is affine and
f = Spec(φ) where φ : B → A is a ring homomorphism.

Factor φ as B � B/I ↪→ A, where I = Ker(φ). Then f(X) is contained in
Spec(B/I). Thus may assume that φ is injective. This case is the content of next
Lemma.

Lemma 1.9.11. Let φ : B → A is an injective ring homomorphism. Then the image
of f = Spec(φ) contains all maximal points of Spec(B).

Compare with Lemma 1.2.11(2).

Proof. Let p ∈ Spec(B) be a maximal point. Then Bp has a unique prime ideal,
pBp. Since Bp → Ap remains injective by flatness, we have Ap 6= 0. Thus there
exists a maximal ideal m of Ap. Then m ∩Bp = pBp.

Corollary 1.9.12. A universally specializing and quasi-compact morphism of schemes
is universally closed.

Example 1.9.13. ∐p Spec(Z/p) → Spec(Z) is universally specializing but not
closed. The image is the set of closed points of Spec(Z).

Corollary 1.9.14. f is separated ⇐⇒ f is quasi-separated and satisfies the unique-
ness part of the valuative criterion.

Proof. f is separated ⇐⇒ ∆f is closed ⇐⇒ ∆f is quasi-compact and universally
specializing ⇐⇒ ∆f is quasi-compact and satisfies the existence part of the val-
uative criterion ⇐⇒ f is quasi-separated and satisfies the uniqueness part of the
valuative criterion.

Definition 1.9.15. We say that a morphism of schemes is proper if it is separated,
of finite type and universally closed.
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Corollary 1.9.16. f is proper ⇐⇒ f is of finite type, quasi-separated and satisfies
both parts of the valuative criterion.

Proposition 1.9.17. f is integral ⇐⇒ f is affine and universally closed.

Corollary 1.9.18. f is finite ⇐⇒ f is affine and proper.

Proof of the proposition. We need only to prove ⇐=. Let f : X → S be an affine
morphism that is universally closed. We may assume that S = Spec(B) is affine.
Then X = Spec(A) is affine and f = Spec(φ), φ : A→ B. In this case we have the
following stronger result.

Lemma 1.9.19. Let φ : B → A be a ring homomorphism such that Spec(A[X])→
Spec(B[X]) is closed. Then φ is integral.

Proof. Let a ∈ A. We will show a is integral over B. Consider

I = Ker(B[X]→ A)
X 7→ a

and
J = Ker(B[X]→ A[X]/(aX − 1) = A[a−1])

X 7→ X

If f = ∑
i≥0 biX

i ∈ J , then f = (aX − 1)g where g = ∑
i≥0 aiX

i ∈ A[X]. Expand
the coefficients we have bi = aai−1 − ai. Thus for n ≥ max{deg(f), deg(g) + 1},
h = ∑

i biX
n−i = ∑

i(aai−1 − ai)Xn−i = (a − x)∑ aiX
n−1−i ∈ I. The leading

coefficient of h is b0. Thus, to show that a is integral, it suffices to find f ∈ J with
constant term in B×.

Note that J contains a polynomial with constant term in B× if and only if
J +XB[X] = B[X]. Now consider the closed map f = Spec(φ[X]) : Spec(A[x])→
Spec(B[x]). By Lemma 1.2.11, f(V (aX − 1)) = V (J). Thus f(V (aX−1)) = V (J).
It follows that g : Spec(A[x]/(aX − 1)) → Spec(B[x]/(J) is surjective. We have a
Cartesian square

∅ g′ //

��

Spec(B[X]/(J +XB[X]))

��
Spec(A[x]/(aX − 1)) g // Spec(B[x]/(J)).

Indeed, A[X]/(X, aX−1) = 0. Thus g′ is surjective. In other words, Spec(B[x]/(J+
XB[X]) = ∅ and J +XB[X] = B[X].

As usual, proper morphisms behave well under composition and base change:

Proposition 1.9.20. (1) Proper morphisms are stable under composition and base
change.

(2) If X Y Z
f g

gf proper and g separated =⇒ f proper.



1.9. VALUATIVE CRITERION 63

Definition 1.9.21. Let S be a scheme. We call PnS := PnZ×Spec(Z) S the projective
n-space over S.

For S = Spec(A), we have PnA ' PnSpec(A).
We have seen that finite morphisms are proper. Another nontrivial example is

the following.

Proposition 1.9.22. PnS → S is proper.

It suffices to show that PnZ → Spec(Z) is proper. Recall that PnZ = ⋃n
i=0 Ui, Ui '

Spec(Ri), Ri = Z[xj/xi]nj=0. Moreover, Ui∩Uj ' Spec(Rij), Rij = Z[{xk/xi, xk/xj}nk=0].
Since each Ri is a finite type Z-algebra and Ui∩Uj is quasi-compact, PnZ → Spec(Z)
is of finite type and quasi-separated. It remains to prove both parts of the valuative
criterion.

We now describe the functor represented by PnZ in a special case. For a ring A,
let PnZ(A) = HomSch(Spec(A),PnZ).

Lemma 1.9.23. Let A be a local domain and let K = Frac(A). Then

PnZ(A) ∼= W/K×

where W = {(a0, . . . , an) ∈ Kn+1\{(0, . . . , 0)} | ∃i,∀j, aj ∈ aiA} and K× acts on W
by scalar multiplication.

We will give a description of PnZ(S) for a general scheme S later. The class of
(a0, . . . , an) is denoted by [a0 : · · · : an].

Proof. Let f : Spec(A)→ PnZ and let s be the closed point of Spec(A). Then there
exists i such that f(s) ∈ Ui. It follows that f : Spec(A) → Ui. Thus PnZ(A) =⋃
i Ui(A). Consider the subset Wi = {(a0, a1, . . . an) ∈ Kn+1\{(0, . . . , 0)} | ∀j, aj ∈

aiA} ⊆ W . Note that Ui(A) ' HomRing(Ri → A). The map φi : Wi/K
× →

Ui(A) carrying [a0 : · · · : an] to the homomorphism xj/xi 7→ aj/ai is a bijection.
Indeed, the inverse carries g : Ri → A to [g(xj/xi)]0≤j≤n. Similarly, (Ui ∩ Uj)(A) '
HomRing(Rij, A). The maps φi and φj restrict to (Wi ∩Wj)/K× ∼−→ (Ui ∩ Uj)(A).
Since W = ⋃n

i=0 Wi, the maps φi patch together to a bijection W/K× ∼−→ PnZ(A).

We next discuss the valuation defined by a valuation ring.

Definition 1.9.24. Let Γ be a totally ordered abelian group (a 6 b =⇒ a + c 6
b + c) and let K be a field. A valuation v : K× → Γ is a group homomorphism
satisfying the strong triangle inequality:

v(x+ y) > max(v(x), v(y)).

We extend v to v(0) =∞.

If v : K× → Γ is a valuation, then {x ∈ K | v(x) > 0} is a valuation ring of K.
Conversely, if A is a valuation ring of K, then the quotient map v : K× → K×/A×

is a valuation. Here the total order on K×/A× is defined as follows: xA× 6 yA× if
x−1y ∈ A.
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End of proof of Proposition 1.9.22. Since Spec(Z) is a final object, it suffices to show
for every valuation ring A of fraction field K, the map

ϕ : PnZ(A)→ PnZ(K)

is a bijection. By the description in Lemma 1.9.23, this map can be identified with
the inclusion

W/K× ⊆ (Kn+1\{O})/K×,
where O = (0, . . . , 0). Let v : K× → Γ be the valuation given by v. Let (a0, . . . , an) ∈
Kn+1\{O}. We can find a (nonzero) ai with the smallest valuation. Then v(aj/ai) >
0 for all 0 6 j 6 n. In other words, aj/ai ∈ A for all j. This shows that (a0, . . . , an) ∈
W . Thus W = (Kn+1\{O})/K× and ϕ is a bijection.

GAGA (Algebraic Geometry and Analytic Geometry). Let X/C be a scheme of
finite type. Any affine open U ⊆ X is of the form Spec(C[X1, . . . , Xn]/(f1, . . . fm)).
Then U(C) = {(a1, . . . , an) ∈ Cn | fi(a1, . . . , an) = 0} ⊆ Cn. We equip U(C)
with the subspace topology induced from the usual topology on Cn. One can show
that this does not depend on the choice of the embedding U ↪→ An

C and there
exists a topology τ on X(C) such that each U(C) is an open subspace. The space
Xan = (X(C), τ) is called the analytic space associated to X.

Fact 1.9.25. • X separated ⇐⇒ Xan Hausdorff.

• X/C proper ⇐⇒ Xan Hausdorff and quasi-compact.

• For
X Y

Spec(C)

f

where both X → C and Y → C are separated and

of finite type, f is proper ⇐⇒ f an : Xan → Y an is proper (i.e. for every
quasi-compact subset V ⊆ Y an, (f an)−1(V ) is quasi-compact, or, equivalently,
for every topological space Z, f an × Z : Xan × Z → Y an × Z is closed).

Theorem 1.9.26 (Nagata compactification). Let S be a quasi-compact quasi-separated
scheme and let f : X → S be a separated morphism of finite type. Then there exists
an open immersion j : X ↪→ X and a proper morphism f : X → S such that fj = f .

Nagata proved the theorem for Noetherian schemes and Deligne proved the gen-
eral case.

In a couple of simple cases, we already know the result of Nagata compactifica-
tion.

Lemma 1.9.27. Let f : X → S be a quasi-compact immersion. Then there exists
an open immersion j : X → X and a closed immersion f̄ : X → S such that f̄ j = f .

The quasi-compactness assumption cannot be dropped. See Warning 1.6.66.

Proof. It suffices to take X = Spec(OX/I) with I = Ker(OS → f∗OX). This is
called the scheme-theoretic closure of X.
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Example 1.9.28. Let X = Spec(A), S = Spec(B), φ : B → A and f = Spec(φ).
Assume that f is of finite type, namely A is a finitely generated B-algebra. Choosing
a set of generators, we obtain a closed immersion X → An

B over B. Choose an open
immersion An

B → PnB over B.

X An
B PnB

S

Let X be the scheme-theoretic closure of X in PnB. Then X → S is proper.
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1.10 Homogeneous spectrum
Let k be a field. We have a bijection

Pn(k) ∼−→ {lines in An+1 through O}
[a0 : · · · : an] 7→ V (aixj − ajxi).

Closed subsets of Pn correspond to conical subsets of An+1 of the form V (f1, . . . fr),
with each fi homogeneous.

Example 1.10.1. The cone V (x2 − y2 − z2) in A3 corresponds to a curve in P2.

For every graded ring R, we will construct a scheme Proj(R), called the homo-
geneous spectrum of R. Recall that a graded ring is a ring equipped with a
decomposition R = ⊕

d>0Rd as abelian groups, satisfying RdRe ⊆ Rd+e. In particu-
lar, 1 ∈ R0 and R0 is both a sub-ring and a quotient ring of R. Elements in Rd are
called homogeneous of degree d.

An ideal I ⊆ R is said to be homogeneous if I = ⊕
d>0(I ∩Rd).

Example 1.10.2. R+ = ⊕
d>0Rd is a homogenous ideal.

Lemma 1.10.3. Let p ⊆ R be a homogeneous ideal. Then p is a prime ideal if and
only if ∀x, y ∈ R homogeneous, xy ∈ p =⇒ x ∈ p or y ∈ p.

Proof. ⇐=. Let x = ∑
xd, y = ∑

ye, x, y /∈ p. Then there exists a smallest d0 such
that xd0 /∈ p. Similarly there exists a smallest e0 such that ye0 /∈ p. Expanding xy,
we see that xd0ye0 /∈ p. Thus xy /∈ p.

Definition 1.10.4. For a graded ring R, we define a subset Proj(R) ⊆ Spec(R) by

Proj(R) = {p ∈ Spec(R) | p homogeneous and p 6⊇ R+} ⊆ Spec(R).

We equip Proj(R) with the subspace topology.

Notation 1.10.5. For any subset T ⊆ R, we write V+(T ) = V (T ) ∩ Proj(R). For
f ∈ R, we write V+(f) = V+((f)). For f ∈ R+ homogeneous, we write D+(f) =
Proj(R)\V+(f).

Thus V+(T ) is the set of homogeneous prime ideals of R satisfying T ⊆ p and
R+ ( p. It is a closed subset of Proj(R). If pd : R → Rd denotes the projection,
then the homogeneous ideal generated by T is I = ⋃

d>0 pd(T ). It is clear that
V+(T ) = V+(I). Thus every closed subset of Proj(R) is of the form V+(I) for some
homogeneous ideal I.

Example 1.10.6. V+(R) = V+(R+) = ∅, V+(0) = Proj(R).

Lemma 1.10.7. If f ∈ R0, then

D(f) ∩ Proj(R) =
⋃

g∈R+ homogeneous
D+(fg)
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Proof. ⊇ is clear. For ⊆, suppose there exists p ∈ D(f) ∩ Proj(R) such that p /∈⋃
gD+(fg). Then f /∈ p, but ∀g ∈ R+ homogeneous, fg ∈ p, so that g ∈ p. It

follows that R+ ⊆ p, a contradiction.

This is the reason why we only consider D+(f) with f homogeneous of positive
degree.

Definition 1.10.8. D+(f) with f ∈ R+ homogeneous are called standard open
subsets.

Standard open subsets form an open basis for Proj(R) and D+(fg) = D+(f) ∩
D+(g).

For any homogeneous f ∈ R+, Rf is a Z-graded ring. Let R(f) denote the degree
0 piece of Rf .

Lemma 1.10.9. For f homogeneous of positive degree, we have

D+(f) ∼←− {homogeneous primes of Rf}
∼−→ Spec(R(f))

are homeomorphisms.

Proof. The isomorphism on the left is easy to establish. For the one on the right,
we apply the following Lemma.

Lemma 1.10.10. Let S be a Z-graded ring such that there exists f ∈ Sd ∩ S× for
some d > 0. Then we have a homeomorphism

j : G = {Z-graded primes of S} ∼−→ Spec(S0)
p 7→ p ∩ S0√

p0S ← p0

We remark that in a Z-graded ring S, S0 is a subring but typically not a quotient.

Proof. We need to prove that
√
p0S is a prime ideal. Let a, b ∈

√
p0S homogeneous.

There exists n > 1 such that (ab)n ∈ p0S. We have (adbd/fdeg(a)+deg(b))n ∈ p0, hence
ad/fdeg(a) ∈ p0 or bd/fdeg(b) ∈ p0. This shows a ∈

√
p0S or b ∈

√
p0S.

It is easy to check that j is a bijection. It is continuous. We prove that it
is open. Consider the open subset G ∩ D(g), where g = ∑

i gi, gi ∈ Si. Then
j(G ∩D(g)) = ⋃

iD(gdi /fdeg(gi)). Thus j is a homeomorphism.

We now proceed to equip X = Proj(R) with a sheaf of rings OX . We take
OX(D+(f)) = R(f). The functoriality of this assignment is guaranteed by the fol-
lowing.

Lemma 1.10.11. Assume D+(g) ⊆ D+(f). Then there exist n > 1 such that
gn = af with a ∈ R homogeneous. Moreover, we have a commutative diagram

R Rf R(f)

Rg R(g) ' (R(f))gdeg(f)/fdeg(g)
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Proof. We first show that fdeg(g)/gdeg(f) ∈ R(g) is invertible. If fdeg(g)/gdeg(f) ∈ p0 ∈
Spec(R(g)), then f ∈

√
p0Rg ∩ R = p ∈ D+(g) ⊆ D+(f), a contradiction. Thus

f b
gm

= 1 in R(g) with some m ≥ 1. It follows that af = gn for some n > 1. The last
part of the lemma is now clear.

Proposition 1.10.12. For a graded ring R, the functor

{standard open subsets of Proj(R)}op → Ring
D+(f) 7→ R(f)

extends to a sheaf OX on X = Proj(R). Moreover, (D+(f),OX |D+(f)) ' Spec(R(f))
and (X,OX) is a scheme over Spec(R).

Proof. We first verify the gluing property. Let D+(f) = ⋃
iD+(gi). Since D+(f) '

Spec(R(f)) and

D+(gi) ' Spec(R(gi)) ' Spec(R(f))gdeg(f)
i /fdeg(gi) ,

the gluing property for OX follows from the gluing property for OSpec(R(f)). The last
assertion is now clear.

Proposition 1.10.13. For all p ∈ Proj(R), we have OX,p = R(p). Here R(p) is the
degree 0 piece of T−1R, where T = {f ∈ R\p homogeneous}.

Proof. We have
OX,p = colim

f∈R+\p homogeneous
R(f) = R(p).

Here we used the fact that there exists g ∈ R+\p homogeneous and a/f = ag
fg

in
R(p).

Example 1.10.14. PnA ' Proj(R), where R = A[x0, . . . xn]. Indeed, Proj(R) =⋃
D+(xi),D+(xi) = R(xi) = A[xj/xi]nj=0,D+(xi)∩D+(xj) = D+(xixj) = A[xk/xi, xk/xj]nk=0.
In particular, Spec(A) = P0

A ' Proj(A[x0]).

Example 1.10.15. Let R = A[x0, . . . , xn] and let d0, . . . , dn > 0 be integers.
We define a grading on R by R0 = A and deg(xi) = di. We call Proj(R) :=
PA(d0, . . . , dn) the weighted projective n-space of weights (d0, . . . , dn). It is
clear that PA(d0, . . . , dn) = PA(dd0, . . . , ddn) for any d > 1.

Lemma 1.10.16. Proj(R) is quasi-separated.

Proof. Proj(R) = ⋃
f D+(f) and D+(f) ∩D+(g) = D+(fg).

In fact, Proj(R) is separated (exercise).

Proposition 1.10.17. Proj(R) is quasi-compact if and only if there exist finitely
many homogeneous elements f1, . . . fr ∈ R+ such that R+ ⊆

√
(f1, . . . , fr).

Proof. Proj(R) is quasi-compact if and only if a finite number of standard opens
cover Proj(R). In other words, there exist f1, . . . fr ∈ R+ homogeneous such that
V+(f1, . . . , fr) = ∅. We conclude by the next Lemma.
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Lemma 1.10.18. Let I ⊆ R be a homogeneous ideal. Then V+(I) = ∅ ⇐⇒
R+ ⊆

√
I.

Proof. ⇐=. Clear.
=⇒. Assume R+ 6⊆

√
I. Then there exists f ∈ R+\

√
I homogeneous. We have

(R/I)f 6= 0, so that (R/I)(f) 6= 0 (since it contains 1 ∈ (R/I)f ). Thus Proj(R/I) 6=
∅. Then there exists a homogeneous prime q of R/I satisfying q 6⊇ (R/I)+. The pre-
image of q in R is a homogeneous prime p of I satisfying p 6) R+. Thus p ∈ V+(I),
a contradiction.

Functoriality
Let φ : R → S be a homomorphism of graded rings. For q ∈ Proj(S), φ−1(q) is a
homogeneous prime ideal of R, but in general it may happen that φ−1(q) ⊇ R+. Let

U(φ) = {q ∈ Proj(S) | φ−1(q) 6⊇ R+}

In other words, U(φ) = Proj(S)\f−1(V (R+)), where f = Spec(φ).

U(φ)

Proj(R) Proj(S)

Spec(R) Spec(S),
f

Lemma 1.10.19.
U(φ) =

⋃
homogenous a∈R+

D+(φ(a))

Proof. φ−1(q) ∈ Proj(R) ⇐⇒ ∃ a ∈ R+, a /∈ φ−1(q) ⇐⇒ ∃ a ∈ R+, φ(a) /∈ q.

The natural morphisms of schemes D+(φ(a)) → D+(a) given by φ(a) : R(a) →
S(φ(a)) glue to a morphism of schemes Proj(φ) : U(φ)→ Proj(R).

We will give an example where Proj(φ) is defined on Proj(S).
Let us start with a general remark on homogeneous localization. For a ∈ R+

homogenous of degree d,

R(a) = colim( R0 Rd R2d . . .a a )

can be computed using Rnd for n running through any unbounded subset of N. In
particular,

• If φ : R → S is such that sup{n|φnd is surjective} = ∞, then φ(a) : R(a) →
S(φ(a)) is surjective.

• If φ : R→ S is such that sup{n|φnd is an isomorphism} =∞, then φ(a) : R(a) →
S(φ(a)) is an isomorphism.
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Proposition 1.10.20. Let φ : R → S be a graded homomorphism such that for all
d > 1, there exists n > 1 such that φnd is surjective. Then U(φ) = Proj(S) and
Proj(φ) : Proj(S) ↪→ Proj(R) is a closed immersion.

Proof. Let q ∈ Proj(S). There exists b ∈ S+ homogeneous of degree d > 0, b /∈ q.
Then bn /∈ q for all n. By assumption, there exists n > 1 such that φnd is surjective,
and thus there exists a ∈ R+ with φ(a) = bn. Thus a /∈ φ−1(q) and φ−1(q) ∈ Proj(R).
This shows U(φ) = Proj(S). Moreover, for a ∈ R+ homogeneous, R(a) → S(φ(a)) is
surjective. Thus Proj(φ) is a closed immersion.

Example 1.10.21. For any homogeneous ideal I ⊆ R, Proj(R/I) ↪→ Proj(R) is a
closed subscheme of image V+(I). We will give a partial converse later.

Proposition 1.10.22. Let φ : R → S be a graded homomorphism such that for all
d > 1, there exists n > 1 such that φnd is an isomorphism. Then Proj(φ) : Proj(S) ∼−→
Proj(R) is an isomorphism.

Next we look at a different kind of functoriality.

Notation 1.10.23. For d > 1, we let R(d) := ⊕
nRnd denote the graded ring with

R(d)
n = Rnd.

Proposition 1.10.24. We have an isomorphism of schemes over Spec(R0)

Proj(R) ∼−→ Proj(R(d))
p 7→ p ∩R(d).

Proof. We write R+,homog = ⋃
i>0Ri. We have Proj(R) = ⋃

f∈R+,homog D+,R(f)
and Proj(R(d)) = ⋃

f∈R+,homog D+,R(d)(fd). Indeed, for g ∈ R
(d)
+,homog, D+,R(d)(g) =

D+,R(d)(g). Observe that the inclusion R(d) ⊆ R induces an isomorphism R
(d)
(fd) →

R(f), with inverse given by a/fn 7→ afn(d−1)/fnd. This givesD+,R(f) ∼−→ D+,R(d)(fd),
which patches together to an isomorphism of schemes Proj(R) ∼−→ Proj(R(d)) over
Spec(R0).

Remark 1.10.25. The underlying homeomorphism ι : Proj(R) ∼−→ Proj(R(d)) is
compatible with the continuous map Spec(R)→ Spec(R(d)) induced by the inclusion
R(d) ⊆ R, which is not graded for d > 1. The inverse of ι carries q to p = {g ∈ R |
gd ∈ q}. To see this, we first need to show that p is an ideal. If gd ∈ q, hd ∈ q, then
(g + h)2d ∈ q, hence (g + h)d ∈ q. Thus p is an ideal. It is graded, since otherwise,
writing g = ∑

i gi with gi ∈ Ri, there exists gi /∈ p of lowest degree. Then gd ∈ q
implies gdi ∈ q, a contradiction. It is clear that p is a prime and q 7→ p is an inverse
of ι.

More trivially we can also define a graded ring R(1/d) where

R(1/d)
n =

Rn/d d|n
0 d - n.

We also have Proj(R(1/d)) ∼−→ Proj(R).
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Example 1.10.26. R = A[x0, . . . , xn] with deg(xi) = 1 for all i. Then R(d) =
A[M0, . . . ,MN ], where M0, . . .MN are the monomials of degree d. We have N =(
d+n
n

)
− 1. We have a surjective graded homomorphism S = A[y0, . . . , yN ] → R(d)

sending yi to Mi. Let I be the kernel. Taking Proj, we get a closed immersion PnA =
Proj(R) ' Proj(R(d)) ↪→ Proj(S) = PNA . This is called the d-uple embedding.
Here are some examples of low dimension and low degree.

• n = 1, d = 2, P1 ↪→ P2. This is a conic. R = A[u, v],

S = A[x, y, z]→ R(2) = A[u2, uv, v2].

The kernel is I = (y2 − xz).

• n = 1, d = 3, P1 ↪→ P3. This is a twisted cubic curve.

S = A[w, x, y, z]→ R(3) = A[u3, u2v, uv2, v3].

We have I = (x2 − wy, y2 − xz, wz − xy). For A = k a field, the closed
subscheme C ⊆ P3 given by the triple embedding has codimension 2, but it is
easy to see that I cannot be generated by two elements. We say that C is not
a complete intersection in P3.
For example, for J = (x2−wy, y2−xz), V+(J) is not irreducible, as it contains
the line V+(x, y). For I ′ = (x2 − wy, y3 − wz2) ( I, we have

√
I ′ =

√
I, so

that V+(I ′) = V+(I) as sets: C is a set-theoretic complete intersection.

• n = 1, d = 4, P1 ↪→ P4. This is a twisted quartic curve. Consider

R′ = A[u4, u3v, uv3, v4] ⊆ R(4) = A[u4, u3v, u2v2, uv3, v4]

We have R′n = R(4)
n for all n > 2. Thus Proj(R′) ∼−→ Proj(R(4)). We have

Proj(R′) ↪→ P3. For A a domain, R′ is not integrally closed, since (u2v2)2 ∈ R′
but u2v2 /∈ R′.

• n = 2, d = 2, P2 ↪→ P5. This is called the Veronese embedding. R =
A[u, v, w],

S = A[y0, y1, y2, y3, y4, y5]� R(2) = A[u2, v2, w2, uv, uw, vw]
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Example 1.10.27. PA(1, 2, 3) = Proj(A[u, v, w]), deg(u) = 1, deg(v) = 2, deg(w) =
3. It is easy to see that R(6) = A[u6, v3, w2, u4v, u3w, u2v2, uvw] is generated by R(6)

1
over A. We have thus obtained a closed immersion PA(1, 2, 3) ↪→ P6

A. This is a del
Pezzo surface (for A = k a field).

The same argument works for any finitely generated graded ring.

Lemma 1.10.28. Let R be a graded ring, finitely generated over R0. Then there
exists d > 1 such that R(d) is generated by finitely many elements in R

(d)
1 over R0.

Moreover, if R = R0[f1, . . . , fr] with fi homogeneous of degree di > 1 and m =
lcm(d1, . . . , dr), then we can take d = sm where s is any integer ≥ max{r − 1, 1}.

Proof. Consider P = f ei1 · · · f err of total degree Nm, N > r. In other words,∑
i diei > Nm. Then there exists i such that ei > m

di
and we have P = P1Q,

where P1 = f
m/di
i has degree m and Q is homogeneous of degree (N − 1)m. Thus

if N = nsm, we obtain by induction a decomposition P = P1 · · ·P(n−1)smQ, where
Pj ∈ Rm and Q ∈ Rsm. Thus P can be generated by R(d)

1 over R0. The finiteness is
clear.

Corollary 1.10.29. Let R be a graded ring, finitely generated over R0. Then there
exists a closed immersion Proj(R) ↪→ PnR0 for some n.

Proof. Let d be as in the previous lemma. Since R(d) is generated by finitely many
elements of R(d)

1 over R0, it is the quotient of the polynomial ring R0[X0, . . . , Xn].
This gives a closed immersion Proj(R) ' Proj(R(d)) ↪→ PnR0 .

Definition 1.10.30. We say that a morphism f : X → Y is projective if it factors
as

X PnS PnZ ×Z S

S

i

f
p

where i is a closed immersion and p is the projection.

Remark 1.10.31. Projective morphisms are proper.
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Base change
Let φ : R → S be a graded ring homomorphism. We have for any a ∈ R+ homoge-
nous, a commutative diagram

D+(φ(a)) D+(a)

U(φ) Proj(R)

Proj(S)

Spec(S0) Spec(R0)

r

The top most square is Cartesian and thus r is an affine morphism.

Proposition 1.10.32. Let R be a graded ring and R0 → S0 a ring homomorphism.
Let S = R ⊗R0 S0 and φ : R → S. Then U(φ) = Proj(S) and we have a Cartesian
square

Proj(S) Proj(R)

Spec(S0) Spec(R0)

Proof. Since R+S = S+, we have U(φ) = Proj(S)\V (S+) = Proj(S). Take a ∈ R+
homogeneous. We need to check that

D+(φ(a)) D+(a)

Spec(S0) Spec(R0)

is Cartesian. This follows from the fact that tensor product commutes with local-
ization: the diagram of rings

S(φ(a)) R(a)

S0 R0

is coCartesian.

Now let R and S be graded rings satisfying R0 = S0 = A. We will determine
the fiber product of the diagram.

Proj(R)

Proj(S) Spec(A)
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A first attempt is to consider R⊗AS with grading given by (R⊗AS)d = ⊕
i+j=dRi⊗

Sj. But for homogeneous elements a ∈ R+ and b ∈ S+, the map R(a) ⊗ S(b) →
(R⊗A S)(a⊗b) is typically not surjective.

Instead we consider the subring R;AS = ⊕
d≥0Rd⊗ASd ⊆ R⊗AS, with grading

given by (R;A S)d = Rd ⊗A Sd. We have a Cartesian square

Proj(R;A S) Proj(R)

Proj(S) Spec(A)

Indeed, for a and b as above, we have R(a) ⊗ S(b) ' (R;A S)(a⊗b).
The subring can be more complicated than the tensor product, as shown by the

following example.

Example 1.10.33. Let R = A[x0, . . . , xr], S = A[y0, . . . , ys]. Then R ⊗A S =
A[x0, . . . , xr, y0, . . . ys], but R;A S = A[xiyj]0≤i≤r

0≤j≤s
. We have a surjection

T = A[zij]→ S

zij 7→ xiyj

with kernel I = (zijzi′j′−zij′zi′j)i,j,i′,j′ . This gives a closed immersion PrA×Spec(A)PrA '
Proj(R;A S) ↪→ Proj(T ) = PNA , where N = (r + 1)(s+ 1)− 1 = rs+ r + s. This is
called the Segre embedding.

In the case r = s = 1, we have N = 3 and the image of P1 × P1 ↪→ P3 is the
quadric surface defined by xw − yz = 0.

Proposition 1.10.34. Projective morphisms are stable under base change and com-
position.

Proof. The stability under base change follows from the fact that closed immersions
are stable under base change: if X → S is a projective morphism and S ′ → S an
arbitrary morphism, then we have a diagram with Cartesian squares

X ×S S ′ PnS′ S ′

X PnS S

For the stability under composition, let X → Y and Y → S be projective morphisms
and consider the following commutative diagram with Cartesian squares:

X PnY PnPmS PnZ × PmZ PNZ

Y PmS

S Spec(Z)

Segre

p
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The square in the middle is Cartesian because PnPmS = PnZ × PmS = PnZ × PmZ × S by
definition. Since p is projective by the Segre embedding, its base change PnPmS → S
is also projective. Thus X → S is projective.

Definition 1.10.35. Let P be a class of schemes. P is called local if

• X ∈ P , U ⊆ X open =⇒ U ∈ P .

• X = ⋃
i Ui, Ui open and Ui ∈ P for all i =⇒ X ∈ P .

Here are some local properties of schemes: reduced, normal, locally Noetherian,
empty.

Non-local properties: affine, quasi-compact, separated, quasi-separated, irre-
ducible, connected, integral, Noetherian.

Definition 1.10.36. Let P be a class of morphisms. We say P is local on the
source if

• (X f−→ Y ) ∈ P , U j−→ X open immersion =⇒ f ◦ j ∈ P .

• Given f : X → Y , X = ⋃
i Ui, Ui open and ∀i, (f |Ui : Ui → X) ∈ P =⇒

f ∈ P .

We say P is local on the target if

• (X f−→ Y ) ∈ P , V ⊆ Y open =⇒ (f−1(V ) fV−→ V ) ∈ P .

• Given f : X → Y , Y = ⋃
i Vi, Vi ⊆ Y open and ∀i, (f−1(Vi)

fVi−−→ Vi) ∈ P =⇒
f ∈ P .

Local on the source and the target: locally of finite type, flat, open, generizing.
Local on the target: quasi-compact, affine, closed, specializing, integral, finite,

quasi-separated, separated, proper, immersion, surjective, injective.
Not local on the target: projective.
An example of Hironaka shows that projectiveness is not local on the target.

See [H, Example B.3.4.2].

Quasi-coherent sheaves on Proj(R)
For every graded R-module M , we will construct a quasi-coherent sheaf M̃ on
Proj(R). Recall that a graded R-module is an R-module M equipped with a
Z-grading as abelian group M = ⊕

d∈ZMd such that RdMe ⊆Md+e.
Given a graded R-module M and n ∈ Z, we define a graded R-module M(n),

called the twisted module, by M(n)d = Mn+d. If we visualize a graded R-module
by writing down its pieces sequentially, then M(1) corresponds to a shift to the left.

Given graded R-modules M and N , the tensor product M ⊗R N is a graded R-
module as follows. The R0-moduleM⊗R0N clearly admits a grading: (M⊗R0N)d =⊕
i+j=dMi⊗R0Nj. ThenM⊗RN can be identified with the quotient ofM⊗R0N by

the graded submodule generated by am⊗ n−m⊗ an with homogeneous elements
m ∈M , n ∈ N , a ∈ R.
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Homomorphisms of graded modules are required to preserve degrees. We let
GrHomR(M,N)0 denote the R0-module of graded homomorphisms M → N . (One
can define a graded R-module GrHomR(M,N) = ⊕

n GrHom(M,N(n)) but this will
not be used in the sequel.)

For f ∈ R+ homogeneous, we let M(f) denote the degree 0 piece of Mf . The
proof of the following is similar to Propositions 1.10.12 and 1.10.13.

Proposition 1.10.37. The functor

{standard open subsets of Proj(R)} → {abelian groups}
D+(f) 7→M(f)

extends to a quasi-coherent sheaf M̃ on Proj(R) = (X,OX). We have M̃ |D+(f) '
M̃(f) for all f ∈ R+ homogeneous and M̃p = M(p) for all p ∈ Proj(R). Here M(p) is
the degree 0 piece of T−1M , T = ⋃

d>0Rd\p.

We obtain a functor
GrMod(R)→ Shv(X,OX)

M 7→ M̃

It is easy to see that this functor is exact and commutes with colimits. The canonical
morphism M̃⊗OX Ñ → (M⊗RN)∼, given locally byM(f)⊗R(f)N(f) → (M⊗RN)(f),
is not an isomorphism in general.

We haveM(f) = colim( M0 Md M2d · · ·f f f ), where d = deg(f).
Thus if Z ⊆ Z with supZ = +∞, then M(f) depends only on Mnd, n ∈ Z. This
motivates the following.

Notation 1.10.38. For d ≥ 1, let Ud = ⋃
f∈Rd D+(f) ⊆ Proj(R).

We have Proj(R) = ⋃
d>1 Ud and Ud ⊆ Udn for all n ≥ 1.

• If Proj(R) is quasi-compact, then Proj(R) = Ud for some d.

• If R is generated by R1 over R0, then X = U1.

Definition 1.10.39. We define the quasi-coherent sheaf OX(n) to be R̃(n). We call
OX(1) the twisting sheaf.

Proposition 1.10.40. Let X = Proj(R). Let M and N be graded R-modules and
let n ∈ Z.

• On Ud, OX(nd) is an invertible sheaf and the map

M̃ ⊗OX OX(nd)→ M̃(nd)

is an isomorphism when restricted to Ud. In particular, OX(m)⊗OXOX(nd)|Ud
∼−→

OX(m+ nd)|Ud, OX(nd)|∨Ud ' OX(−nd)|Ud.

• The restriction of M̃ ⊗OX Ñ
∼−→ (M ⊗R N)∼ to U1 is an isomorphism.

This boils down to the following lemmas.
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Lemma 1.10.41. For f ∈ Rd, d > 0, we have an isomorphism OX |D+(f)
∼−→

OX(nd)|D+(f) given by
R(f)

∼−→ R(nd)(f)

a 7→ fna.

Lemma 1.10.42. For f ∈ R1, the canonical map M(f) ⊗R(f) N(f) → (M ⊗R N)(f)
is an isomorphism.

Proof. We have Rf = R(f)[f, f−1] ' R(f)⊗ZZ[X,X−1]. Thus (M⊗RN)f 'Mf⊗Rf
Nf ' (M(f)⊗R(f) N(f))[f, f−1]. Thus M(f)⊗R(f) N(f) is the degree 0 piece of (M ⊗R
N)(f).

Example 1.10.43. Consider X = Pn(d, . . . , d) = Proj(R), where R = A[x0, . . . , xn]
with deg(xi) = d > 2. For d - n, R(n)(f) = 0, f ∈ Rd, since the non-zero degrees of
R(n) are ≡ −n (mod d). Thus O(n) = 0 for d - n and 0 = O(1)⊗O O(−1) 6' O.
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Recall we have defined for each graded module M over a graded ring R, a quasi-

coherent sheaf M̃ over X = Proj(R) satisfying M̃(D+(f)) = M(f). We want to
study the behavior of M̃ under change of R.

Let φ : R→ S be a graded ring homomorphism. Let X = Proj(R), Y = Proj(S),
and r : U(φ)→ X the morphism induced by φ.

Proj(S) Proj(R)

U(φ)

r

• Let N be a graded S-module. Then r∗(Ñ |U(φ)) = R̃N . Indeed, for each a ∈ R+

homogeneous, r∗(Ñ |U(φ))(D+(a)) = Ñ(D+(φ(a))) = N(φ(a)).

• Let M be a graded R-module. Then M ⊗R S is a graded S-module and we
have a natural morphism r∗(M̃)→ M̃ ⊗R S|U(φ), locally defined by M(a)⊗R(a)

S(φ(a)) → (M ⊗R S)(φ(a)) on D+(φ(a)) for a ∈ R+ homogeneous. This is not an
isomorphism in general. However, for d > 1 and n ∈ Z, r∗(OX(nd))|r−1(Ud)

∼−→
OY (nd)|r−1(Ud) and r∗(M̃)|r−1(U1)

∼−→ M̃ ⊗R S|r−1(U1).

Next consider i : Proj(R) ∼= Proj(R(d)). Let M be a graded R-module. Then
i∗(M̃ (d)) ∼−→ M̃ . Here M (d) is the graded R(d)-module defined by (M (d))n = Mdn. In
particular, we have i∗O(n) = O(dn).

The functor Γ∗
Since M → M̃ commutes with colimits, it admits a right adjoint by the adjoint
functor theorem. We can describe the adjoint explicitly.

Notation 1.10.44. Given X = Proj(R) and an OX-module F (not necessarily
quasi-coherent), we let

• Γ∗(F) = ⊕
n∈Z Γ(X,F ⊗OX OX(n));

• Υ∗(F) = ⊕
n∈Z HomOX (OX(−n),F).

We denote the degree n pieces of Γ∗(F) and Υ∗(F)) by Γn(F) and Υn(F), respec-
tively.

Each a ∈ Rd induces a morphism of OX-modules OX(n) → OX(n + d). This
makes Γ∗(F) and Υ∗(F) into graded R-modules. The natural pairing

(F ⊗OX(n))⊗OX(−n)→ F

induces a homomorphism
ν : Γ∗(F)→ Υ∗(F).

If X = Ud, then νdn is an isomorphism for all n ∈ Z.
We have defined functors Γ∗ and Υ∗ from Shv(X,OX) to GrMod(R).
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Proposition 1.10.45. ˜ a Υ∗.

Proof. We define the unit and counit

φ : M −→ Υ∗(M̃)
ψ : Υ∗(F)∼ −→ F

as follows.
For m ∈Md,

φ(m) : OX(−d)→ M̃

is defined by
R(−d)(a)

×m−−→M(a)

on D+(a), a ∈ R+ homogeneous. Here ×m denotes multiplication by m.
For a ∈ Rd, d > 0, we define

Γ(D+(a), ψ) : Υ∗(F)(a) → Γ(D+(a),F)
g/an 7→ g(a−n)

where g ∈ Υdn(F) = Hom(OX(−dn),F), a−n ∈ R(−nd)(a) = Γ(D+(a),OX(−nd)).
One verifies that this gives the expected adjunction.

Proposition 1.10.46. Assume that X = Proj(R) is quasi-compact. For any quasi-
coherent sheaf F on X, Γ∗(F)∼ ν̃−→

∼
Υ∗(F)∼ ψ−→

∼
F .

Thus, for Proj(R) quasi-compact, Υ∗ induces a fully faithful functor from QCoh(X)
to the category of graded R-modules.

Proof. Since X is quasi-compact, we have X = Ud for some d > 0. Then νdn is an
isomorphism for all n ∈ Z. It follows that ν̃ is an isomorphism. Thus it suffices
to show that for all a ∈ R+ homogeneous, Γ(D+(a), ψν̃) : Γ∗(F)(a) → Γ(D+(a),F)
is an isomorphism. Up to replacing a by ad, we may assume that d | deg(a) = m.
Note that X is quasi-compact and quasi-separated. It suffices to apply the lemma
below to the invertible sheaf OX(m) and the section defined by a.

Let X be a scheme, L an invertible sheaf on X, and F a quasi-coherent sheaf on
X.

• For every f ∈ Γ(X,L), define Xf = {x ∈ X | fx /∈ mxLx}, where mx is the
maximal ideal of the local ring OX,x. This is an open subset of X.

• Define Γ∗(X,L) = ⊕
n≥0 Γ(X,L⊗n), Γ∗(X,L,F) = ⊕

n∈Z Γ(X,F⊗L⊗n). Then
Γ∗(X,L) is a graded ring and Γ∗(X,L,F) is a graded Γ∗(X,L)-module.

Here, for n < 0, L⊗n denotes (L∨)⊗n.

Lemma 1.10.47. Assume that X is quasi-compact. Let f ∈ Γ(X,L). Then the
canonical map

α : Γ∗(X,L,F)(f) → Γ(Xf ,F)
is injective. Moreover, if X is quasi-separated, then α is an isomorphism.
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Here Γ∗(X,L,F)(f) is simply

colim(Γ(X,F) f−→ Γ(X,F ⊗OX L) f−→ Γ(X,F ⊗OX L⊗2)→ . . . ).

For L = OX , we recover Lemma 1.7.12.

Proof. Cover X by a finite number of open affine subsets U1, . . . , Un such that L|Ui
is trivial, i.e. L|Ui ∼= OX |Ui . We have a commutative diagram with exact rows

0 Γ∗(X,L,F)(f)
⊕n
i=1 Γ∗(Ui,L,F)(f)

⊕n
i,j=1 Γ∗(Ui ∩ Uj,L,F)(f)

0 Γ(Xf ,F) ⊕n
i=1 Γ((Ui)f ,F) ⊕n

i,j=1 Γ((Ui ∩ Uj)f ,F)

α θ β

Since each Ui is affine and L is trivial on Ui, θ is an isomorphism. This implies
that α is injective. In the case where X is quasi-separated, Ui∩Uj is quasi-compact
and β is injective by the previous case. It follows that α is an isomorphism in this
case.

The bijectivity of φ is more complicated. We will limit our attention to the case
M = R. In this case, we have a commutative diagram

Γ∗(OX)

R Υ∗(OX)

ν

φ

ϕ

Note that Γ∗(OX) is a Z-graded ring (in the notation above, Γ∗(X,OX(1)) is the
degree ≥ 0 part of Γ∗(OX)) and ϕ is a homomorphism of Z-graded rings. By
contrast, there is no natural ring structure on Υ∗(OX) in general.

Proposition 1.10.48. We have:

(1) ν is an isomorphism if X = U1.

(2) ϕ is an isomorphism if

• R = A[x0, . . . , xn], n > 1; or
• R is a Noetherian normal ring and ht(R+) > 2.

Part (1) of the proposition is clear since νn is an isomorphism for all n ∈ Z in
the case X = U1. To prove part (2), we will give an interpretation of Γ∗(OX).

Lemma 1.10.49. Let X be a quasi-compact scheme and {Fi}i∈I a family of quasi-
coherent sheaves. Then the natural map

ε :
⊕
i∈I

Γ(X,Fi)→ Γ(X,
⊕
i∈I
Fi)

is injective. Moreover, if X is quasi-separated, then ε is an isomorphism.
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Proof. The map ε is an isomorphism for X affine. In general, proceed as in Lemma
1.10.47.

Remark 1.10.50. The first (resp. second) statement of the lemma holds in fact
for any quasi-compact (resp. quasi-compact, quasi-separated, admitting a quasi-
compact open basis) topological space X and any abelian sheaf F on X.

In the caseX = Proj(R), consider ε : Γ∗(OX)→ Γ(X,A), whereA = ⊕
n∈ZOX(n).

Note that A is a quasi-coherent OX-algebra. Consider f : Spec(A)→ Proj(R). The
restriction of f to D+(a) ⊆ Proj(R) can be identified with Spec(Ra)→ Spec(R(a)).
Thus Spec(A) can be identified with the open subscheme U = ⋃

a∈R+,homog D(a) =
Spec(R)\V (R+) of Spec(R). The following is easy to check.

Lemma 1.10.51. εϕ : R → Γ(X,A) can be identified with the restriction map
OY (Y )→ OY (U), where Y = Spec(R).

Proof of Proposition 1.10.48(2). Note that in both cases Proj(R) is quasi-compact,
so that ε is an isomorphism. Thus it suffices to show that the restriction map
OY (Y )→ OY (U) is an isomorphism.

Case R = A[x0, . . . , xn], n > 1. We have U = ⋃n
i=0D(xi), D(xi) = Spec(Rxi),

D(xi) ∩ D(xj) = Spec(Rxixj). The relevant rings can be compatibly regarded as
subrings Rx0···xn and OY (U) = ⋂n

i=0Rxi = R.
Case R Noetherian normal ring and ht(R+) > 2. A Noetherian normal ring is

finite product of Noetherian normal domains. The Proposition then follows imme-
diately from the following Lemma.

Lemma 1.10.52. Let R be a Noetherian normal domain. Then R = ⋂
ht(p)=1 Rp.

This is a consequence of Krull’s principal ideal theorem. See [M2, Theorem 11.5].

Example 1.10.53. • R = A[x], Γ∗(OX) = A[x, x−1]. In this case R ↪→ Γ∗(OX)
is not an isomorphism unless A = 0.

• R = k[u4, u3v, uv3, v4], Proj(R) ∼= P1
k. We have remarked that R is not in-

tegrally closed. The map R ↪→ Γ∗(OX) identifies Γ∗(OX) with the integral
closure of R (exercise).

The morphism f : Spec(R)\V (R+)→ Proj(R) gives an interpretation of Proj(R)
as a quotient. We now give some indications towards this direction.

The affine line A1 = Spec(Z[x]) is equipped with a multiplication m : A1 ×
A1 → A1 and a unit morphism e : Spec(Z) → A1, making A1 a monoid scheme.
The morphisms m and e are given by the following ring homomorphisms, called
comultiplication and counit:

Z[x]→ Z[y]⊗ Z[z] Z[x]→ Z
x 7→ y ⊗ z x 7→ 1

Equipped with these homomorphisms, Z[x] is a bialgebra. The open subscheme
Gm = A1\V (x) = Spec(Z[x, 1/x]) is a group scheme, called the multiplicative
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group. It is equipped with the inverse morphism i : Gm → Gm, which is defined by
the antipode

Z[x, x−1]→ Z[x, x−1]
x 7→ x−1

This makes Z[x, x−1] into a Hopf algebra.
An action A1 y X is a morphism a : A1 ×X → X compatible with m and e. If

X = Spec(R) is affine, then a is defined by a ring homomorphism

R→ Z[x]⊗R = R[x]
r 7→

∑
d≥0

rdx
d

One checks that an action of A1 on Spec(R) is equivalent to a grading on R. Simi-
larly, an action of Gm on Spec(R) is equivalent to a Z-grading on R. One can inter-
pret V (R+) as the fixed point locus by the action of A1 on Spec(R), and Proj(R) as
the quotient of Spec(R)\V (R+) by the action of Gm.

Proposition 1.10.54. Let R be a graded ring such that X = Proj(R) is quasi-
compact and ϕ : R→ Γ∗(OX) is an isomorphism. Then any closed subscheme of X
is defined by a homogeneous ideal of R.

Proof. Let Z ⊆ X be a closed subscheme defined by a quasi-coherent ideal sheaf
IZ ⊆ OX . Then Γ∗(IZ) ↪→ Γ∗(OX) ' R can be identified with a homogeneous ideal
a of R. Thus ã ' Γ∗(IZ)∼ ∼−→ IZ . Since the ideal sheaf of the closed subscheme
Proj(R/a) ⊆ X is ã, we have Z = Proj(R/a) as subscheme of X.

Corollary 1.10.55. A morphism of schemes f : X → Spec(A) is projective if and
only if there exists a graded ring R finitely generated over R0 = A such that X =
Proj(R) and f is the canonical morphism.

Proof. ⇐=. This is Corollary 1.10.29.
=⇒ . Let X ↪→ PnA → Spec(A) be a factorization. Since X is a closed subscheme

of PnA, it is defined by a homogeneous ideal I ⊆ R = A[x0, . . . , xn]. In other words,
X = Proj(R/I).

Functor represented by Proj(R)
We are mainly interested in the functor represented by the open subscheme U1 of
Proj(R). Let ϕ : R→ Γ∗(U1,O(1)) = ⊕

n≥0 Γ(U1,O(n)) be the canonical homomor-
phism of graded rings.

Definition 1.10.56. Let (X,OX) be a ringed space. Let F be a OX-module and
Σ ⊆ Γ(X,F) a subset. We say that F is generated by Σ if

⊕
s∈Σ
OX

(s)−→ F

is an epimorphism. We say that F is globally generated if F is generated by
Γ(X,F).
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Note that if X is a scheme (or a locally ringed space), an invertible sheaf L
is generated by Σ if and only if ⋃s∈Σ Xs = X. In particular, OProj(R)(dn)|Ud is
generated by ϕ(Rdn) for d, n ≥ 1.

Example 1.10.57. On PnA, Γ(PnA,O(d)) = A[x0, . . . , xn]d for d > 0 and Γ(PnA,O(−d)) =
0 for d ≥ 1. In particular, O(−d) is not globally generated.

Proposition 1.10.58. Let Y be a scheme and X = Proj(R). Then there is a
bijection

HomSch(Y, U1) −→

(L, γ) |
L invertible sheaf on Y,

γ : R→ Γ∗(Y,L) homomorphism of graded rings
such that L is generated by γ(R1)

 / ∼=
(f : Y → U1) 7→ [(f ∗(O(1)|U1), R ϕ−→ Γ∗(U1,O(1))→ Γ∗(Y, f ∗(O(1))))],

where (L, γ) ∼= (L′, γ′) if there exists c : L ∼= L′ rendering

R Γ∗(X,L)

Γ∗(X,L′)

γ

γ′

c

commutative.

Proof. We construct the inverse [(L, γ)] 7→ f as follows. For a ∈ Rd, d > 0 satisfying
D+(a) ⊆ U1, we have a ring homomorphism

R(a)
γ−→ Γ∗(Y,L)γ(a) → Γ(Yγ(a),OY ).

This gives a morphism Yγ(a) → D+(a). Since L is generated by γ(R1), we have⋃
a∈R1 Yγ(a) = Y . Thus these morphisms glue to a morphism f : Y → U1.

Corollary 1.10.59. For X = PnZ = Proj(Z[x0, . . . , xn]), we have a bijection

HomSch(Y,PnZ) −→
{

(L, s0, . . . , sn) |
L invertible sheaf on Y, si ∈ Γ(Y,L),

L is generated by s0, . . . , sn

}
/ ∼=

f 7→ (f ∗(O(1)), f ∗x0, . . . , f
∗xn)

The functor represented by Ud can be described with the help of the isomorphism
Proj(R) ' Proj(R(d)). Indeed, this isomorphism restricts to Ud,R ' U1,R(d) .

Remark 1.10.60. Given a scheme Y and (L, γ), where L is a line bundle on Y
and γ : R → Γ∗(X,L) is a homomorphism of graded rings (without assumptions
on generation by global sections), the construction in the proof above produces a
morphism of schemes f : Yγ → Proj(R), where Yγ = ⋃

a∈R+,homog Yγ(a).
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1.11 Ample invertible sheaves
Given a graded ring R, the opens D+(f) ∩ U1 form a basis for the topology on
U1 ⊆ Proj(R). Each f ∈ Rd, d > 0 gives rise to an element ϕ(f) ∈ Γ(U1,O(d))
and D+(f)∩U1 = (U1)ϕ(f). Thus the open subsets (U1)s, s ∈

⋃
d≥1 Γ(U1,O(d)) form

a basis for the topology on U1. We generalize this property to arbitrary invertible
sheaves on schemes as follows.

Definition 1.11.1. Let X be a scheme and L an invertible sheaf on X. We way
that L is ample if

• X is quasi-compact and

• {Xs | s ∈ Γ(X,L⊗d), d > 1} forms a basis for the topology on X.

Remark 1.11.2. Let U = Spec(A) ⊆ X be open affine such that L is trivial on U .
Then for s ∈ Γ(X,L⊗d), Xs ∩U = Spec(As) is affine. In particular, if Xs ⊆ U , then
Xs is affine. (Exercise: Show that assumption that L is trivial can be removed.)

Lemma 1.11.3. Let X be an affine scheme. Then any invertible sheaf L on X is
ample.

Proof. Let X = Spec(A). Then L ' M̃ for some A-module M . The opens Xam,
a ∈ A, m ∈ M form a basis for the topology on X. Indeed, Xam ⊆ D(a) and⋃
m∈M Xm = X.

Lemma 1.11.4. Given d > 1, L is ample ⇐⇒ L⊗d is ample.

Proof. We have Xs = Xs⊗d .

Lemma 1.11.5. Let i : Y → X be a quasi-compact immersion. For any ample
invertible sheaf L on X, i∗L is ample on Y .

Proof. We have Yi∗s = Y ∩Xs.

Theorem 1.11.6. Let X be a quasi-compact scheme and let L be an invertible sheaf
on X. Let S = Γ∗(X,L). Then the following conditions are equivalent:

(a) L is ample.

(b) {Xs affine | s ∈ S+,homog} is a basis for X.

(c) {Xs affine | s ∈ S+,homog} covers X.

(d) The morphism X ↪→ Proj(S) defined by (L, id : S → S) is an open immersion.

(e) There exists a graded ring R, an immersion i : X ↪→ U1 ⊆ Proj(R) and d > 1
such that L⊗d ' i∗O(1).

(f) ∀ F quasi-coherent sheaf on X, ⋃n>1 Im(Γ(X,F ⊗OX L⊗n)⊗Z L⊗−n)→ F) =
F .

(g) ∀ F quasi-coherent ideal sheaf on X, the condition in (f) holds.
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Proof. (a) =⇒ (b). This follows from Remark 1.11.2.
(b) =⇒ (c). Trivial.
(c) =⇒ (d). We first prove that X is quasi-separated. By assumption X =⋃n

i=1Xsi with Xsi affine. There exists an affine open covering X = ⋃m
k=1 Uk such

that L is trivial on each Uk. Then Xsi ∩ Xsj = Xsi⊗sj = ⋃m
k=1(Xsi⊗sj ∩ Uk) is

quasi-compact, since Xsi⊗sj ∩Uk is affine. (In fact Xsi ∩Xsj is affine by the exercise
mentioned in Remark 1.11.2.)

We can now apply Lemma 1.10.47 to see S(s)
∼−→ Γ(Xs,OX). For Xs affine, this

implies Xs
∼−→ D+(s). Thus X ↪→ Proj(S) is an open immersion.

(d) =⇒ (e). Since X is quasi-compact, the image of the open immersion j : X ↪→
Proj(S) in (d) is contained in Ud for some d. We take R = S(d) and let i : X ↪→
Ud,S ' U1,R. Then i∗(OU1,R(1)) = j∗(OUd,S(d)) = L⊗d.

(e) =⇒ (a). By the discussion at the beginning of the section, O(1)|U1 is ample.
By Lemma 1.11.4, L⊗d ' i∗(O(1)|U1) is ample, which implies that L ample by
Lemma 1.11.3.

(a) =⇒ (f). We have shown that (a) implies that X is quasi-separated. Thus, by
Lemma 1.10.47, Γ∗(X,L,F)(s)

∼−→ Γ(Xs,F) for s ∈ Γ(X,L⊗d), d > 1. Elements in
Γ(Xs,F) can be written as a = b|Xs⊗s−n, b ∈ Γ(X,F⊗L⊗nd), s−n ∈ Γ(Xs,L⊗−nd).
Thus a is in the image of Γ(X,F ⊗ L⊗nd)⊗Z L⊗−nd → F . Since Xs forms an open
basis, F equals the union as shown in (f).

(f) =⇒ (g). Trivial.
(g) =⇒ (a). Let x ∈ U ⊆ X be an open neighborhood of x. It suffices to

show that there exists s ∈ S+ homogeneous such that x ∈ Xs ⊆ U . Let Z = X\U
and equip it with the induced reduced closed subscheme structure. Let IZ be the
corresponding ideal sheaf. Then IZ |U = OX |U . The assumption in (g) implies⋃

n>1
Im(Γ(X, IZ ⊗ L⊗n)⊗ L⊗−n)→ IZ) = IZ .

In particular, there exists n > 1, s ∈ Γ(X, IZ ⊗ L⊗n) such that sx /∈ mx(IZ ⊗OX
L⊗n)x = (L⊗n)x, where mx ⊆ OX,x is the maximal ideal. Let i : Z → X be the
closed immersion. The exact sequence 0 IZ OX OZ 0
induces an exact sequence

0 Γ(X, IZ ⊗ L⊗n) Γ(X,L⊗n) Γ(Z, i∗L⊗n|Z).

Regarding s as an element of Γ(X,L⊗n), we have x ∈ Xs. The image of s in
Γ(Z, i∗L⊗n|Z) is zero, which implies that Xs ∩ Z = ∅ and Xs ⊆ U .

Corollary 1.11.7. Any scheme admitting an ample invertible sheaf is separated.

Indeed, Proj(R) is separated.
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Date: 11.3
(Additional equivalent conditions have been inserted into Theorem 1.11.6.)

Definition 1.11.8. We say that a scheme X is quasi-affine if X is a quasi-compact
open subset of an affine scheme.
Corollary 1.11.9. A scheme X is quasi-affine ⇐⇒ OX is ample.
Proof. =⇒. If j : X ↪→ Spec(A) is a quasi-compact open immersion, then OX =
j∗OSpec(A) is ample.
⇐=. We apply the theorem above with S = ⊕

d>0 Γ(X,OX) = A[x], where
A = Γ(X,OX). Then j : X → Proj(S) = Spec(A) is an open immersion. By
assumption, X is quasi-compact. It follows that j is quasi-compact.
Definition 1.11.10. Let (X,OX) be a ringed space, F an OX-module. We say
that F is of finite type if there exists an open cover {Ui} of X, integers ni > 0
and epimorphisms OniUi � F|Ui .
Remark 1.11.11. Let F be an OX-module of finite type.
• Every quotient of F is of finite type.

• If X is a locally Noetherian scheme and F is quasi-coherent, then every quasi-
coherent subsheaf of F is also of finite type.

Corollary 1.11.12. Let X be a scheme, L an ample invertible sheaf on X, and F
a quasi-coherent sheaf of finite type on X. Then there exists an integer n0 such that
for all n > n0, F ⊗OX L⊗n is globally generated.
Remark 1.11.13. The tensor product of two globally generated OX-modules is
globally generated.
Proof. By Theorem 1.11.6 (a)⇒(f) and the lemma below, for any quasi-coherent
sheaf G of finite type on X, there exists e = e(G,L) > 1 such that G⊗L⊗e is globally
generated. Let d = e(OX ,L), so that L⊗d is globally generated. For 0 ≤ i < d,
let ei = e(F ⊗ L⊗i,L⊗d), so that F ⊗ L⊗dei+i is globally generated. It follows that
F ⊗L⊗de+i is globally generated for e ≥ ei. Take n0 = max06i<d{dei + i}. Then for
all n > n0, F ⊗ L⊗n is globally generated.
Lemma 1.11.14. Let (X,OX) be a ringed space with X quasi-compact. Let F be
an OX-module of finite type.
(1) Assume F = colimi∈I Fi with I filtered. Then there exists i such that the

canonical morphism Fi → F is an epimorphism.

(2) If F is globally generated, then F is generated by finitely many global sections.
Proof. (1) For any x ∈ X, there exist an open neighborhood U and an epimorphism
OnU � F|U . Shrinking U if necessary, we can find i such that OnU → Fi|U → F|U .
Then Fi|U � F|U . Since X is quasi-compact, we can find an i ∈ I such that
Fi|U � F|U holds for U running through an open cover of X. This shows Fi � F .

(2) We have
F =

⋃
Σ⊆Γ(X,F) finite

Im(OΣ
X → F)

By (1), there exists Σ ⊆ Γ(X,F) finite such that OΣ
X surjects onto F .
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Corollary 1.11.15. Let X be a scheme, L an ample invertible sheaf on X. Then
for every quasi-coherent sheaf F of finite type on X, there exists n > 1, m > 0 such
that F is a quotient of (L⊗−n)m.

Proof. There exists n such that F⊗L⊗n is globally generated. By the lemma above,
there exist m and an epimorphism OmX � F ⊗ L⊗n. Thus (L⊗−n)m � F .

Remark 1.11.16. If X is Noetherian, then the condition in the corollary is equiva-
lent to the ampleness of L. Indeed, in this case, every ideal sheaf is finitely generated.
In fact, the equivalence holds as long as X is quasi-compact and quasi-separated,
because in this case every quasi-coherent OX-module is the union of its submodules
of finite type [SP, 01PG].

Relative ampleness
Definition 1.11.17. Let f : X → S be a morphism of schemes and let L be an
invertible sheaf on X.

• We say that L is f -ample if f is quasi-compact and for every affine open
V ⊆ S, L|f−1(V ) is ample.

• We say that L is f -very ample if there exists a decomposition

X PnS

S

i

f

where i is an immersion such that L ' i∗OPnS(1). Here OPnS(1) := p∗OPnZ (1),
where p : PnS = PnZ × S → PnZ is the projection.

Lemma 1.11.18. Let f : X → Y be a quasi-compact morphism of schemes and let
L be an invertible sheaf on X.

(1) If L is ample, then L is f -ample.

(2) If L is f -very ample, then L is f -ample.

Theorem 1.11.19. Let f : X → S be a morphism locally of finite type and let L
be an ample invertible sheaf on X. Then there exists d > 1 such that L⊗d is f -very
ample.

Proof. Let R = ⊕
d>0 Γ(X,L⊗d). Since {Xs affine | s ∈ Rd, d > 1} forms a basis for

the topology of X and X is quasi-compact, there exists a finite cover X = ⋃n
i=1Xsi

with Xsi = Spec(Bi) such that f(Xsi) ⊆ Vi = Spec(Ai), where Vi is an affine open
of S. Since f is locally of finite type, Bi is a finitely generated Ai-algebra, say
Bi = Ai[bi,1, . . . , bi,ni ]. By Lemma 1.10.47, R(si) ' Γ(Xsi ,OX). Thus bij = fij/s

eij
i ,

with fij homogeneous of degree eij deg(si).
Take d such that deg(si) | d and d > deg(fij) for all i, j. Let

Σ = {sd/deg(si)
i , fijs

d/deg(si)−eij
i } 1≤i≤n

1≤j≤ni
⊆ Rd.
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Then Σ generates L⊗d since ⋃s∈ΣXs ⊇
⋃
iXsi = X. Let T = Z[xi, xij]i,j and

consider the ring homomorphism

T → R

xi 7→ s
d/deg(si)
i

xij 7→ fijs
d/deg(si)−eij
i .

This gives a morphism of schemes X → Proj(T ) = PNZ , N = #Σ− 1. This induces
a commutative diagram

X PNS PNZ

S Spec(Z).

r

f

We have r−1(D+(xi)× S) = Xsi and the restriction of r is the composition

Xsi
v−→ D+(xi)× Vi u−→ D+(xi)× S,

where u is an open immersion and v is a morphism of affine schemes. The ring
homomorphism corresponding to v

T(xi) ⊗Z Ai → Bi

xij/xi 7→ bij

is surjective, which implies that v is a closed immersion. Therefore, r is an immer-
sion. By construction, r∗O(1) ' L⊗d.

Remark 1.11.20. The conclusion of the theorem can be strengthened to the exis-
tence of an integer d0 such that for all d > d0, L⊗d is f -very ample (exercise).

Corollary 1.11.21. Let S be an affine scheme, f : X → S a morphism of finite
type, L an invertible sheaf on X. Then the following conditions are equivalent:

(a) L is ample.

(b) L is f -ample.

(c) there exists d > 1 such that L⊗d is f -very ample.

Definition 1.11.22. We say that a morphism of schemes f : X → S is quasi-
projective if there exists a factorization

X PnS

S

i

where i is a quasi-compact immersion.
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Warning 1.11.23. Our definitions of f -very ampleness and quasi-projectiveness
differ from the EGA. We will see later that being f -very ample in our sense is not
local on S.

Example 1.11.24. X = PnA, A 6= 0, n > 1. For d > 0, O(d) is very ample over
A. Indeed, if id : PnA ↪→ PNZ denotes the d-uple embedding, then i∗dO(1) ' O(d). For
d < 0, O(d) has no nonzero global sections. It follows that for d ≤ 0, OX(d) is not
ample, because OX(d)⊗n ⊗ O(−1) = O(dn − 1) is not globally generated for any
n ≥ 0. In summary,

OX(d) is

very ample over A d > 0
not ample d 6 0.

Example 1.11.25. Let

X = PmA ×Spec(A) PnA PmA

PnA

p1

p2

with A 6= 0, m,n > 1. Let La,b = O(a)�A O(b) = p∗1O(a)⊗OX p∗2O(b). We have

La,b is

very ample over A a, b > 0
not ample a 6 0 or b 6 0.

For a, b > 0, let ia : PmA → PMA and ib : PnA → PNA be the a-uple and b-uple
embeddings, respectively. Let i : PM × PN → Pr be the Segre embedding. Then

Pm × Pn PM × PN Pria×ib

j

i

and j∗O(1) ' (ia× ib)∗(O(1)�AO(1)) ' O(a)�AO(b). In fact, on Proj(R;A S) '
Proj(R)×A Proj(S), we have M̃ ;A N ' M̃ �A Ñ , where (M ;N)d = Md ⊗A Nd.

For a 6 0, we choose a section s of PnA → Spec(A) satisfying s∗O(1) = O and
consider the pullback

Pm Pm × Pn

Spec(A) Pn

p

t

p2

s

Then t∗(O(a)�O(b)) ' O(a), which is not ample on Pm. Thus O(a)�O(b) is not
ample. The case b ≤ 0 is similar.

Example 1.11.26. Let k be an algebraically closed field, C an integral normal
k-scheme of dimension 1 and proper over k. Assume C 6' P1

k. We will show later
that the properness of C implies dimk(Γ(C,OC)) <∞. Since Γ(C,OC) is an integral
finite-dimensional k-algebra, it is k itself. Let P ∈ C be a closed point, corresponding
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to the ideal sheaf IP . Then IP is an invertible sheaf. Let L(P ) := I∨P . We will show
later that L(P ) is ample. Let us show that L(P ) is not very ample over k.

Let i : P → C be the inclusion. We have a short exact sequence

0 IP OC i∗k 0

Tensoring the above sequence with L(P ), we get a short exact sequence

0 OC L(P ) i∗k 0

Taking global sections, we see that dimk(Γ(X,L(P ))) ≤ 2. Suppose there exists an
immersion j : C → P(V ) := Proj(Symk(V )), where V is a finite-dimensional k-vector
space, such that i∗O(1) ' L(P ). Then i corresponds to a k-linear map φ : V →
Γ(X,L(P )) whose image generates L(P ). Let W = im(φ). Then dimk(W ) ≤ 2 and
i factorizes through i : C → P(W ). Then i is a closed immersion. It follows that
C ' P(W ) ' P1. Contradiction.

1.12 Relative homogeneous spectrum
Let S be a scheme and let R be a quasi-coherent graded OS-algebra. A graded
OS-algebra R is and OS-algebra R equipped with a grading R = ⊕

d>0Rd such
that RdRe ⊆ Rd+e.

We define a scheme Proj(R) and a morphism π : Proj(R) → S by gluing. If
V ′ ⊆ V ⊆ S are affine open subsets, we have Cartesian squares

Proj(R(V ′)) Proj(R(V )) Proj(R)

V ′ V S

π

Remark 1.12.1. π is separated.

Example 1.12.2. S = Spec(A), R = R̃, where R is a graded A-algebra. Then
Proj(R̃) = Proj(R).

Example 1.12.3. Let A be a quasi-coherent OS-algebra. Then Proj(A[x]) =
Spec(A).

Example 1.12.4. Proj(OS[x0, . . . , xn]) ∼= PnS.

Example 1.12.5. Let E be a quasi-coherentOS-module. Then P(E) := Proj(Sym(E))
is called the projective bundle over S associated to E . (In the literature, E is
sometimes assumed to be locally free.)
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Date: 11.5
The following treatment of O-modules is based on a method of Berthelot [SGA6,

VI 2].

Quasi-coherent sheaves on Spec(A)
Let S be a scheme, A a quasi-coherent OS-algebra, and π : X = Spec(A) → S.
We have π∗(OX) = A, which gives by adjunction a morphism of sheaves of rings
(π\)] : π−1A → OX on X. The morphism (π\)] is flat. To see this, let V = Spec(B)
be an affine open of S and let A|V = Ã, where A is a B-algebra. Then, the stalk of
(π\)] at p ∈ Spec(A) is the localization (π−1A)p ' Aq → Ap ' OX,p. Here q = p∩B.

The morphism π, when regarded as a morphism of ringed spaces, can be decom-
posed into (X,OX) π\−→ (S,A)→ (S,OS). The morphism of ringed spaces π\ induces
a pair of functors Shv(X,OX) Shv(S,A)

π∗

π∗\

, where π∗\M = π−1M⊗π−1A OX .

Proposition 1.12.6. (1) π∗\ a π∗ and π∗\ is exact.

(2) The functors induce equivalences of categories

QCoh(X,OX) QCoh(S,A)
π∗

π∗\

quasi-inverse to each other. Moreover, for M ∈ QCoh(S,A) and V ⊆ S an
affine open, π∗\ (M)|π−1V = M̃(V ).

Proof. (1) This holds for any flat morphism of ringed spaces.
(2) That π∗ carries quasi-coherent OX-modules to quasi-coherent A-modules

follows from the lemma below. The proof of the other statements is similar, by
choosing a presentation locally.

Lemma 1.12.7. An A-moduleM is quasi-coherent as A-module ⇐⇒ M is quasi-
coherent as OS-module.

Proof. =⇒. Locally, M ' Coker(A⊕I → A⊕J). Since A is a quasi-coherent OX-
module, so isM.
⇐=. We may assume S = Spec(B). Then M = M̃ , where M is a B-module,

and A = Ã, where A is a B-algebra. The A-module structure on M induces an
A-module structure on M . Choose a presentation

A⊕I A⊕J M 0.

This induces an exact sequence

A⊕I A⊕J M 0.

ThusM is quasi-coherent as A-module.
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Quasi-coherent sheaves on Proj(R)
Let S be a scheme and let R be a quasi-coherent graded OS-algebra. Let π : X =
Proj(R)→ S be the canonical morphism.

Definition 1.12.8. A graded R-module is an R-module M equipped with a
Z-gradingM = ⊕

n∈ZMn such that RdMe ⊆Md+e.

Let QCohGr(S,R) denote the category of quasi-coherent graded R-modules.
Consider the functor

QCohGr(S,R)→ QCoh(X)
M 7→ M̃

where M̃ is constructed by gluing: for every open affine subset V ⊆ S, M̃ |π−1(V ) '
M̃(V ). Note thatM(V ) = ⊕

n∈ZMn(V ).

Definition 1.12.9. OX(n) = R̃(n).

We now proceed to extend the functorM 7→ M̃ to graded modules that are not
necessarily quasi-coherent. We have a morphism of Z-graded OS-algebras

R →
⊕
n∈Z

π∗OX(n)

given locally on an affine open V ⊆ S by ϕn : Rn(V ) → Γ(π−1(V ),O(n)). Recall
that π−1(V ) ' Proj(R(V )). By adjunction, we obtain a morphism of Z-graded
sheaf of rings

π−1R →
⊕
n∈Z
OX(n),

which is flat as in the case of Spec(A).
We consider the following categories and functors:

Shv(X,OX) GrShv(X,⊕n∈ZOX(n)) GrShv(S,R)
(•)l

(•)r

( )0

π⊕∗

π∗\

The functor ( )0 are obvious. The functor π⊕∗ is defined by π⊕∗ (⊕n∈ZFn) :=⊕
n∈Z π∗Fn. ForM∈ GrShv(S,R),

π∗\M := π−1M⊗π−1R (
⊕
n∈Z
OX(n)).

For F an OX-module,

F(•)l :=
⊕
n∈Z
F ⊗OX OX(n),

F(•)r :=
⊕
n∈Z
HomOX (OX(−n),F).
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We have adjunctions
(•)l a ( )0 a (•)r π∗\ a π∗

In particular, we have a canonical natural transformation ν : F(•)l → F(•)r. For
d ≥ 1, let Ud := ⋃

V,sD+(V, s) where V runs through affine opens of S and s runs
through elements of Rd(V ). Then νdn is an isomorphism on Udn for all n ∈ Z.

By composition, we obtain functors

Shv(X,OX) GrShv(S,R)
Γ∗

Υ∗

·̃

ForM∈ GrShv(S,R),
M̃ := (π∗\M)0.

This extends the definition of ∼ on QCohGr(S,R). For F ∈ Shv(X,OX),

Γ∗(F) :=
⊕
n∈Z

π∗(F ⊗OX OX(n)),

Υ∗(F) :=
⊕
n∈Z

π∗HomOX (OX(−n),F).

We denote by υ : Γ∗ → Υ∗ the natural transformation induced by ν : (•)l → (•)r.

Proposition 1.12.10. (1) ∼ a Υ∗ and ∼ is exact.

(2) Suppose that π is quasi-compact. For F ∈ QCoh(X,OX), we have Γ∗(F) ∈
QCoh(S,R) and

Γ∗(F)∼ Υ∗(F)∼ Fυ̃
∼ ∼

Proof. (1) is clear. For (2), the quasi-coherence is clear. The last statement follows
from the corresponding result for Proj (Proposition 1.10.12).

Corollary 1.12.11. The functor Υ∗ : QCoh(X)→ GrShv(S,R) is fully faithful.

Proposition 1.12.12. Let E be a locally free OS-module of rank ≥ 2 and let
π : P(E) → S. Then the morphism R → Γ∗(OP(E)) is an isomorphism, where
R = Sym(E). In other words, the morphism Sym(E) → ⊕

n∈Z π∗(OP(E)(n)) is an
isomorphism.

In particular, π∗OP(E)(n) = 0 for n < 0, π∗OP(E) ' OS, and π∗(OP(E)(1) ' E.

Proof. We reduce to the case where S is affine and E is a free module. In this case,
P(E) is a projective space and Proposition 1.10.48(2) applies.
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Functor represented by Proj(R)
Let R be a quasi-coherent graded OS-algebra and let U1 ⊆ Proj(R) be the open
subscheme as above.

Proposition 1.12.13. Let f : Y → S be a morphism of schemes. Then we have a
bijection

HomS(Y, U1) 1:1←→


(L, γ) |L invertible sheaf on Y

γ : f ∗R →
⊕
n>0
L⊗n homomorphism of graded OY -algebras

γ1 : f ∗R1 � L

 / '

g 7→ (g∗O(1), f ∗R
g∗(ϕ|U1 )
−−−−−→

⊕
n∈Z

g∗O(n))

where (L, γ) ' (L′, γ′) if there exists c : L ' L′ rendering

f ∗R ⊕
n≥0 L⊗n

⊕
n≥0 L′⊗n

γ

γ′
c

commutative. Here ϕ : π∗R →⊕
n≥0OX(n) denotes the canonical morphism.

Corollary 1.12.14. Let E be a quasi-coherent OS-module. Then we have a bijection

HomS(Y,P(E)) 1:1←→
{

(L, γ1) |L invertible sheaf on Y
γ1 : f ∗E � L homomorphism of OY -modules

}
/ '

Example 1.12.15. Let k be a field and let V be a k-vector space. Then we have
bijections

P(V )(k) 1:1←→ {quotients of V of dimension 1}
1:1←→ {hyperplanes of V }

The functor represented by the projective bundle P(E) should be compared to the
functor represented by the vector bundle V(E) = Spec(Sym(E)). For any morphism
f : Y → S, we have

HomS(Y,V(E)) ' HomOS(Sym(E), f∗OY ) ' HomOY (f ∗E ,OY ).

In particular, for Y = S, we have

HomS(S,V(E)) ' HomOY (E ,OY ).

If E is locally free, then HomS(S,V(E)) ' Γ(S, E∨). In words, sections of the
morphism π : V(E)→ S correspond to sections of the sheaf E∨.

The S-scheme P(E) classifies quotients of E locally free of rank 1. More generally,
we have the following.
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Theorem 1.12.16. Let E be a quasi-coherent OS-module and let r ≥ 0 be an integer.
Then there exists an S-scheme Grassr(E), called the Grassmannian, equipped with
a functorial bijection

Hom(Y,Grassr(E)) ' {quotients of f ∗E that are locally free of rank r}.

Moreover, the morphism

Grassr(E)→ P(
r∧
E)

(f ∗E � F) 7→ (f ∗(
r∧
E)�

r∧
F)

is a closed immersion, called the Plücker embedding.

The proof is a good exercise. See [GD, 9.7, 9.8].

Remark 1.12.17. Grass1(E) = P(E).

Functoriality
Let φ : R → R′ be a morphism of quasi-coherent graded OS-algebra. Let U(φ) :=⋃
D+(V, φ(s)), where the union is taken over all V ⊆ S affine open and s ∈ R+(V )

homogeneous. We have a commutative diagram

U(φ) Proj(R)

Proj(R′) S

r

where r is an affine morphism.

Base change
Let R be a quasi-coherent graded OS-algebra and let f : S ′ → S be a morphism of
schemes. Then we have a Cartesian square

Proj(f ∗R) Proj(R)

S ′ S

f ′

p

f

For any quasi-coherent graded R-moduleM, we have f ′∗M̃ = f̃ ∗M.
Let R and R′ be quasi-coherent graded OS-algebras. Then we have a Cartesian

square
Proj(R;OS R′) Proj(R)

Proj(R′) S

p

p′
p
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Here R;OS R′ :=
⊕

d≥0Rd⊗OS R′d. For a quasi-coherent graded R-moduleM and
a quasi-coherent graded R′-moduleM′, we have

(M;OSM′)∼ ' M̃�S M̃′ := p∗M̃ ⊗OX′′ p
′∗M̃′.

HereM;OSM′ := ⊕
d∈ZMd ⊗OSM′

d and X ′′ = Proj(R;OS R′).

Example 1.12.18. Let E and E ′ be quasi-coherent OS-modules. Then we have
Sym(E ⊗OS E ′)� Sym(E) ;OS Sym(E ′), which induces a closed immersion P(E)×S
P(E ′) ↪→ P(E ⊗OS E ′). This is called the Segre embedding and generalizes the
Segre embedding for the product of two projective spaces.

Example 1.12.19. Let R be a quasi-coherent graded OS-algebra. Let L be an
invertible sheaf on S and let R′ = Sym(L) = ⊕

d≥0 L⊗d. Then R′′ = R ;OS R′ =⊕
d>0Rd ⊗ L⊗d. We have a Cartesian square

Proj(R′′) Proj(R)

P(L) S

p

p π′′ π

π′

Note that π′ is an isomorphism, because it is so locally. Thus p : Proj(R′′) →
Proj(R) is an isomorphism. We have OP(L)(d) = π′∗L⊗d and OX′′(d) = p∗OX(d) ⊗
π′′∗L⊗d, where X = Proj(R), X ′′ = Proj(R′′).

Proposition 1.12.20. Let R be a quasi-coherent graded OS-algebra generated by
R1 over OS and let π : X = Proj(R)→ S. Suppose that R1 is a OS-module of finite
type. Then

(1) π is proper.

(2) If S is quasi-compact and L is an invertible sheaf on S such that R1 ⊗OS
L is generated by global sections, then OX(1) ⊗OX π∗L is π-very ample. In
particular, if S admits an ample invertible sheaf, then π is projective.

Note that the condition on generation byR1 implies that the morphismOS → R0
is an epimorphism of sheaves of sets.

Proof. (1) The problem being local on S, we may assume S affine. Then π is
projective and thus proper.

(2) Let L be an invertible sheaf on S such that R1 ⊗L is generated by globally
sections. In the case where S admits an ample invertible sheaf M, we can take
L to be M⊗d for some d. Since S is quasi-compact, there exists an epimorphism
On+1
S � R1 ⊗ L. The morphisms of OS-algebras

Sym(On+1
S )→ Sym(R1 ⊗ L)→ R; Sym(L)

are epimorphisms of OS-modules. The composition induces a closed embedding
i : Proj(R) ↪→ Proj(R′), where R′ = R ; Sym(L), that fits in the commutative
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diagram
Proj(R)

π
&&

Proj(R′)p

∼
oo

π′

��

i // PnS

zz
S.

We have i∗OPnS(1) ' OProj(R′)(1) ' p∗OProj(R)(1)⊗π′∗L. Let f = i◦p−1 : Proj(R)→
PnS. Then f ∗OPnS(1) ' OProj(R)(1)⊗ π∗L.

Remark 1.12.21. Let π : X → S be a morphism of schemes. If L is π-very ample,
then L is globally generated. Indeed, OPnS(1) is globally generated. Conversely, if π
is an isomorphism, S is quasi-compact and L is globally generated, then L is π-very
ample by the preceding proposition. Thus very ampleness is not local on S.

Remark 1.12.22. A morphism of schemes f : X → S is said to be EGA projec-
tive if there exists a decomposition

X P(E)

S

i

f

where i is a closed immersion and E is a quasi-coherent OS-module of finite type.

Blowing up
Definition 1.12.23. Let S be a scheme, I ⊆ OS a quasi-coherent ideal sheaf
which defines a closed subscheme Z. Consider the quasi-coherent graded OS-module
R = ⊕

n>0 In, where I0 = OS. Then

X = Proj(R) π−→ S

is called the blowing up of S along Z (or with center Z, or in I). The closed
subscheme π−1(Z) ⊆ X is called the exceptional divisor.

On an affine open Spec(B) = V ⊆ S, we have I|V = Ĩ where I ⊆ B an ideal,
and π−1(V ) = Proj(⊕n>0 I

n), where I0 = B. We have π−1(V ) = ⋃
a∈I D+(V, a(1)),

where for a ∈ I, a(1) denotes a viewed as an element of R1(V ) = I. We have
D+(V, a(1)) = Spec(B[ I

a
]), where B[ I

a
] := (⊕n≥0 I

n)(a(1)) is called the affine blow up
algebra. Elements of B[ I

a
] are of the form x/an, x ∈ In and x/an = y/am if and

only if there exists k such that ak(amx− any) = 0.
We will discuss divisors more thoroughly later in the course. Here we limit our

attention to effective Cartier divisors.

Definition 1.12.24. An effective Cartier divisor on a scheme X is a closed
subscheme D ⊆ X whose sheaf of ideals ID is invertible.

Lemma 1.12.25. Let D ⊆ X be a closed subscheme. Then D is an effective
Cartier divisor if and only if every x ∈ X admits an affine open neighborhood
x ∈ U = Spec(A) such that U ∩ D = Spec(A/(f)), where f ∈ A is a non zero-
divisor.
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Proof. An ideal I of A is free of rank 1 if and only if I is generated by a non
zero-divisor of A.

Lemma 1.12.26. Let D ⊆ X be an effective Cartier divisor. Then j : X\D ↪→ X
is schematically dense. Namely, j[ : OX → j∗(OX\D) is a monomorphism.

Proof. Locally, j corresponds to the ring homomorphism A → Af , where f ∈ A is
a non zero-divisor. The ring homomorphism is clearly injective.

Remark 1.12.27. Let D1 and D2 be two effective Cartier divisors on X with ideal
sheaves ID1 , ID2 , respectively. Then the natural morphism ID1 ⊗OX ID2 → ID1ID2

is an isomorphism. (Indeed, it is by definition an epimorphism of sheaves of OX-
modules and the morphism ID1 ⊗ ID2 → OX is a monomorphism by flatness.) We
define the sum of the two divisors D1 + D2 as the subscheme defined by ID1ID2 .
Then CaDiv+(X) = ({effective Cartier divisors on S},+) is a commutative monoid.

Proposition 1.12.28. Let Z ⊆ S be a closed subscheme and let X be the blowing
up of S along Z. Then

(1) π|π−1(S\Z) : π−1(S\Z)→ S\Z is an isomorphism.

(2) E = π−1(Z) is an effective Cartier divisor with IE = OX(1).

Proof. (1) The construction being compatible with restriction to open subschemes,
we may assume Z = ∅. Then IZ = OX and X = Proj(⊕n>0OS) = P0

S ' S.
(2) Let R = ⊕

n>0 In. We have

IE = ĨR = (
⊕
n>0
In+1)∼,

O(1) = R̃(1) = (
⊕
n>−1

In+1)∼.

They are isomorphic as sheaves.

Proposition 1.12.29 (Universal property of blowing up). Let Z ⊆ S be a closed
subschema and let X be the blowing up of S along Z. Let f : Y → S be a morphism
of schemes such that f−1(Z) is an effective Cartier divisor on Y . Then there exists
a unique g : Y → X such that f = πg.

Y X

Z S

g

f
π

Proof. Existence. Let I be the ideal sheaf of Z and let D = f−1(Z). Then
ID = f−1(I)OY . We have epimorphisms γn : f ∗In � InD = I⊗nD , which induces
a morphism of graded OY -algebras γ : f ∗(⊕n>0 In)� ⊕

n>0 I⊗nD . This corresponds
to an S-morphism g : Y → X.
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Uniqueness. Suppose there are two S-morphisms g, g′ : Y ⇒ X. Let E be their
equalizer:

E Y X

S

g

g′

f
π

E Y

X X ×S X

p
(g,g′)

∆S

Since π is separated, E is a closed subscheme of Y . Moreover, since π is an isomor-
phism on π−1(S\Z), we have E ⊇ f−1(S\Z) as subschemes. Since Y \f−1(Z) ↪→ Y
is schematically dense in Y by Lemma 1.12.26, so is E. Therefore, E = Y and
g = g′.

Corollary 1.12.30. Let Z ⊆ S be a closed subscheme, f : S ′ → S a morphism of
schemes, π : X → S the blowing up of S along Z, and π′ : X ′ → S ′ the blowing up
of S ′ along f−1(Z). Then there exists a unique g : X ′ → X such that πg = fπ′:

X ′ X

S ′ S

g

π′ π

f

Moreover,

(a) If f is a closed immersion, so is g.

(b) If f is flat, then the square is Cartesian.

Proof. The existence and uniqueness of g is follows from the universal property of
blowing up.

For (a), we may assume S ′ = Spec(OS/J ), where J ⊆ OS is an ideal sheaf. Let
I ⊆ OS be the ideal sheaf of Z. Then the ideal sheaf of f−1(Z) is IJ /J . Then
the canonical morphism ⊕

n>0 In →
⊕
n>0 InJ /J is an epimorphism as sheaves of

OS-modules and the corresponding morphism X ′ → X is a closed immersion.
For (b), we need to show that the morphism X ′ → X ×S S ′ is an isomorphism.

Since f is flat, we have f ∗(In) ' f−1(In)OS′ . ThusX ′ =' Proj(⊕n>0 f
−1(In)OS′) '

Proj(⊕n>0 f
∗(In)) ' X ×S S ′.

Definition 1.12.31. In case (a), X ′ is called the strict transform of S ′.

Remark 1.12.32. The exceptional divisor of the blowing up of a scheme S along a
closed subscheme Z defined by the ideal sheaf I is E = Proj(R/IR) ' Proj(⊕n>0 In/In+1).
This is a closed subscheme of P(I/I2) and is sometimes called the projective nor-
mal cone of Z ⊆ S. Here R = ⊕

n≥0 In.

Example 1.12.33. Let S = An
A = Spec(B), where B = A[x1, . . . , xn]. Let Z be the

closed subscheme defined by I = (x1, . . . , xn). Let X = BlZ(S) = Proj(R), where
R = ⊕

n>0 I
n. We have the surjective homomorphism

B[y1, . . . , yn]→ R

yi 7→ x
(1)
i ,
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which gives a closed immersion X ↪→ Pn−1
AnA

. We have R ' B[y1, . . . , yn]/(xiyj−xjyi).
The exceptional divisor E ' Pn−1

A .
For S = A2, the strict transforms of lines ` through the origin are disjoint. The

intersection of the strict transform of ` with the exceptional divisor is given by the
slope of `.

Let B′ = A[x, y]/(y2 − x2(x + 1)). The blowing up of B′ in (x, y) is B[ I
x
] =

A[x, z]/(z2 − (x + 1)), where z = y/x. By contrast, the blowing up of B′ in (x) is
B′, because x ∈ B′ is a non zero-divisor. We see that blowing up depends on the
closed subscheme and not only on the closed subset.



Chapter 2

Cohomology of Quasi-coherent
Sheaves

Date: 11.17

2.1 Homological algebra
We will give a brief introduction to derived categories and derived functors and refer
to [GM] and [Z, Chapter 2] for more complete treatments.

Let A and B be abelian categories and let F : A → B be a left exact functor.
For any short exact sequence

0→ X → Y → Z → 0

in A, we have, by the left exactness of F , an exact sequence

0→ FX → FY → FZ

in B. Under suitable conditions, we can define additive functors RnF : A → B,
i ≥ 1, called the right derived functors of F , such that the exact sequence in B
extends to a long exact sequence

0→ FX → FY → FZ → R1FX → R1FY → R1FZ → · · ·
→ RnFX → RnFY → RnFZ → · · · .

Roughly speaking, the right derived functors measure the lack of right exactness
of F . The functors can be assembled into one single functor RF : D+(A)→ D+(B)
between derived categories.

Recall that an object I of A is said to be injective if HomA(−, I) : Aop → Ab
is exact. Assume that A admits enough injectives (namely, every object of A can
be embedded into an injective object of A). Then every object X of A admits an
injective resolution of X, namely an exact sequence

0→ X → I0 d0
−→ I1 d1

−→ · · ·

with I i injective. Then RFX is computed by the complex

FI : · · · → 0→ FI0 Fd0
−−→→ FI1 Fd1

−−→ · · ·

and RiFX is computed by the i-th cohomology of RFX: ker(Fdi)/im(Fdi−1).

101
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Definition 2.1.1. Let A be an additive category. A (cochain) complex in A
consists of X = (Xn, dn)n∈Z, where Xn is an object of A, dnX : Xn → Xn+1 is a
morphism of A (called differential) such that for any n, dn+1

X dnX = 0. The index
n in Xn is called the degree. A (cochain) morphism of complexes X → Y
is a collection of morphisms (fn)n∈Z of morphisms fn : Xn → Y n in A such that
dnY f

n = fn+1dnX . We let C(A) denote the category of complexes in A.

Note that C(A) is an additive category. We have (X ⊕ Y )n = Xn ⊕ Y n and the
zero complex 0 with 0n = 0 is a zero object of C(A).

Let A be an abelian category. Then C(A) is an abelian category as well, with
Ker(f)n = Ker(fn) and coker(f)n = coker(fn).

Definition 2.1.2. Let X be a complex in A. We define

ZnX = Ker(dnX : Xn → Xn+1),
BnX = im(dn−1

X : Xn−1 → Xn),
HnX = coker(BnX ↪→ ZnX),

and call them the cocycle, coboundary, cohomology objects, of degree n.

The letter Z stands for German Zyklus, which means cycle. We get additive
functors

Zn, Bn, Hn : C(A)→ A,

with Zn left exact.

Definition 2.1.3. A complex X is said to be acyclic if HnX = 0 for all n. A
morphism of complexes X → Y is called a quasi-isomorphism if Hnf : HnX →
HnY is an isomorphism for all n.

We will soon define the derived category D(A) of A. Roughly speaking, D(A)
is C(A) modulo quasi-isomorphisms. Let F : A → B be an additive functor. Then
F induces C(F ) : C(A) → C(B) (also denoted by F ). If F is exact, then C(F )
preserves quasi-isomorphisms and induces a functor D(A)→ D(B). For the general
case, it is convenient to introduce an intermediary between C(A) and D(A).

Let A be an additive category. Let X and Y be complexes in A. We let

Ht(X, Y ) =
∏
n

HomA(Xn, Y n−1)

denote the abelian group of families of morphisms h = (hn : Xn → Y n−1)n∈Z. Given
h, consider fn = dn−1

Y hn + hn+1dnX : Xn → Y n. We have

dnY f
n = dn−1

Y dnY h
n + dnY h

n+1dnX = dnY h
n+1dnX = dnY h

n+1dnX + hn+2dn+1
X dnX = fn+1dnX .

Thus we get a morphism of complexes f : X → Y . We get a homomorphism of
abelian groups

(2.1.1) Ht(X, Y )→ HomC(A)(X, Y ).
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Definition 2.1.4. We say that a morphism of complexes f : X → Y is null-
homotopic if there exists h ∈ Ht(X, Y ) such that fn = dn−1

Y hn + hn+1dnX . We
say that two morphisms of complexes f, g : X → Y are homotopic if f − g is
null-homotopic.

Lemma 2.1.5. Let f : X → Y , g : Y → Z be morphisms of complexes in A. If f
or g is null-homotopic, then gf is null-homotopic.

Proof. If f = dh + hd for h ∈ Ht(X, Y ), then gf = gdh + ghd = d(gh) + (gh)d,
where gh ∈ Ht(X,Z). The other case is similar.

Definition 2.1.6. We define the homotopy category of complexes in A, K(A),
as follows. The objects of K(A) are objects of C(A), that is, complexes in A. For
complexes X and Y , we put

HomK(A)(X, Y ) = coker(Ht(X, Y ) (2.1.1)−−−→ HomC(A)(X, Y )).

In other words, morphisms in K(A) are homotopy classes of morphisms of com-
plexes.

Remark 2.1.7. The categoryK(A) is an additive category and the functor C(A)→
K(A) carrying a complex to itself and a morphism of complexes to its homotopy
class is an additive functor.

Definition 2.1.8. Let A be an abelian category. We call D(A) = K(A)[S−1] the
derived category of A, where S is the collection of quasi-isomorphisms in K(A).

By definition, objects ofD(A) are complexes inA and morphisms are equivalence
classes of zigzags of morphisms of K(A)

→ · · · →← · · · ←→ · · · → · · · ← · · · ←,

where each ← represents an element of S. One advantage of defining D(A) as a
localization ofK(A) instead of C(A) is that left and right calculus of fractions holds:

HomD(A)(X, Y ) ' colim
(Y ′,s)∈SY/

HomC(X, Y ′) ' colim
(X′,s)∈Sop

/X

HomC(X ′, Y ).

In general, D(A) does not have small Hom sets, even if A has small Hom sets. See
however Remark 2.1.35 below.

The categories K(A) and D(A) admit an additional structure, making them
triangulated categories. To introduce this structure, we need a couple of con-
structions.

Let A be an additive category.

Definition 2.1.9. Let X be a complex and let k be an integer. We define a complex
X[k] by X[k]n = Xn+k and dnX[k] = (−1)kdn+k

X . For a morphism of complexes
f : X → Y , we define f [k] : X[k]→ Y [k] by f [k]n = fn+k. The functor [k] : C(A)→
C(A) is called the translation (or shift) functor of degree k.

The sign in the definition of X[k] will be explained after the following definition.
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Definition 2.1.10. Let f : X → Y be a morphism of complexes in A. We define
the mapping cone of f to be the complex Cone(f)n = X[1]n ⊕ Y n = Xn+1 ⊕ Y n

with differential
dnCone(f) =

(
dnX[1] 0
f [1]n dnY

)
=
(
−dn+1

X 0
fn+1 dnY

)
.

Intuitively, for
(
x
y

)
∈ Xn+1 ⊕ Y n, dnCone(f)

(
x
y

)
=
(
−dn+1

X x
fn+1x+ dnY y

)
.

Note that the sign in the definition of the differential of X[1] makes Cone(f) a
complex:

dnCone(f)d
n−1
Cone(f) =

(
−dn+1

X 0
fn+1 dnY

)(
−dnX 0
fn dn−1

Y

)
=
(

dn+1
X dnX 0

dnY f
n − fn+1dnX dnY d

n−1
Y

)
= 0.

Example 2.1.11. If X and Y are concentrated in degree 0, then Cone(f) can be
identified with the complex X0 f0

−→ Y 0 concentrated on degrees −1 and 0.

Triangulated categories
Given a category D equipped with a functor X 7→ X[1], diagrams of the form
X → Y → Z → X[1] are called triangles. It is sometimes useful to visualize such
diagrams as

Z
+1

~~
X // Y

__

A morphism of triangles is a commutative diagram

X //

f

��

Y //

g

��

Z //

h
��

X[1]
f [1]
��

X ′ // Y ′ // Z ′ // X ′[1].

Such a morphism is an isomorphism if and only if f , g, h are isomorphisms.

Definition 2.1.12 (Verdier). A triangulated category consists of the following
data:

(1) An additive category D.

(2) A translation functor D → D which is an equivalence of categories. We
denote the functor by X 7→ X[1].

(3) A collection of distinguished triangles X → Y → Z → X[1].

These data are subject to the following axioms:
(TR1)

• The collection of distinguished triangles is stable under isomorphism.
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• Every morphism f : X → Y in D can be extended to a distinguished triangle
X

f−→ Y → Z → X[1].

• For every object X of D, X idX−−→ X → 0→ X[1] is a distinguished triangle.

(TR2) A diagram X
f−→ Y

g−→ Z
h−→ X[1] is a distinguished triangle if and only

if the (clockwise) rotated diagram Y
g−→ Z

h−→ X[1] −f [1]−−−→ Y [1] is a distinguished
triangle.

(TR4) Given three distinguished triangles

X
f−→ Y

f ′−→ U
f ′′−→ X[1],

Y
g−→ Z

g′−→ W
g′′−→ Y [1],

X
h−→ Z

h′−→ V
h′′−→ X[1],

with h = gf , there exists a distinguished triangle U i−→ V
i′−→ W

i′′−→ U [1] such that
the following diagram commutes

X
h //

f

��

Z
g′ //

h′

��

W
i′′ //

g′′

""

U [1]

Y
f ′

��

g

@@

V
h′′

  

i′
>>

Y [1]

f ′[1]
<<

U
f ′′ //

i

@@

X[1]

f [1]
<<

This notion was introduced by Verdier (see his 1967 thesis of doctorat d’État
[V]). Some authors call the translation functor the suspension functor and denote it
by Σ. (TR4) is sometimes known as the octahedron axiom, as the four distinguished
triangles and the four commutative triangles can be visualized as the faces of an
octahedron.
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Remark 2.1.13. The original definition included an axiom (TR3): Given a com-
mutative diagram

X
i //

f

��

Y
j //

g

��

Z
k //

h
��

X[1]
f [1]
��

X ′
i′ // Y ′

j′ // Z ′
k′ // X ′[1]

in which both rows are distinguished triangles, there exists a dotted arrow rendering
the entire diagram commutative. Note that we do not require the dotted arrow to
be unique.

May [M3, Section 2] observed that this axiom can be deduced from (TR1) and
(TR4). Indeed, by (TR1), we may extend gi = i′f to a distinguished triangle

X
gi−→ Y ′

j′′−→ Z ′′
k′′−→ X[1].

Applying (TR1) to g and (TR4) to the distinguished triangles with bases g, i, and gi,
we get a morphism Z

h′−→ Z ′′ such that h′j = j′′g and k = k′′h′. Similarly, applying
(TR1) to f and (TR4) to the distinguished triangles with bases f , i′, and gi, we get
Z ′′

h′′−→ Z such that j′ = h′′j′′ and f [1]k′′ = k′h′′. It suffices to take h = h′′h′.

Corollary 2.1.14. Let X f−→ Y
g−→ Z → X[1] be a distinguished triangle. Then

gf = 0.

Proof. By (TR1), X idX−−→ X → 0 → X[1] is a distinguished triangle. By (TR3),
there exists a morphism 0→ Z such that the diagram

(2.1.2) X
idX //

idX
��

X //

f

��

0 //

��

X[1]
idX[1]
��

X
f // Y

g // Z // X[1]

commutes. The commutativity of the square in the middle implies gf = 0.

Proposition 2.1.15. Let D be a triangulated category. Let W be an object of D
and let X f−→ Y

g−→ Z → X[1] be a distinguished triangle. Then the sequences

HomD(W,X)→ HomD(W,Y )→ HomD(W,Z),
HomD(Z,W )→ HomD(Y,W )→ HomD(X,W )

are exact.

If D has small Hom sets, then the proposition means that the functors

HomD(W,−) : D → Ab, HomD(−,W ) : Dop → Ab

are cohomological functors.
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Proof. Let us show that the first sequence is exact, the other case being similar.
Since gf = 0, the composition is zero. Thus it suffices to show that for j : W → Y
satisfying gj = 0, there exists i : W → X such that j = fi. Applying (TR1), (TR2),
(TR3), we get the following commutative diagram

W //

j

��

0 //

��

W [1]
i[1]
��

−idW [1]//W [1]
j[1]
��

Y
g // Z // X[1] −f [1] // Y [1].

Corollary 2.1.16. Let

X //

f

��

Y //

g

��

Z //

h
��

X[1]
f [1]
��

X ′ // Y ′ // Z ′ // X ′[1]

be a morphism of distinguished triangles. If f and g are isomorphisms, so is the
third one.

Thus triangles extending a morphism X → Y are unique up to non-unique
isomorphisms.

Proof. Let W be any object of the triangulated category. Then we have a commu-
tative diagram

Hom(W,X) //

Hom(W,f)
��

Hom(W,Y ) //

Hom(W,g)
��

Hom(W,Z) //

Hom(W,h)
��

Hom(W,X[1]) //

Hom(W,f [1])
��

Hom(W,Y [1])
Hom(W,g[1])
��

Hom(W,X ′) // Hom(W,Y ′) // Hom(W,Z ′) // Hom(W,X ′[1]) // Hom(W,Y ′[1])

with exact rows. By the five lemma, Hom(W,h) is an isomorphism. Therefore h is
an isomorphism by Yoneda’s lemma.

Corollary 2.1.17. In a distinguished triangle X
f−→ Y → Z → X[1], f is an

isomorphism if and only if Z is a zero object.

Proof. Applying Corollary 2.1.16 to the diagram (2.1.2), we see that f is an isomor-
phism if and only if h is an isomorphism.

Definition 2.1.18. Let D and D′ be triangulated categories. A triangulated
functor consists of the following data:

(1) An additive functor F : D → D′.

(2) A natural isomorphism φX : F (X[1]) ' (FX)[1] of functors D → D′.
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These data are subject to the condition that F carries distinguished triangles in D
to distinguished triangles in D′. That is, for any distinguished triangle

X
f−→ Y

g−→ Z
h−→ X[1]

in D, FX Ff−→ FY
Fg−→ FZ

φZ◦Fh−−−−→ (FX)[1] is a distinguished triangle in D′.
Let (F, φ), (F ′, φ′) : D → D′ be triangulated functors. A natural transforma-

tion of triangulated functors is a natural transformation α : F → F ′ such that
the following diagram commutes for all X:

F (X[1]) φX //

α(X[1])
��

(FX)[1]
α(X)[1]
��

F ′(X[1])
φ′X // (F ′X)[1].

Derived categories
Let A be an additive category. We equip K(A) with the translation functor X 7→
X[1] in Definition 2.1.9. We say that a triangle in K(A) is distinguished if it
is isomorphic to a standard triangle, namely a triangle of the form X

f−→ Y
i−→

Cone(f) p−→ X[1], where i and p are the canonical morphisms. If A is abelian, we
equip D(A) with the translation functor X 7→ X[1] in Definition 2.1.9 and we say
that a triangle in D(A) is distinguished if it is isomorphic to a standard triangle.

Theorem 2.1.19. Let A be an additive category.

(1) K(A) is a triangulated category.

(2) If A is abelian, then D(A) is a triangulated category and the functor Q : K(A)→
D(A) (equipped with the trivial natural isomorphism Q(X[1]) = (QX)[1]) is a
triangulated functor.

For a proof, see for example [Z, Chapter 2].
We define naive truncation functors

σ≤n : C(A)→ C(A), σ≥n : C(A)→ C(A)

by (σ≤nX)m = Xm for m ≤ n, (σ≤nX)m = 0 for m > n and (σ≥nX)m = Xm for
m ≥ n, (σ≥nX)m = 0 for m < n.

Let A be an abelian category. The morphisms HnX → Hnσ≤nX, Hnσ≥nX →
HnX are not isomorphisms in general. Moreover, if f : X → Y is a quasi-isomorphism,
σ≤nf : σ≤nX → σ≤nY and σ≥nf : σ≥nX → σ≥nY are not quasi-isomorphisms in
general. To remedy this problem, we introduce the following truncation functors.

Definition 2.1.20. Let X be a complex. We define

τ≤nX = (· · · → Xn−1 dn−1
X−−−→ ZnX → 0→ · · · ),

τ≥nX = (· · · → 0→ Xn/BnX
dnX−→ Xn+1 → · · · ).

Here Xn/BnX denotes coker(dn−1
X ).
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We obtain functors
τ≤n, τ≥n : C(A)→ C(A),

with τ≤n left exact and τ≥n right exact.
Remark 2.1.21. The morphism τ≤nX → X induces an isomorphism Hmτ≤nX →
HmX for m ≤ n and Hmτ≤nX = 0 for m > n. The morphism X → τ≥nX induces
an isomorphism HmX → Hmτ≥nX for m ≥ n and Hmτ≥nX = 0 for m < n. The
functors τ≤n and τ≥n preserve quasi-isomorphisms.
Remark 2.1.22. For a ≤ b, we have τ≤aτ≥bX ' τ≥bτ≤aX and we write τ [a,b]X for
either of them. We have τ [n,n]X ' (HnX)[−n].

The functor Hn is neither left exact nor right exact in general. However, it has
the following important property.

Proposition 2.1.23. Let 0 → L
f−→ M

g−→ N → 0 be a short exact sequence of
complexes. Then we have a long exact sequence

· · · → HnL
Hnf−−→ HnM

Hng−−→ HnN
δ−→ Hn+1L

Hn+1f−−−−→ Hn+1M
Hn+1g−−−−→ Hn+1N → · · · ,

which is functorial with respect to the short exact sequence.
The morphism δ is called the connecting morphism.

Proof. The sequence τ [n,n+1]L → τ [n,n+1]M → τ [n,n+1]N provides a commutative
diagram

Ln/BnL //

��

Mn/BnM //

��

Nn/BnN //

��

0

0 // Zn+1L // Zn+1M // Zn+1N

with exact rows. Applying the snake lemma, we obtain the desired exact sequence.

Corollary 2.1.24. For every distinguished triangle X f−→ Y
g−→ Z

h−→ X[1] in D(A),
we have a long exact sequence HnX

Hnf−−→ HnY
Hng−−→ HnZ

Hnh−−→ Hn+1X.

Proof. We may assume that the triangle is standard: X f−→ Y
i−→ Cone(f) p−→ X[1].

The short exact sequence of complexes

0→ Y
i−→ Cone(f) p−→ X[1]→ 0.

induces a long exact sequence

· · · → Hn−1(X[1]) δ−→ HnY
Hni−−→ Hn(Cone(f)) Hnp−−→ Hn(X[1])→ · · · .

It suffices to check that, via the isomorphism Hn−1(X[1]) ' HnX, the connecting
morphism can be identified with Hnf . The connecting morphism is constructed
using the snake lemma applied to the commutative diagram

Y n−1/Bn−1Y //

��

Cn−1/Bn−1C //

��

Xn/BnX //

��

0

0 // ZnY // ZnC // Zn+1X,
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where C = Cone(f). We reduce by the Freyd-Mitchell Theorem to the case of

modules. Let x ∈ ZnX. Then
(
x
0

)
+ Bn−1C is a lifting of x + BnX. We conclude

by dn−1
C

(
x
0

)
=
(

0
fn(x)

)
.

Corollary 2.1.25. Consider a short exact sequence of complexes 0 → X
f−→ Y

g−→
Z → 0. Then the map φ = (0, g) : Cone(f)→ Z is a quasi-isomorphism.

In this case, we get a distinguished triangle X f−→ Y
g−→ Z

pφ−1
−−−→ X[1] in D(A).

Proof. We have a commutative diagram of long exact sequences

HnX
Hnf // HnY

Hni // Hn(Cone(f))H
np //

Hnφ

��
(∗)

Hn+1X
Hn+1f // Hn+1Y

HnX
Hnf // HnY

Hng // HnZ
−δ // Hn+1X

Hn+1f// Hn+1Y.

Indeed, for the commutativity of the square (∗) we reduce by the Freyd-Mitchell

Theorem to the case of modules, and it suffices to note that for
(
x
y

)
∈ ZnCone(f),

we have fn(x) + dny = 0. By the five lemma, Hnφ is an isomorphism.
Definition 2.1.26. Let A be an additive category. We say that a complex X is
bounded below (resp. bounded above) if Xn = 0 for n� 0 (resp. n� 0). We
say that X is bounded if it is bounded below and bounded above. For an interval
I ⊆ Z, we say that X is concentrated in degrees in I if Xn = 0 for n 6∈ I. We let
C+(A), C−(A), Cb(A), CI(A) denote the full subcategories of C(A) consisting of
complexes bounded below, bounded above, bounded, concentrated in I, respectively.
We let K+(A), K−(A), Kb(A), KI(A) denote their respective images in K(A).

For A abelian, we let D+(A) (resp. D−(A), resp. Db(A), resp. DI(A)) denote
the full subcategories of D(A) consisting of complexes satisfying Hn = 0 for all
n� 0 (resp. n� 0, resp. |n| � 0, resp. n /∈ I).
Proposition 2.1.27. The functor H0 : D[0,0](A) → A is an equivalence of cate-
gories.
Proof. Consider the functor F : A → D[0,0](A) carrying A to a complex X con-
centrated in degree 0 with X0 = A. We have H0FA ' A. For any complex X
concentrated in degree 0, X ' τ [0,0]X ' FH0X.

Derived functors
Let A and B be abelian categories and let F : A → B be an additive functor. We
have remarked that F extends to an additive functor C(F ) : C(A) → C(B), which
induces a triangulated K(F ) : K(A)→ K(B). We have a commutative diagram

C(A) //

C(F )
��

K(A)
K(F )
��

C(B) // K(B).
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Definition 2.1.28. Let QA : K+(A) → D+(A) and QB : K+(B) → D+(B) be the
localization functors. A right derived functor of F is a pair (RF, ε), where
RF : D+(A)→ D+(B) is a triangulated functor, and ε : QB(K+F )→ (RF )QA is a
natural transformation of triangulated functors, such that for every such pair (G, η),
there exists a unique natural transformation of triangulated functors α : RF → G
such that η = (αQA)ε.

If RF exists, we put RnFK = HnRFK ∈ B for K ∈ D+(A) (sometimes called
the hypercohomology of K with respect to RF ). The functor RnF : A → B is
called the n-th right derived functor of F .

In the sequel, we will often abbreviate C(F ) and K(F ) to F . For F exact, we
also let F denote the functor D(A)→ D(B) given by F .

To show the existence of the right derived functor, we need resolutions.

Theorem 2.1.29. Let J ⊆ A be a full additive subcategory. Assume that for every
object X of A, there exists a monomorphism X → Y with Y in J .

(1) For every K ∈ C≥n(A), there exist L ∈ C≥n(J ) and a quasi-isomorphism
f : K → L such that τ≥mf is a monomorphism of complexes for each m.

(2) The functor K+(J ) → D+(A) induces an equivalence of triangulated cate-
gories

K+(J )[S−1]→ D+(A),
where S is the collection of quasi-isomorphisms in K+(J ).

Part (2) follows from part (1) and a general result on localization of triangulated
categories (omitted).

Proof of (1). It suffices to construct Lm = (· · · → Lm → 0→ · · · ) ∈ C [n,m](J ) and
a morphism fm : K → Lm of complexes for each m such that f im and Ki/BiK →
Li/BiL are monomorphisms for each i ≤ m, H ifm is an isomorphism for each i < m,
Lm = σ≤mLm+1 and fm equals the composite K fm+1−−−→ Lm+1 → Lm. We proceed
by induction on m. For m < n, we take Lm = 0. Given Lm, we construct Lm+1 as
follows. Form the pushout square

Km/BmK //

��

Lm/BmL

��
Km+1 // X.

By induction hypothesis, the upper horizontal arrow is a monomorphism. It follows
that we have a commutative diagram

0 // Km/BmK //

��

Lm/BmL

��

// Z // 0

0 // Km+1 // X // Z // 0

with exact rows. By assumption, there exists a monomorphism X → Lm+1 with
Lm+1 in J . We define fm+1 : Km+1 → Lm+1 and dmL : Lm → Lm+1 by the obvious
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compositions. Then fm+1 is a morphism of complexes. It is clear that fm+1 is
a monomorphism. Applying the snake lemma to the above diagram, we see that
Km+1/Bm+1K → Lm+1/Bm+1L is a monomorphism and Hmf is an isomorphism.

Definition 2.1.30. Let F : A → B is an additive functor between abelian categories.
A full additive subcategory J ⊆ A is said to be F -injective if it satisfies the
following conditions:

(a) For every X ∈ A, there exists a monomorphism X → Y with Y ∈ J .

(b) For every L ∈ K+(J ) acyclic, FL is acyclic.

The terminology is not completely standard. Our definition here follows [KS,
Definitions 10.3.2, 13.3.4]. Some authors replace (b) by the stronger condition (b′)
below.

Proposition 2.1.31. Condition (b′) below implies (b).

(b′) Every monomorphism X ′ → X in A with X ′, X ∈ J can be completed into a
short exact sequence

0→ X ′ → X → X ′′ → 0

in A with X ′′ ∈ J such that the sequence

0→ FX ′ → FX → FX ′′ → 0

is exact.

Proof. Let L ∈ K+(J ) be an acyclic complex. Then L breaks into short exact
sequences

0→ ZnL→ Ln → Zn+1L→ 0.

By (b), one shows by induction on n that ZnL is isomorphic to an object in J and
we have short exact sequences

0→ F (ZnL)→ F (Ln)→ F (Zn+1L)→ 0,

so that K+(F )(L) is acyclic.

Corollary 2.1.32. Let F : A → B be an additive functor between abelian categories
and let J ⊆ A be an F -injective subcategory.

(1) The right derived functor (RF : D+(A) → D+(B), ε) of F exists and for L ∈
K+(J ), εL : FL ∼−→ RFL is an isomorphism. Moreover, RF carries D≥n(A)
into D≥n(B).

(2) If F is left exact, then the morphism FX → R0FX is an isomorphism for all
X ∈ A.

Part (1) follows from the theorem.
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Proof of (2). Choose a quasi-isomorphism X → L with L ∈ K≥0(J ), corresponding
to an exact sequence

0→ X → L0 → L1 → · · · .
Applying F , we obtain an exact sequence

0→ FX → FL0 → FL1.

Thus R0FX ' H0FL ' FX.

Corollary 2.1.33. Let A be an abelian category with enough injectives. We let I
denote the full subcategory of A consisting of injective objects.

(1) For every K ∈ C≥n(A), there exist L ∈ C≥n(J ) and a quasi-isomorphism
f : K → L.

(2) The triangulated functor K+(I) → D+(A) is an equivalence of triangulated
categories.

(3) Let F : A → B be an additive functor between abelian categories. Then I is
F -injective. In particular, the right derived functor (RF : D+(A)→ D+(B), ε)
of F exists and for L ∈ K+(I), εL : FL ∼−→ RFL is an isomorphism.

Proof. This follows from the theorem and Corollary 2.1.32(1). For (2), we need the
following lemma. For (3), note that I satisfies conditions (a) and (b′). Indeed, any
short exact sequence of injective objects splits.

Lemma 2.1.34. Let A be an abelian category. We let I denote the full subcate-
gory of A consisting of injective objects. Then any acyclic complex in K+(I) is
isomorphic to zero in K+(I).

Proof. Let L ∈ K+(I) be an acyclic complex. Then L breaks into short exact
sequences

0→ ZnL→ Ln → Zn+1L→ 0.
One shows by induction on i that ZnL is injective and the sequence splits. Thus Ln
can be identified with Zn⊕Zn+1. Then hn : Zn⊕Zn+1 → Zn → Zn−1⊕Zn satisfies
hd+ dh = idX .

Remark 2.1.35. By the preceding corollary, if A has small Hom sets and admits
enough injectives, then D+(A) has small Hom sets.

Proposition 2.1.36. Let F : A → B, G : B → C be additive functors between
abelian categories. Let J ⊆ B be a G-injective subcategory. Assume that A admits
enough injectives and FI ∈ J for every injective object I of A. Then the natural
transformation ηL : R(GF ) → (RG)(RF ) given by the universal property of right
derived functors is a natural isomorphism.

This applies in particular to the case where B admits enough injectives and F
preserves injectives.

Proof. Let I denote the full subcategory of A consisting of injective objects. For
L ∈ K+(I), the composite (GF )L εL−→ R(GF )L ηL−→ (RG)(RF )L and εL are both
isomorphisms in D+(C), and hence so is ηL.
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2.2 Derived direct image
Proposition 2.2.1. Let (X,OX) be a ringed space. Then Shv(X,OX) admits
enough injectives.

Proof. Let F ∈ Shv(X,OX). For x ∈ X, let ix : {x} → X be the inclusion. Let
us show that the canonical morphism F → ∏

x∈X ix∗i
−1
x F is a monomorphism. For

every y ∈ X, we have a commutative diagram

i−1
y F i−1

y

∏
x∈X ix∗i

−1
x F

i−1
y F i−1

y iy∗i
−1
y F

id

It follows that the top horizontal arrow is injective at every stalk, and hence a
monomorphism.

Each i−1
x F is an OX,x-module and can be embedded into an injective OX,x-

module i−1
x F ↪→ Ix. Then F ↪→ ∏

x∈X ix∗i
−1
x F ↪→ ∏

x∈X ix∗Ix. Note that ix∗Ix is
injective by the next lemma applied to the adjoint functors i−1

x ` ix∗ with i−1
x exact.

We conclude by the fact that a product of injective sheaves is injective.

Lemma 2.2.2. Let A B
F

G
be functors between abelian categories with F a G

and F exact. For X ∈ Ob(B) injective, G(X) is injective.

Proof. In fact, HomA(−, G(X)) ' HomB(F−, X) is exact.

Example 2.2.3. Let f : (X,OX) → (Y,OY ) be a flat morphism of ringed spaces.
Then f−1 is exact. It follows that f∗ sends injective sheaves to injective sheaves.

Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. The functor f∗ : Shv(X,OX)→
Shv(Y,OY ) is left exact. It follows from the proposition that f∗ admits a right de-
rived functor Rf∗.

Example 2.2.4. Y = pt, OY = Z. Then

f∗ = Γ(X,−) : Shv(X,OX)→ Ab
Rf∗ = RΓ(X,−) : D+(X,OX)→ D+(Ab).

For L ∈ D+(X,OX), we call Hn(X,L) := RnΓ(X,−) the i-th (hyper)cohomology of
L.

If f : (X,OX) → (Y,OY ) is a flat morphism of ringed spaces, then for M ∈
D+(Y,OY ), there is a natural restriction morphism RΓ(Y,M)→ RΓ(X, f ∗M).

Proposition 2.2.5. Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces and
let L ∈ D+(X,OX). Then there is a canonical isomorphism

Rif∗L ' a(V 7→ Hi(f−1(V ), L|f−1(V ))
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Proof. Consider the commutative diagram

Shv(X,OX) PShv(X,OX)

Shv(Y,OY ) PShv(Y,OY )

ι

f∗ fpsh
∗

a

Since a and fpsh
∗ are exact, we have Rf∗ = afpsh

∗ Rι. We conclude by the next lemma,
which computes Rι.

Lemma 2.2.6. For L ∈ D+(X,OX), RiιL : U 7→ Hi(U,L|U),

Proof. Let L → I be a quasi-isomorphism with I ∈ K+(X,OX) and I i injective
for all i. Then RiιL ' Hn(ιI). Since Γ(U,−) is exact on presheaves, we have
(HiιI)(U) ' Hi(I(U)) ' Hi(U,L|U). In the last isomorphism we used the fact that
L|U → I|U is a quasi-isomorphism and I|iU is injective for all i. To see this last
point, let j : U → X be the inclusion. Then j∗ preserves injectives, because it has
an exact left adjoint, j!, and Lemma 2.2.2 applies.

Flabby sheaves
Definition 2.2.7. A sheaf F on X is said to be flabby if for all U ⊆ X open, the
restriction map F(X)→ F(U) is surjective.

Remark 2.2.8. If F is flabby, then for any inclusion V ⊆ U of opens, the restriction
map F(U)→ F(V ) is surjective. In other words, if F is flabby, then F|U is flabby
for every open U ⊆ X.

Proposition 2.2.9. Consider a short exact sequence in Shv(X,OX):

0 F ′ F F ′′ 0.φ ψ

(1) If F ′ is flabby, then 0 F ′(X) F(X) F ′′(X) 0 is
exact.

(2) If F ′ and F are flabby, then so is F ′′.

(3) Injective OX-modules are flabby.

Proof. (1) Take s ∈ F ′′(X). Consider

Ω =
{

(U, t)
∣∣∣∣∣ U ⊆ X open
t ∈ F(U), ψ(t) = s|U

}

Define a partial order on Ω by (U, t) ≤ (U ′, t′) if U ⊆ U ′ and t′|U = t. By Zorn’s
lemma, there exists a maximal element (U, t) of Ω. If U = X, we are done. Assume
U ( X. Take x ∈ X\U . Since F → F ′′ is surjective, there exists an open neigh-
borhood V 3 x and r ∈ F(V ) such that ψ(r) = s|V . Since ψ(t|U∩V ) = ψ(r|U∩V ) =
s|U∩V , there exists v ∈ F ′(U ∩ V ) such that t|U∩V − r|U∩V = φ(v). Since F ′ is
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flabby, there exists v̄ ∈ F ′(V ) such that v̄|U∩V = v. By construction, t ∈ F(U) and
r+ φ(v̄) ∈ F(V ) agree on U ∩ V . Thus they define t̄ ∈ F(U ∪ V ) such that t̄|U = t,
t̄|V = r+φ(v̄). Clearly ψ(t̄) = s|U∪V . This shows (U ∪V, t̄) ∈ Ω and contradicts the
maximality of (U, t).

(2) Consider the commutative diagram:

F(X) F ′′(X)

F(U) F ′′(U)

The left vertical arrow is surjective since F is flabby. The bottom horizontal arrow
is surjective by (1). It follows that the right vertical arrow is surjective.

(3) Let U ⊆ X be an open subset and let j : U → X be the inclusion. Since
j!OU ↪→ OX is a monomorphism and F is injective, Hom(OX ,F)→ Hom(j!OU ,F)
is surjective. This can be identified with the restriction map F(X)→ F(U) via the
adjunction Hom(j!OU ,F) ' Hom(OU , j−1F) ' F(U).

Corollary 2.2.10. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces.
Then the full subcategory consisting of the flabby OX-modules is f∗-injective (Defi-
nition 2.1.30).

Proof. Condition (b′) of Proposition 2.1.31 follows from (1) and (2). Condition
(a) Definition 2.1.30 follows from (3) and the existence of enough injectives. One
can give a more direct proof of (a). For any OX-module F , we have F ↪→ G =∏
x∈X ix∗i

−1
x F , where G is flabby because G(U) = ∏

x∈U ix∗i
−1
x F .

Remark 2.2.11. It is clear that f∗ sends flabby sheaves to flabby sheaves.

Corollary 2.2.12. Let (X,OX) f−→ (Y,OY ) g−→ (Z,OZ) be morphisms of ringed
spaces. Then R(gf)∗L ' Rg∗Rf∗L for all L ∈ D+(X,OX).

Example 2.2.13. Consider the commutative diagram

(X,ZX) (X,OX)

(Y,ZX) (Y,OY )

f0 f

µX

µY

Then µY ∗Rf∗ ' Rf0∗µX∗. Here µX∗ is the functor forgetting the OX-module struc-
ture. In other words, the functor Rf∗ does not depend on sheaf of rings.

Theorem 2.2.14 (Grothendieck). Let X be a Noetherian topological space of finite
dimension d. Then for any abelian sheaf F on X, Hi(X,F) = 0 for i > d.

Remark 2.2.15. By a result of Spaltenstein [S], the derived functorRf∗ : D(X,OX)→
D(Y,OY ) between unbounded derived categories exists. We refer to [KS, Chapters
14, 18] for more details.
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2.3 Čech cohomology
Let X be a topological space. Let F be an abelian presheaf on X and let {Ui}I = U
be an open cover. The sheaf condition is the exactness of the sequence

0 F(X) ∏
iF(Ui)

∏
i,j F(Uij)

(si) si|Uij − sj|Uij

where Uij = Ui ∩ Uj. In Čech cohomology, we extend this sequence to the right.

Definition 2.3.1 (Čech complex). Let F be a presheaf. The Čech complex
C•(U ,F) ∈ C≥0(Ab) is defined by

Cp(U ,F) =
∏

(i0,...,ip)∈Ip+1

F(Ui0,...,ip), Ui0,...,ip =
p⋂

k=0
Uik

with the differential given by

(dps)i0,...,ip+1 =
p+1∑
k=0

(−1)ks
i0,...,îk,...,ip

|Ui0,...,ip+1

for s ∈ Cp((U),F). One can check dd = 0. We call Ȟp(U,F) = HpC•(U ,F) the
Čech cohomology.

Remark 2.3.2. The global section functor factors as

Shv(X) PShv(X) Abι

Γ(X,−)

Ȟ0(U,−)

We will show that Ȟp(U,−) are the right derived functors of Ȟ0(U,−).
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Date: 11.24
Let X be a topological space. Recall for an open cover U = {Ui} of X and an

abelian presheaf F , we have defined the Čech complex C•(U ,F). We can extend
it to a Čech complex of presheaves C•(U ,F) ∈ C>0(PShv(X)), Γ(V, C•(U ,F)) =
C•(U ∩ V,F), where U ∩ V = {Ui ∩ V }. In other words,

Cp(U ,F) =
∏

(i0,...,ip)∈Ip+1

ji0,...ip∗j
−1
i0,...ipF , ji0,...ip : Ui0,...ip ↪→ X.

Let f : ∐i Ui → X. Then Cp(U ,F) = C0(U , Cp−1(U ,F)) = f∗f
−1 · · · f∗f−1︸ ︷︷ ︸

p+1

F ,

where f∗f−1 appears p+ 1 in the expression.

Proposition 2.3.3. Let F be a sheaf on X. Then

0 F C0(U ,F) C1(U ,F) . . .

is exact in Shv(X).

We will prove a more general form of the proposition.

Lemma 2.3.4. Let F : A → B a functor between abelian categories admitting a
right adjoint G. Let A ∈ A. Consider the complex L ∈ C≥−1(A):

0 A GFA GFGFA · · ·d−1 d0 d1

where

Lp = GF · · ·GF︸ ︷︷ ︸
p+1

A

dp =
p+1∑
k=0

(−1)kGF · · ·GF︸ ︷︷ ︸
k

εGF · · ·GF︸ ︷︷ ︸
p+1−k

A

where ε : id→ GF is the unit. Then FL = 0 in K(B).

Proof. Define h ∈ Ht(FL, FL) as follows. Let η : FG→ id be the counit. We take

hp = ηF GF · · ·GF︸ ︷︷ ︸
p

A : FLp → FLp−1

One checks that dh+ hd = id.

Proposition 2.3.5. Let f : Y → X be a surjective continuous map and let F be a
sheaf on X. Define Cp(f,F) := f∗f

−1 · · · f∗f−1︸ ︷︷ ︸
p+1

F . Then

0→ F → C0(f,F)→ C1(f,F)→ . . .

is an exact sequence.
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Proof. Take F = f−1, G = f∗ in the lemma. Then f−1(L) is acyclic. Since f is
surjective, L is acyclic.

In fact, in the lemma, L is acyclic if F is conservative.

Example 2.3.6. Let f : Y = ∐
x∈X x→ X. Then f−1f∗F = ∏

x∈X ix∗i
−1
x F . This is

used in the proof of the existence of enough flabby sheaves. The flabby resolution
given by the proposition is called Godement resolution. Note that every sheaf
on Y is flabby and f∗ preserves flabby sheaves.

Corollary 2.3.7. Let F be a flabby sheaf on X. Then Ȟp(U ,F) = 0 for all p > 0
and open cover U of X.

Proof. Let f : ∐i Ui → X. Since f∗ and f−1 both preserve flabby sheaves,

0 F C0(U ,F) C1(U ,F) . . .

is a flabby resolution of F . Taking global sections, we get the exact sequence

0 Γ(X,F) C0(U ,F) C1(U ,F) . . . .

Let F be a sheaf. Then we can replace F by C•(U ,F)) in D(Shv(X)). In general,
Cp(U ,F) is not flabby. We can choose a quasi-isomorphism C•(U ,F) → L• with
L ∈ K+ and Lp injective or flabby for all p. This gives a canonical homomorphism

Ȟp(U ,F)→ Hp(X,F),

which is an isomorphism for p = 0. We have the following criterion for the map to
be an isomorphism.

Theorem 2.3.8 (Leray). Let F be a sheaf. Assume Hn(Ui0,...,ip ,F) = 0 for all
p > 0, (i0, . . . , ip) ∈ Ip+1, n > 1. Then the canonical map Ȟp(U ,F)→ Hp(X,F) is
an isomorphism for all p > 0.

We will give a proof based on an interpretation of the Čech cohomology as derived
Hom. For this we need more homological algebra.

Double complexes
Let A be an additive category.

Definition 2.3.9. We define the category of double complexes inA to be C2(A) =
C(C(A)). Thus a double complex consists of objects X i,j for i, j ∈ Z and differen-
tials dI : X i,j → X i+1,j, dII : X i,j → X i,j+1 such that d2

I = 0, d2
II = 0, dIdII = dIIdI .
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Definition 2.3.10. Let X be a double complex in A. We define two complexes in A
with (tot⊕X)n = ⊕i+j=nX i,j (if the coproducts exist) and (totΠX)n = ∏

i+j=nX
i,j

(if the products exist), called total complex of X with respect to coproducts and
products, respectively. The differentials are defined as follows. Let i + j = n. The
composition X i,j → (tot⊕X)n dn−→ (tot⊕X)n+1 is given by

(2.3.1) di,jI + (−1)idi,jII .

The composition (totΠX)n−1 dn−1
−−−→ (totΠX)n → X i,j is given by

(2.3.2) di−1,j
I + (−1)idi,j−1

II .

Remark 2.3.11. The sign in (2.3.1) and (2.3.2) ensures that d2 = 0. If Y is the
transpose of X defined by Y i,j = Xj,i and by swapping the two differentials, then
we have an isomorphism tot⊕X ' tot⊕Y given by (−1)ijidXi,j . The same holds for
totΠ.

In the literature, a variant of Definition 2.3.9 with dIdII +dIIdI = 0 is sometimes
used. If we adopt this variant, then (2.3.1) can be simplified to d = dI + dII . The
two definitions correspond to each other by multiplying di,jII by the sign (−1)i.

Definition 2.3.12. We say that a double complex X is biregular if for every n,
X i,j = 0 for all but finitely many pairs (i, j) with i+j = n. We let C2

reg(A) ⊆ C2(A)
denote full subcategory consisting of biregular double complexes. It is an additive
subcategory.

If X i,j = 0 for i < a or j < b (X concentrated in a (translated) first quadrant) or
X i,j = 0 for i > a or j > b (X concentrated in a (translated) third quadrant), then
X is biregular. If X i,j = 0 for |i| � 0 (concentrated in a vertical stripe) or X i,j = 0
for |j| � 0 (concentrated in a horizontal stripe), then X is biregular.

Remark 2.3.13. If X is a biregular double complex, then tot⊕X and totΠX exist
and we have tot⊕X ∼−→ totΠX. We will simply write totX. We get an additive
functor tot : C2

reg(A)→ C(A).

Example 2.3.14. Let f : L → M be a morphism of complexes in A. We define a
double complex X by X−1,j = Lj, X0,j = M j, X i,j = 0 for i 6= −1, 0, d−1,j

I = f j, dII
given by dL and dM . Then totX = Cone(f).

Let A be an abelian category. For a double complex X in A, we put

HI(X)i,j = Ker(di,jI )/im(di−1,j
I ), HII (X)i,j = Ker(di,jII )/im(di,j−1

II ).

The full additive subcategory C2
reg(A) ⊆ C2(A) is stable under subobjects and

quotients. Thus C2
reg(A) is an abelian category and the inclusion functor is exact.

The functor tot : C2
reg(A)→ C(A) is exact.

Proposition 2.3.15. Let X be a biregular double complex such that H i,•
I (X) is

acyclic for every i. Then totX is acyclic.

A similar statement holds for HII , which generalizes the fact that the cone of a
quasi-isomorphism is acyclic.
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Proof. For each m, there exists N such that Hm(totX) = Hmtot(τ≤nI X) for all
n ≥ N . It suffices to show that Hmtot(τ≤nI X) = 0 for all n. We proceed by
induction on n (for a fixed m). For n � 0, (tot(τ≤nI X))m = 0. Assume that
Hmτ≤n−1

I (X) = 0 and consider the short exact sequence of double complexes

0→ τ≤n−1
I X → τ≤nI X → Y → 0,

where Y = (Bn,•
I X

f−→ Zn,•
I X) is concentrated on the columns n−1 and n. Applying

tot, we get an exact sequence of complexes

0→ totτ≤n−1
I X → totτ≤nI X → totY → 0.

We have a quasi-isomorphism tot(Y )[n] ' Cone((−1)nf) → Hn,•
I (X). It follows

totY is acyclic. Taking long exact sequence, we get

Hmtotτ≤nI X ' Hmtotτ≤n−1
I X = 0.

Corollary 2.3.16. Let X be a biregular double complex such that X•,j is acyclic for
every j (namely, every row of X is acyclic). Then totX is acyclic.

A similar statement holds for columns of X: if X i,• is acyclic for every i, then
totX is acyclic.

Corollary 2.3.17. Let f : X → Y be a morphism of biregular double complexes
such that H i,•

I (f) : H i,•
I (X) → H i,•

I (Y ) is a quasi-isomorphism for each i. Then
tot(f) : tot(X)→ tot(Y ) is a quasi-isomorphism.

Proof. We letW = ConeII (f) withW i,j = X i,j+1⊕Y i,j. ThenH i,•
I (W ) ' Cone(H i,•

I (f))
is acyclic. By the proposition applied to W , tot(W ) ' Cone(tot(f)) is acyclic.

Corollary 2.3.18. Let f : X → Y be a morphism of biregular double complexes such
that f •,j : X•,j → Y •,j is a quasi-isomorphism for each j. Then tot(f) : tot(X) →
tot(Y ) is a quasi-isomorphism.

Derived Hom
Let A, A′, A′′ be additive categories. Let F : A × A′ → A′′ be a functor that is
additive in each variable. Then F extends to a functor C2(F ) : C(A) × C(A′) →
C2(A′′) additive in each variable. For X ∈ C(A), Y ∈ C(A′), the double complex
C2(F )(X, Y ) is defined by C2(F )(X, Y )i,j = F (X i, Y j), with di,jI = F (diX , idY j),
di,jII = F (idXi , djY ).

Example 2.3.19. Let A be an additive category with small Hom sets. The functor
HomA : Aop × A → Ab is additive in each variable. We have an isomorphism
C(A)op ' C(Aop), carrying (X, d) to ((X−n), (−1)nd−n−1). Thus HomA extends to
a functor

Hom••A : C(A)op × C(A)→ C2(Ab),
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additive in each variable. For X, Y ∈ C(A), Hom••A (X, Y )i,j = HomA(X−j, Y i),
with

di,jI = HomA(X−j, diY ), di,jII = HomA((−1)jd−j−1
X , Y i).

We define Hom•A as the composite functor

C(A)op × C(A) Hom••A−−−−→ C2(Ab) totΠ−−→ C(Ab).

We have
Hom•A(X, Y )n =

∏
j∈Z

HomA(Xj, Y n+j),

and for f = (f j) ∈ Hom•A(X, Y )n,

(dnf)j = dj+nY f j + (−1)n+1f j+1djX .

Proposition 2.3.20. We have

Z0 Hom•A(X, Y ) ' HomC(A)(X, Y ),
B0 Hom•A(X, Y ) ' im(Ht(X, Y )→ HomC(A)(X, Y )),
H0 Hom•A(X, Y ) ' HomK(A)(X, Y ).

Proof. We have d0(f) = df − fd, so that d0(f) = 0 if and only if f : X → Y is a
morphism of complexes. We have Ht(X, Y ) = Hom•A(X, Y )−1, and for h ∈ Ht(X, Y ),
d−1(h) = dh+ hd.

Definition 2.3.21. Let D, D′, D′′ be triangulated categories. A triangulated
bifunctor is a functor F : D × D′ → D′′ equipped with natural isomorphisms
F (X[1], Y ) ' F (X, Y )[1], F (X, Y [1]) ' F (X, Y )[1], such that the following dia-
gram anticommutes

F (X[1], Y [1]) //

��

F (X, Y [1])[1]

��
F (X[1], Y )[1] // F (X, Y )[2]

and such that F is triangulated in each variable.

Note that Hom• factorizes through a triangulated bifunctor K(A)op ×K(A)→
K(Ab).

Proposition 2.3.22. Assume that A admits enough injectives. Then the triangu-
lated bifunctor

Hom•A : K(A)op ×K+(A)→ K(Ab)

admits a right derived bifunctor

RHomA : D(A)op ×D+(A)→ D(Ab)

such that, for M ∈ K+(A) with injective components and L ∈ K(A), we have

Hom•A(L,M) ∼−→ RHomA(L,M).
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Sketch of proof. We need to show that for L ∈ K(A), M ∈ K+(A), Mn injective
for all n, with L or M acyclic, then Hom•A(L,M) is acyclic. Indeed,

Hn Hom•A(L,M) ' HomK(A)(L,M [n]) ' HomD(A)(L,M [n]) = 0.

Remark 2.3.23. Assume that A has enough injectives. For L ∈ D(A), M ∈
D+(A), we have

HnRHomA(L,M) ' Hn Hom•A(L,M ′) ' HomK(A)(L,M ′[n]) ' Homn(L,M [n]),

where we have taken a quasi-isomorphism M → M ′ ∈ K+(A) such that M ′ has
injective components. In particular, for X ∈ A, HomD(A)(X,−[n]) is the n-th right
derived functor of Hom(X,−).

Dually, we have the following.

Proposition 2.3.24. Assume that A admits enough projectives. Then the triangu-
lated bifunctor

Hom•A : K−(A)op ×K(A)→ K(Ab).
admits a right derived bifunctor

RHomA : D−(A)op ×D(A)→ D(Ab)

such that for L ∈ K−(A) with projective components and M ∈ K(A), we have

Hom•A(L,M) ∼−→ RHomA(L,M).

Remark 2.3.25. In the case where A admits enough injectives and enough projec-
tives, the functors RHom defined in Propositions 2.3.22 and 2.3.24 are isomorphic
when restricted to D−(A)op × D+(A). Indeed, for L ∈ D−(A) and M ∈ D+(A),
RHom(L,M) can be computed by finding quasi-isomorphisms L′ → L andM →M ′

such that L′ has projective components andM ′ has injective components and taking
Hom•(L,M).

Back to Čech cohomology
Let F be a presheaf. We have

Cp(U ,F) =
∏

(i0,...,ip)∈Ip+1

F(Ui0,...ip) ' Hom(Cp(U),F),

where

Cp(U) =
psh⊕

i0,...,ip∈Ip+1

jpsh
i0,...ip!Z

psh
Ui0,...,ip

, ji0,...ip : Ui0,...ip ↪→ X.

Here Zpsh
Ui0,...,ip

denotes the constant presheaf. There is a complex C•(U) in C≤0 with
C•(U)−p = Cp(U) satisfying C•(U ,F) ' Hom•(C•(U),F). To specify the differentials
and to study this complex, it is convenient to consider the functor

fpsh
! G =

⊕
i∈I

jpsh
i! (G|Ui)
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between categories of presheaves, where f : ∐i∈I Ui → X. This functor is left adjoint
to f−1, and we have the counit ηU : fpsh

! f−1 → id. Note that (fpsh
! f−1F)(U) '⊕

U⊆Ui F(Ui). Moreover,

Cp(U) ' fpsh
! f−1 . . . fpsh

! f−1︸ ︷︷ ︸
p+1

Zpsh
X .

We define the differentials of C•(U) by

d−p =
p∑

k=0
(−1)k+1 f!pshf−1 . . . fpsh

! f−1︸ ︷︷ ︸
k

ηU f!pshf−1 . . . fpsh
! f−1︸ ︷︷ ︸

p−k

.

Lemma 2.3.26. (1) The sequence

(∗) · · · C1(U) C0(U) Zpsh
X

ηU

is exact.

(2) Cp(U) is projective for each p > 0.

Proof. (2) Hom(Zpsh
X ,−) = Γ(X,−) is exact, which implies that Zpsh

X is projective.
Moreover, since fpsh

! a f−1 a f∗ and f! and f∗ are exact, the functors fpsh
! and f−1

preserve projectives.
(1) f−1(∗) is exact by Lemma 2.3.4. Thus (∗)|Ui is exact for every i ∈ I. Let

U ⊆ X be an open subset. If there exists an i ∈ I such that U ⊆ Ui, then Γ(U, (∗)) is
exact. Otherwise, Γ(U, (∗)) = ( · · · 0 0 Z ), which is exact.

From the Lemma, we see C•(U) is a projective resolution of im(ηU), and hence

C•(U ,F) ' Hom•(C•(U),F) ' RHom(Im(ηU),F) ' RΓ̌(U ,F),

where RΓ̌(U ,−) denotes the right derived functor of Ȟ0(U ,−). For the last isomor-
phism we note

Hom(im(ηU),F) ' Ȟ0(U ,F),

which implies that for L ∈ D+(PShv(X)), we have

RHom(im(ηU), L) ' RΓ̌(U , L)

Consider
PShv(X)

Shv(X) Ab

Ȟ0(U ,−)ι

Γ(X,−)

.

Lemma 2.3.27. RΓ̌(U , RιL) ' RΓ(X,L), ∀L ∈ D+(Shv(X)).

Proof. Since a a ι and a is exact, ι preserves injective objects.
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For a sheaf F , the canonical morphism ιF → RιF induces

RΓ̌(U , ιF)→ RΓ̌(U , RιF) ' RΓ(X,F),

which in turn induces the maps Ȟp(U ,F)→ Hp(X,F) by taking cohomology.
We are now in a position to prove Leray’s theorem.

Proof of Leray’s theorem. Let L = RιF . For p > 0, consider the morphism of
complexes

Homp,•(C•(U), ιF) Homp,•(C(U), L)

∏
(i0,···ip) Γ(Ui0,...ip , ιF) ∏

(i0,···ip) Γ(Ui0,...ip , L)

By assumption, Hn(Ui0,...ip ,F) = 0, n > 1, which means

Γ(Ui0,...ip , ιF)→ Γ(Ui0,...ip , L)

is an quasi-isomorphism. Thus

Hom•(C•(U), ιF)→ Hom•(C•(U), L)

is also a quasi-isomorphism. Therefore,

RΓ̌(U , ιF) ' RΓ̌(U , L).

Proposition 2.3.28. Let F be a sheaf.

(1) We have an exact sequence

0 Ȟ1(U ,F) H1(X,F) Ȟ0(U , R1ιF).

(2) We have
colim
U

Ȟ0(U , R1ιF) = 0,

where U runs through open covers of X. In particular,

colim
U

Ȟ1(U ,F) ∼−→ H1(X,F).

Proof. (1) This follows from Lemma 2.3.29 applied to RΓ(X,−).
(2) Let F ∼−→ L be a quasi-isomorphism with L ∈ K+ and Li injective. Then in

PShv(X),
RqιF = ker(ιLq → ιLq+1)/im(ιLq−1 → ιLq).

For q > 0, aRqιF ' HqF = 0. Here Hq denotes the q-th cohomology sheaf. We
conclude by Lemma 2.3.30 below.
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Lemma 2.3.29. Let F : D+(A)→ D+(B) be a triangulated functor carrying D≥0(A)
into D≥0(B). Let X ∈ D≥0(A). We have an isomorphism H0FH0X ' H0FX and
an exact sequence

0→ H1FH0X → H1FX → H0FH1X → H2FH0X → H2FX.

We leave this as an exercise.

Lemma 2.3.30. Let F be a presheaf. Then the canonical map

colim
U

Ȟ0(U ,F)→ Γ(X, aF)

is injective.

Proof. By definition, aF = (F ′)′, where

F ′(U) = colim
V

Ȟ0(V ,F),

with V running through open covers of U . Since F ′ is separated, F ′ → (F ′)′ = aF
is a monomorphism of presheaves. In particular, Γ(X,F ′) = colimU Ȟ0(U ,F) →
Γ(X, aF) is injective.

Remark 2.3.31. The map

colim
U

Ȟ2(U ,F)→ H2(X,F)

is injective but not bijective in general. Using hypercovers one can get isomorphisms
to Hq all q.

Remark 2.3.32 (Alternating Čech complex). The following variant of the Čech
complex is very useful. For a presheaf F on X and an open cover U = {Ui}i∈I , we
define a subcomplex C•alt(U ,F) ⊆ C•(U ,F), called the alternating Čech com-
plex. An element s = (si0,...,ip) ∈

∏
i0,...,ip∈I F(Ui0,...,ip) = Cp(U ,F) is said to be

alternating ifsi0,...,ip = 0 if ij = ik,

siσ(0), . . . , iσ(p) = sgn(σ)si0,...,ip for σ ∈ Aut{0, . . . , p}.

We let Cp
alt(U ,F) ⊆ Cp(U ,F) denote the abelian subgroup consisting of the alternat-

ing elements. If we choose a total order on I, then Cp
alt(U ,F) ' ∏i0<···<ip F(Ui0,...,ip).

There are natural chain morphisms

C•alt(U ,F) C•(U ,F)
i

r

where i is the inclusion and r is given by projection. We have ri = id and one can
check that ir− id = dh+hd for some homotopy h. Thus i is a homotopy equivalence
and we have

HqC•alt(U ,F) ∼−→ Ȟq(U ,F).
In particular, for p > #I, Ȟp(U ,F) = 0, since Cp

alt(U ,F) = 0.
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Date: 11.26

2.4 Serre’s theorem on affine schemes
Theorem 2.4.1 (Serre). Let F be a quasi-coherent OX-module on an affine scheme
X. Then Hq(X,F) = 0 for all q > 1.

Lemma 2.4.2. Let X be an affine scheme and let U be a finite affine open cover.
Let F be a quasi-coherent sheaf. Then Ȟq(U ,F) = 0, for all q > 1.

Proof. We have an exact sequence of sheaves

0 F C0(U ,F) C1(U ,F) · · · .

Each Cp(U ,F) = f∗f
−1 · · · f∗f−1F is quasi-coherent, where f : ∐i Ui → X. The

functor Γ(X,−) carries exact sequences of quasi-coherent sheaves to exact sequences
of modules. Therefore,

0 Γ(X,F) C0(U ,F) C1(U ,F) · · ·

is exact.

Lemma 2.4.3. Let J ⊆ Shv(X,OX) be the full subcategory consisting of OX-
modules F such that for every affine over subset U ⊆ X and every finite affine open
cover V of U , we have Ȟq(V ,F) = 0 for all q > 1. Then J is Γ(X,−)-injective.

Proof. We check the axioms (a) and (b’).
(a) It suffices to show that every injective OX-module F belongs to J . For every

open subset U ⊆ X, F|U is flabby. It follows that we have Ȟq(V ,F) = 0 for all V
and all q > 1 by Corollary 2.3.7. Thus F belongs to J .

(b’) Let
0 F G Q 0

be an exact sequence of OX-modules with F ,G ∈ J . Let U ⊆ X be an affine open.
We have

H1(U,F) ' colim
V

Ȟ1(V ,F) = 0.

Here V runs through finite affine open covers of U and we used the fact that every
open cover of U can be refined by a cover V . Thus the sequence

0 F(U) G(U) Q(U) 0

is exact. In particular, the sequence

0→ Γ(X,F)→ Γ(X,G)→ Γ(X,Q)→ 0

is exact. Moreover, we have a short exact sequence of complexes

0 C•(V ,F) C•(V ,G) C•(V ,Q) 0,
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which induces the exact sequence

Ȟq(U ,G) Ȟq(V ,Q) Ȟq+1(V ,F)

0 0

for q ≥ 1. Thus Q ∈ J .

Proof of Theoremt.Serre1. By Lemma 2.4.2, QCoh(X) ⊆ J . By Lemma 2.4.3, for
all F ∈ J , we have Hq(X,F) = 0 for all q > 1.

We have the following converse of Theorem 2.4.1.

Theorem 2.4.4 (Serre). Let X be a quasi-compact scheme. Suppose that for all
quasi-coherent ideal sheaf I ⊆ OX , we have H1(X, I) = 0. Then X is affine.

We will prove this later as a consequence of Theorem 2.5.9.
Combine Theorem 2.4.1 and Leray’s theorem, we obtain:

Corollary 2.4.5. Let X be a scheme and let U = {Ui}i∈I be an open cover of X
such that Ui0,...,ip is affine for all p > 0. Let F be a quasi-coherent OX-module.
Then, for all q, the canonical map Ȟq(U ,F)→ Hq(X,F) is an isomorphism.

Remark 2.4.6. If the diagonal ∆X : X → X × X is affine (for example if X is
separated), then for all affine open U, V ⊆ X, U ∩ V is affine. Indeed

U ∩ V X

U × V X ×X

∆X

is an Cartesian square. In this case, the corollary applies to every affine open cover
of X.

Corollary 2.4.7. Let X be a scheme and let

0 F G Q 0

be an exact sequence of OX-modules. If F , Q ∈ QCoh(X), then G ∈ QCoh(X).

Proof. We may assume thatX is affine. Then the long exact sequence of cohomology
has the form

0 F(X) G(X) Q(X) H1(X,F) = 0.

Thus we have a commutative diagram with exact rows

0 F(X)∼ G(X)∼ Q(X)∼ 0

0 F G Q 0.

' '

The vertical arrow in the middle is an isomorphism by the five lemma.
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We let D+
qcoh(X,OX) ⊆ D+(X,OX) denote the full subcategory consisting of

objects L such that HiL ∈ QCoh(X) for all i, where Hi denotes the i-th cohomol-
ogy sheaf. The corollary implies that D+

qcoh(X,OX) ⊆ D+(X,OX) is triangulated
subcategory. Indeed, if L → M → N → L[1] is a distinguished triangle with
L,M ∈ D+

qcoh, then, by the long exact sequence

HiL HiM HiN Hi+1L Hi+1M

and the corollary, we have N ∈ D+
qcoh. The inclusion functor ϕ : QCoh(X) ⊆

Shv(X,OX) is exact and induces a triangulated functor ϕ : D+QCoh(X)→ D+
qcoh(X,OX).

Theorem 2.4.8. (1) (Gabber) QCoh(X) admits enough injectives.

(2) Assume either

• X is Noetherian, or
• X is quasi-compact and ∆X is affine.

Then the functor

ϕ : D+(QCoh(X))→ D+
qcoh(X,OX)

is an equivalence of category. Moreover, for L ∈ D+(QCoh(X)),

RΓ(X,ϕ−)(L) ' RΓ(X,ϕL).

Remark 2.4.9. If X is Noetherian, then ϕ preserves injectives. In general, even
for X affine, ϕ does not necessarily sends injectives to flabby sheaves.

We refer to [SP, 077P], [SGA6, II 3.5, Appendice I] and [TT, Propositions B.8,
B.16] for more details.

Applications to Rf∗

Corollary 2.4.10. Let f : X → S be an affine morphism and let F ∈ QCoh(X).
Then

(1) Rqf∗F = 0 for all q > 1.

(2) Hq(X,F) ' Hq(S, f∗F) for all q.

Proof. Recall thatRqf∗F is the sheaf associated to the presheaf V 7→ Hq(f−1(V ),F).
For V affine, f−1(V ) is affine and Hq(f−1(V ),F) = 0 for q > 1. It follows that
f∗F ' Rf∗F and RΓ(X,F) ' RΓ(S,Rf∗F) ' RΓ(S, f∗F).

Proposition 2.4.11. Let f : X → S be a quasi-compact and quasi-separated mor-
phism of schemes. For all F ∈ QCoh(X) and all q, Rqf∗F ∈ QCoh(S).
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Lemma 2.4.12 (Mayer-Vietoris). Let f : X → S be a continuous map between
topological spaces and let X = U1 ∪U2 be an open cover of X. Let U = U1 ∩U2. Let
fi : Ui → S and g : U → S denote the restrictions of f . For L ∈ D+(Shv(X)), we
have a distinguished triangle

Rf∗L Rf1∗L⊕Rf2∗L Rg∗L Rf∗L[1]

Proof. Up to replacing L by an injective resolution, we may assume L ∈ K+ with
Li injective. It suffices to show the exactness of the sequence

0 f∗L f1∗L⊕ f2∗L g∗L 0.

Taking sections on an open subset V ⊆ S, we get

0→ Li(f−1(V ))→ Li(f−1
1 (V ))⊕ Li(f−1

2 (V )) α−→ Li(f−1
1 (V ) ∩ f−1

2 (V ))→ 0.

The surjectivity of α follows from the fact that Li is flabby and the remaining part
of the exactness follows from the sheaf condition.

Proof of Proposition 2.4.11. We may assume that S is affine. Since X is quasi-
compact, X can be covered by n affine opens for some n.

Case X separated. We proceed by induction on n. The case n = 0 is trivial. For
n > 0, we have X = U1 ∪U2 with U1 affine and U2 covered by n− 1 affine opens. In
the notation of the lemma above, we have a distinguished triangle

Rf∗F Rf1∗F ⊕Rf2∗F Rg∗F Rf∗F [1].

By Corollary 2.4.10, Rf1∗(F) ' f1∗F is quasi-coherent. Moreover, Rf2∗F ∈ D+
qcoh(S)

by induction hypothesis. Since X is separated, U1∩U2 can be covered by n−1 affine
opens, and consequently Rg∗(F) ∈ D+

qcoh(S) by induction hypothesis. It follows that
Rf∗(F) ∈ D+

qcoh(S).
General Case. We proceed again by induction on n. The case n = 0 is trivial.

For n > 0, write X = U1 ∩ U2 with U1 affine and U2 covered by n− 1 affine opens.
Proceed as in separated case except that Rg∗F ∈ D+

qcoh(S) is deduced from the
separated case applied to U = U1 ∩ U2 ⊆ U1. Note that U is quasi-compact and
separated.

Flat base change
Given a commutative diagram of ringed spaces

X ′ X

S ′ S

h

f ′ f

g

(∗)

and an OX-module F on X, we have a base change morphism

g∗f∗ → f ′∗h
∗



2.5. COHOMOLOGY OF PROJECTIVE SPACE 131

given equivalently by

g∗f∗ → g∗f∗h∗h
∗ ∼−→ g∗g∗f

′
∗h
∗ → f ′∗h

∗

or
g∗f∗ → f ′∗f

′∗g∗f∗
∼−→ f ′∗h

∗f ∗f∗ → f ′∗h
∗.

We will give sufficient conditions for the base change morphism to be an isomorphism
in the case of quasi-coherent sheaves on schemes.

Lemma 2.4.13. Assume that (∗) is a Cartesian square of schemes and f is affine.
Then for F ∈ QCoh(X), the base change map g∗f∗F → f ′∗h

∗F is an isomorphism.

Proof. Wemay assume S = Spec(A), S ′ = Spec(A′),X = Spec(B),X ′ = Spec(B⊗A
A′). Assume F = M̃ for a B-module M . Then the left hand side is (M ⊗AA′)∼ and
the right hand side is M ⊗B (B ⊗A A′)∼ and the base change map is the canonical
isomorphism.

Proposition 2.4.14 (flat base change). Assume that (∗) is a Cartesian square
of schemes, f is quasi-compact and quasi-separated, and g is flat. Then for F ∈
QCoh(X), the base change map g∗Rf∗F → (Rf ′∗)h∗F is an isomorphism.

Since g∗ is exact, it induces a functor g∗ : D+(S,OS)→ D+(S ′,OS′). The same
holds for h∗. The base change map is given by

g∗Rf∗ ' R(g∗f∗)→ R(f ′∗h∗)→ (Rf ′∗)h∗

Proof. We first prove the case where g is an open immersion. We replace F by a
resolution L ∈ K+ with Li injective. Then h∗Li is injective and

g∗Rf∗L = g∗f∗L
∼−→ f ′∗h

∗L = (Rf ′∗)h∗L

Having established the proposition for open immersions, we may assume that S
is affine. Since f is quasi-compact, X is quasi-compact and can be covered by n
affine open subsets. We then proceed by induction on n and apply Mayer-Vietoris
as in Proposition 2.4.11 to reduce to the case where X is affine, which has been
proved in Lemma 2.4.13.

2.5 Cohomology of projective space
Theorem 2.5.1. Let A be a ring, X = PdA = Proj(R), where R = A[x0, . . . , xd],
d > 1. We regard Γ(X,−) as a functor Shv(X,OX)→ ModA.

• Hq(X,OX(n)) = 0, for q 6= 0, d and for all n.

• R ∼−→⊕
n∈ZH

0(X,OX(n)) as graded A-modules.

• Hd(X,OX(n)) is a free A-module with basis {xk0
0 · · ·xkdd | ki < 0, ∑ ki = n}.

In particular, for n > 0, H0(X,OX(n)) and Hd(X,OX(−n − d − 1)) are both free
of rank

(
n+d
d

)
.
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Recall that OX(n) = R̃(n). For the proof it is convenient to use derived tensor
products of multiple complexes. We will not develop the theory in full generality
but concentrate on what is necessary for the proof of theorem.

Definition 2.5.2. Let A be an additive category. The category Cm(A) of m-
uple complexes is defined recursively by C0(A) = A and Cm(A) = C(Cm−1(A))
for m ≥ 1. We consider the total complex functor with respect to coproducts
tot⊕ : Cm(A)→ C(A) defined by

(tot⊕L)n =
⊕

i1+···+im=n
Li1,...,im

di1,...,im =
n∑
j=1

(−1)i1+···+ij−1di1,...,imj

The tensor product functor extends to the category of complexes:

C−(ModA)× C−(ModA)→ C2(ModA) tot⊕−−→ C(ModA)
(L,M) 7→ L⊗M

where (L⊗M)ij = Li ⊗M j.

Lemma 2.5.3. Let L,M ∈ C−(ModA). Assume that Li is flat for all i and L or
M is acyclic. Then tot(L⊗M) acyclic.

Proof. Case where M is acyclic. Then Li ⊗ M is acyclic for each i and hence
tot(L⊗M) is acyclic.

Case where L is acyclic. The complex L decomposes into short exact sequences

0 ZiL Li Zi+1L 0.

By descending induction on i, one shows that ZiL is flat. Thus

0 ZiL⊗M Li ⊗M Zi+1L⊗M 0

is exact, which implies H i,•
I (L⊗M) = 0. Thus tot(L⊗M) is acyclic.

Proof of Theorem 2.5.1. Consider the cover U = {Ui}di=0 of X, where Ui = D+(xi).
Note that Ui0,...ip = D(xi0 · · ·xip) is affine. By Leray’s theorem, we have Ȟq(U ,O(n)) '
Hq(X,O(n)).

We will compute the Čech cohomology. We have

Cp
alt(U ,O(n)) =

∏
i0<···<ip

(Rxi0 ···xip )n.

Let

Cp
alt(U ,O(•)) :=

⊕
n∈Z

Cp
alt(U ,O(n)) =

⊕
i0<···<ip

(Rxi0 ···xip )
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and let K• be ⊕n∈ZC
•
alt(U ,O(n)):

K• = (R C0
alt(U ,O(•)) C1

alt(U ,O(•)) · · · Cd
alt(U ,O(•)))

⊕
iRxi

⊕
i<j Rxixj Rx0···xd

with R placed at degree 0. We have

Rxi0 ,...xip
=
 ⊗
i∈{i0,...,ip}

A[xi]xi

⊗
 ⊗
i/∈{{i0,...,ip}

A[xi]


and
K• = tot

(
d⊗
i=0

(A[xi] ↪→ A[xi]xi)
)

with A[xi] in degree 0. Since

(A[xi]→ A[xi]xi)→
⊕
ki<0

xkii A[−1]

is a quasi-isomorphism, we have a quasi-isomorphism

K• →
d⊗
i=0

⊕
ki<0

xkii A[−d− 1]

by Lemma 2.5.3. The theorem follows.

Definition 2.5.4 (Koszul complex). Let A be a ring, F an A-module, and v : A→
F a homomorphism of A-modules (determined by v(1) ∈ F ). Define K•(v) ∈
C>0(ModA) by Kp(v) = ∧p

A(F ),

dp :
p∧
F →

p+1∧
F

x 7→ v(1) ∧ x

For an A-module M , we define K•(v,M) := K(v)⊗AM .

For F = Ar and v(1) = f ∈ Ar, we write K•(f) for K•(v).

Example 2.5.5. Let f1, . . . , fr ∈ A. Let X = Spec(A). Then U = {D(fi)}i is an
affine open cover of U = ⋃r

i=1D(fi) ⊆ X. We have

K•(A→
r⊕
i=1

Afi ,M) =
M → r⊕

i=1
Mfi →

⊕
0≤i<j≤r

Mfifj → · · · →Mf1···fr


=
(
Γ(X, M̃)→ C0

alt(U , M̃)→ C1
alt(U , M̃)→ · · · → Cr

alt(U , M̃)
)
,

where M is placed at degree 0.
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Date: 12.1

Finiteness and vanishing theorems
Let X be a locally Noetherian scheme.

Definition 2.5.6. An OX-module F is said to be coherent if it is quasi-coherent
and of finite type. We let Coh(X) ⊆ QCoh(X) denote the full subcategory consisting
of all coherent OX-modules.

Theorem 2.5.7 (Serre). Let A be a Noetherian ring, S = Spec(A), f : X → S a
projective morphism, and F a coherent sheaf on X.

(1) (finiteness) For all q, Hq(X,F) is a finitely generated A-module.

(2) (vanishing) Let L be an ample invertible sheaf. Then there exists n0 > 0 such
that Hq(X,F ⊗ L⊗n) = 0 for all n > n0 and q > 1.

Note that Hq(X,F) = 0 for q � 0 (independently of F) by Grothendieck’s
theorem (Theorem 2.2.14) or the proposition below.

Proposition 2.5.8. Let X be a scheme and U = {Ui}di=1 an open cover of X such
that each Ui0,··· ,ip is affine. Let F be a quasi-coherent OX-module. Then Hq(X,F) =
0 for all q > d.

Proof. By Leray’s theorem Hq(X,F) ' Ȟq
alt(U ,F) = 0 for q > d.

Proof of Theorem 2.5.7. (1) Since f is projective, it factors through a closed immer-
sion i : X ↪→ PdA. Then Hq(X,F) = Hq(PdA, i∗F) and i∗F is a coherent OPdA

-module.
Up to replacing X by PdA, we may assume X = PdA.

In this case, we proceed by descending induction on q. For q > d, Hq(X,F) = 0.
Assume that the assertion is proved for q + 1. By the ampleness of OX(1), there
exists an epimorphism OX(−m)r → F , which extends to a short exact sequence

0 G OX(−m)r F 0

with G coherent. Taking cohomology, we get the exact sequence

Hq(X,O(−m)r) Hq(X,F) Hq+1(X,G).

SinceHq(X,O(−m)r) is a finitely generatedA-module by Theorem 2.5.1 andHq+1(X,G)
is a finitely generated A-module by induction hypothesis, Hq(X,F) is a finitely gen-
erated A-module. (Here we used the assumption that A is Noetherian.)

(2) Case L very ample. By assumption, we have a closed embedding i : X ↪→ PnA
with L ' i∗O(1). Consequently, i∗(F ⊗ L⊗n) ' i∗F ⊗O(1)⊗n = i∗F ⊗O(n) and

Hq(X,F ⊗ L⊗n) = Hq(PnA, i∗(F ⊗ L⊗n)) ' Hq(PnA, i∗F ⊗O(n)).

Since i∗F is a coherent sheaf, we may assume, up to replacing X by PdA, that X = PdA
and L = O(1).
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In this case, we proceed by descending induction on q. For q > d, Hq(X,F ⊗
O(n)) = 0. Assume the assertion proved for q + 1. As in (1), we have a short exact
sequence

0 G OX(−m)r F 0,

which induces a short exact sequence

0 G ⊗ O(n) OX(n−m)r F ⊗O(n) 0.

Taking cohomology, we the exact sequence

Hq(X,O(n−m)r) Hq(X,F ⊗O(n)) Hq+1(X,G ⊗ O(n)).

SinceHq(X,O(n−m)r) = 0 for n > m by Theorem 2.5.1 andHq+1(X,G⊗O(n)) = 0
for n� 0 by induction hypothesis, Hq(X,F ⊗O(n)) = 0 for n� 0.

General case. There exists m ≥ 1 such that L⊗m is very ample. We apply the
very ample case to (F ⊗L⊗i,L⊗m), 0 6 i 6 m− 1. For each i, there exists Ni such
that Hq(X,F ⊗ L⊗mn+i) = 0 for n > Ni and q > 1. Therefore, it suffices to take
n0 = max06i<m{mNi + 1}.

The vanishing theorem has the following converse.
Theorem 2.5.9. Let X be a quasi-compact scheme, L an invertible OX-module.
Assume that for every quasi-coherent ideal I ⊆ OX , there exists n > 1 such that
H1(X, I ⊗ L⊗n) = 0. Then L is ample.

In the case where X is Noetherian, every quasi-coherent ideal is coherent.

Proof. Let x ∈ X be a closed point. There exists an affine open neighborhood
U = Spec(A) 3 x on which L is trivial. Let Z = X\U and Z ′ = Z ∪ {x}, equipped
with induced reduced closed subscheme structure. We have a short exact sequence

0 IZ′ IZ IZ/IZ′ 0,

where IZ/IZ′ ' i∗κ(x), i : {x} ↪→ X. By assumption, there exists n > 1 such
that H1(X, I ⊗ L⊗n) = 0. Twisting the short exact sequence by O(n) and taking
cohomology, we get the exact sequence

Γ(X, IZ ⊗ L⊗n) κ(x) H1(X, IZ ⊗ L⊗) = 0.

Let s ∈ Γ(X, IZ ⊗ L⊗n) be a pre-image of 1 ∈ κ(x). We may regard s as a section
of L⊗n via the map Γ(X, IZ ⊗ L⊗n) ↪→ Γ(X,L⊗n). Then Xs ⊆ X\U = Z. Since
s is mapped to 1 ∈ κ(x), we have x ∈ Xs. Choose a trivialization L|U ' OU and
consider the induced map

Γ(U,L⊗n) ∼−→ Γ(U,OU)
s 7→ f.

Then Xs = Spec(Af ) is affine.
Let S = ⊕

n>0 Γ(X,L⊗n). Then Y = ⋃
S+,homog Xs contains all closed points of

X by the above. If Y 6= X, then X\Y , which is a closed subset of X, contains at
least one closed point. Thus Y = X. In other words, L is ample.
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Corollary 2.5.10. Let A be a Noetherian ring, f : X → Spec(A) a proper mor-
phism, and L an invertible OX-module. Then L ample if and only if for every
quasi-coherent ideal I ⊆ OX , there exists n > 1 such that H1(X, I ⊗ L⊗n) = 0.

Proof of Theorem 2.4.4. By Theorem 2.5.9, OX is ample. In other words, X =⋃n
i=1Xfi with fi ∈ A = Γ(X,OX). The morphism

OnX
(f1,...,fn)−−−−−→ OX

is an epimorphism of sheaves of abelian groups, because it is so on eachXfi . Consider
the short exact sequence

0 F OnX OX 0.

Let Fi be the intersection of F with the direct sum of the first i summands on OnX .
Then Fi/Fi−1 is a quasi-coherent ideal sheaf. It follows that H1(X,F) = 0 and
Γ(X,OnX)� Γ(X,OX). Thus f1, . . . , fn generate the unit ideal of A. Therefore, X
is affine (exercise).

The finiteness theorem has the following generalization.

Theorem 2.5.11. Let X and S be locally Noetherian schemes and f : X → S a
proper morphism. Let F ∈ Coh(X). Then Rqf∗(F) ∈ Coh(S) for all q.

By contrast, for f affine, f∗ does not preserve coherent sheaves in general.



Exercises

Problem 1. Let A be a ring. Let U and V be quasi-compact open subsets of
Spec(A). Show that U ∩ V is quasi-compact.

Problem 2. An open subset of Spec(A) is called principal if it is of the form D(f)
for some f ∈ A.

(1) Find an open subset of Spec(Z[X]) that is not principal.

(2) Let A be a Dedekind domain whose ideal class group is torsion (e.g. A is the
ring of integers of a number field). Show that every open subset of Spec(A) is
principal.

Problem 3. Let F and G be sheaves on a topological space X. We let Hom(F ,G)
denote the presheaf on X carrying an open subset U ⊆ X to Hom(F|U ,G|U). Show
that Hom(F ,G) is a sheaf on X.

Problem 4. Let X be a topological space, U an open subset, and j : U → X the
inclusion map.

(1) (Extension by the empty set) Let F be a sheaf of sets on U . Show that the
presheaf on X

jSet
! F : V 7→

F(V ) V ⊆ U

∅ V 6⊆ U

is a sheaf. Compute the stalks of jSet
! F .

(2) (Extension by zero) Let F be a sheaf of abelian groups on U . Let j!F be the
sheafification of the presheaf on X

jpsh
! F : V 7→

F(V ) V ⊆ U

0 V 6⊆ U.

Compute the stalks of j!F . Deduce that j! : Shv(U,Ab) → Shv(X,Ab) is an
exact functor. Find an example for which jpsh

! F is not a sheaf.

(Remark. jSet
! is a left adjoint of j−1 : Shv(X, Set) → Shv(U, Set) and j! is a left

adjoint of Shv(X,Ab)→ Shv(U,Ab).)

137
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Problem 5.

(1) Show that a ring homomorphism φ : A → B is a monomorphism if and only
if φ is an injection. (Hint. Consider ring homomorphisms Z[X] → A or the
diagonal ∆φ : B → B ×A B).

(2) Let f : Y → X be an epimorphism of schemes. Show that f [X : OX(X) →
OY (Y ) is an injection and f(Y ) intersects with every nonempty closed subset
Z of X. (Hint for the second assertion. Consider the scheme obtained by
gluing two copies of X along X\Z.)

(3) Use (b) to give an example of an injective ring homomorphism φ : A→ B such
that Spec(φ) : Spec(B)→ Spec(A) is not an epimorphism of schemes.

Problem 6. We say that a continuous map f : Y → X is dominant if f(Y ) is dense
in X. We say that a morphism f : Y → X of schemes is scheme-theoretically
dominant if f [ : OX → f∗OY is a monomorphism. (You may either admit the
fact that a morphism φ : F → G in Shv(X,Ring) is a monomorphism if and only if
φU : F(U) → G(U) is an injection for every open subset U of X, or take this as a
definition.)

(1) Show that a ring homomorphism φ : A → B is an injection if and only if
Spec(φ) : Spec(B)→ Spec(A) is scheme-theoretically dominant.

(2) Show that a scheme-theoretically dominant morphism f : Y → X is dominant.
Show moreover that the converse holds for X reduced.

(3) Show that a scheme-theoretically dominant morphism that is surjective is an
epimorphism of schemes. Deduce that any surjective morphism of schemes
f : Y → X with X reduced is an epimorphism.

Problem 7.

(1) Show that a ring homomorphism φ : A → B is an epimorphism if and only if
Spec(φ) : Spec(B)→ Spec(A) is a monomorphism of schemes.

(2) Let X be a scheme. Let X ′ = ∐
x∈X Spec(κ(x)), where κ(x) denotes the

residue field of OX,x and let f : X ′ → X be the canonical morphism sending
x′ = Spec(κ(x)) to x with f ]x′ : OX,x → κ(x) given by the projection. Show
that f is a monomorphism of schemes.

(3) Use (b) and Problem 6(c) to give an example of a morphism of affine schemes
that is a monomorphism of schemes, an epimorphism of schemes, and a bijec-
tion, but not an isomorphism of schemes.

Problem 8. Let P be an infinite set and let A ⊆ ∏p∈P F2 be the subring consisting
of a = (ap) such that supp(a) := {p | ap 6= 0} is a finite or cofinite subset of P .
(Recall that a cofinite subset is the complement of a finite subset.) Let mp be the
kernel of the projection A→ F2 sending a to ap and let m∞ = ⊕

p∈P F2 ⊆ A.
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(1) Let P∗ = P∪{∞} be the one-point compactification of the discrete set P . (In
other words, the open subsets of P∗ are the cofinite subsets of P∗ and all the
subsets of P .) Show that mp and m∞ are maximal ideals of A and the map
P∗ → Spec(A) sending p to mp and ∞ to m∞ is a homeomorphism.

(2) Show that A/m∞ ' F2.

Problem 9. Show that every nonempty quasi-compact T0 space has a closed point.

Problem 10.

(1) Let X be a quasi-compact scheme. Let A = OX(X) and f ∈ A. Show that
the restriction map A→ OX(Xf ) factors through an injective homomorphism
φ : Af → OX(Xf ).

(2) Let X be a scheme admitting a finite cover {Ui} by open affines such that
each intersection Ui ∩Uj is quasi-compact. Show that φ : Af → OX(Xf ) is an
isomorphism.

(3) Let X be a scheme such that there exist f1, . . . , fn ∈ OX(X) = A with∑n
i=1 fiA = A and Xfi affine for all i. Show that X is affine.

Problem 11. Let f : Y → X be a morphism of schemes.

(1) Show that if f is locally of finite type, U ' Spec(A) is an affine open of X
and V ' Spec(B) is an affine open of f−1(U), then B is a finitely-generated
A-algebra.

(2) Show that if f is quasi-compact and U is a quasi-compact open subset of X,
then f−1(U) is quasi-compact.

(3) Show that if f is affine and U is an affine open of X, then f−1(U) is an affine
open of Y .

(4) Show that if f is finite and U ' Spec(A) is an affine open of X, then f−1(U) '
Spec(B) with B a finite A-algebra.
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Problem 12. (1) Let A be a Noetherian local ring of dimension ≥ 1. Show that
the maximal ideal m is the union of prime ideals of A of height 1. (Hint. Use
Krull’s principal ideal theorem. The weaker assertion with height 1 replaced
by height ≤ 1 suffices for (b).)

(2) Let A be a Noetherian ring of dimension ≥ 2. Deduce from (a) that there are
infinitely many prime ideals of A of height 1. (Hint. Use the prime avoidance
lemma.)

(3) Deduce from (b) that every locally Noetherian scheme of dimension ≥ 2 has
infinitely many points.

Problem 13. (1) Show that a morphism f : Y → X in a category admitting fiber
products is a monomorphism if and only if the first projection Y ×X Y → Y is
an isomorphism. Show moreover that monomorphisms are stable under base
change.

(2) Let k be a field. Use (a) to show that a ring homomorphism φ : k → B is
an epimorphism if and only if B = 0 or φ is an isomorphism. Deduce that
a morphism of schemes f : Y → Spec(k) is a monomorphism if and only if
Y = ∅ or f is an isomorphism.

(3) Let f : Y → X be a monomorphism of schemes. Show that f is an injection
and for every point y ∈ Y , the extension of residue fields κ(y)/κ(f(y)) is
trivial.

Problem 14. Given a schemeX and a fieldK, we letX(K) denote Hom(Spec(K), X).

(1) Let φ : K → L be a field embedding. Show that the induced mapX(φ) : X(K)→
X(L) is an injection. (Hint. Use Problem 6 or the identification of X(K) with
{(x, ι) | x ∈ X, ι : κ(x)→ K}.)

(2) Show that a morphism of schemes f : X → Y is surjective if and only if for
every fieldK, there exists a field extension L/K such that f(L) : X(L)→ Y (L)
is a surjection. (Hint for the “only if” part. One can start by showing that
for every K and every y ∈ Y (K), there exists a field embedding φy : K → Ly
such that Y (φy)(y) ∈ Y (Ly) belongs to the image of f(Ly). A more direct
proof is also possible.)

(3) Show that a morphism of schemes f : X → Y is radiciel if and only if the
diagonal morphism ∆f : X → X×Y X is surjective. Deduce that every radiciel
morphism is separated.
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Problem 15.

(1) Let g and h be morphisms of schemes X → W and let E be their equalizer.
Show that the morphism E → X is an immersion whose image is contained
in the set-theoretic equalizer E ′ = {x ∈ X | g(x) = h(x)}.

(2) Deduce the following improvement of Problem 6(c): a scheme-theoretically
dominant morphism f : Y → X such that f(Y ) intersects with every nonempty
closed subset Z of X is an epimorphism.

(3) Let A be a local domain of dimension ≥ 2 with fraction field K and residue
field k. Use (b) and Problem 7(b) to show that Spec(K × k) → Spec(A)
is a monomorphism of schemes and an epimorphism of schemes, but not a
surjection.

Problem 16. (1) Let i : Z → X be a closed immersion of schemes. Let

W = Spec(OX ×i∗OZ OX).

Show that the canonical morphism X
∐
X ' Spec(OX × OX) → W is finite

surjective. Describe the underlying topological space of W .
(Remark. This construction and its generalizations are called pinching.)

(2) Let f : Y → X be a quasi-compact morphism of schemes. Show that the ideal
sheaf I = ker(OX → f∗OY ) is quasi-coherent and the closed subscheme Z of
X defined by I is the smallest closed subscheme of X through which f factors.
We call Z the scheme-theoretic image of f .

(3) Deduce that a quasi-compact morphism of schemes f : Y → X is an epimor-
phism if and only if f is scheme-theoretically dominant and f(Y ) intersects
with every nonempty closed subset of X. (See also Problems 5(b) and 15(b).)

Problem 17. Let k be an algebraically closed field. In each of the following cases,
compute the normalization f : Xν → X of X. Describe all fibers of f that are
not geometrically irreducible or geometrically reduced. Is f a universal homeomor-
phism?

(1) X = Spec(k[x, y]/(y7 − x2020));

(2) X = Spec(k[x, y, z]/(xy2 − z2)). (Hint. The answers depend on whether
char(k) = 2.)
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Problem 18. (1) Show that an injective and closed morphism of schemes is affine.

(2) Deduce that an injective and universally closed morphism of schemes is inte-
gral.

Problem 19. (1) Show that a scheme X is separated if and only if there exists
an affine open cover {Ui} of X such that Ui ∩ Uj is affine and the canonical
homomorphism

OX(Ui)⊗Z OX(Uj)→ OX(Ui ∩ Uj)
is surjective for all i, j.

(2) Let R be a graded ring. Show that, for all f, g ∈ R+ homogeneous, the canon-
ical homomorphism R(f) ⊗ R(g) → R(fg) is surjective. Deduce that Proj(R) is
separated.

Problem 20. Let R be a graded ring.

(1) Show that for any prime ideal p of R, ⊕d≥0(p ∩ Rd) is a homogeneous prime
ideal of R. Deduce that any minimal prime ideal of R is homogeneous.

(2) Let T be the set of maximal points of Spec(R). Show that T ∩ Proj(R) is the
set of maximal points of Proj(R).

(3) Show that Proj(R) is normal if R is an integrally closed domain.

Problem 21. (1) Let A be a Noetherian ring and b an ideal of A. We say that an
ideal a of A is b-saturated if (a : b) = a, where (a : b) := {x ∈ A | bx ⊆ a}.
For any ideal a of A, show that the sequence of ideals (a : bn), n ≥ 0 is
stationary and (a :∞ b) := ⋃

n≥0(a : bn) is the smallest b-saturated ideal
containing a.
(Remark. We have (a :∞ b)/a ' ΓV (b)(Spec(A), Ã/a), where ΓZ denotes the
set of global sections supported in a closed subset Z.)

(2) For any primary ideal q of A, show that

(q :∞ b) =

q
√
q 6⊇ b,

A
√
q ⊇ b.

Deduce that (
√
a :∞ b) = ⋂

p∈V (a)\V (b) p.

(3) Let R be a graded ring. For any subset Y ⊆ Proj(R), let I(Y ) = ⋂
p∈Y p.

Show that V+(I(Y )) = Y is the closure of Y in Proj(R).

(4) Assume that R is Noetherian. For any homogeneous ideal a of R, show that
I(V+(a)) = (

√
a :∞ R+). Deduce that the maps V+ and I induce a one-

to-one order-reversing correspondence between R+-saturated radical homoge-
neous ideals of R and closed subsets of Proj(R).

Problem 22. Let A be a ring and let a, b ≥ 1 be integers. Show that the weighted
projective line PA(a, b) is canonically isomorphic to P1

A.
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Problem 23. Let A be a ring and let d ≥ 2 be an integer. Let I ⊆ R = A[x0, . . . , xd]
denote the homogeneous ideal of the d-uple embedding P1

A ↪→ PdA.

(1) Show that I ∩ R2 is a free A-module of rank
(
d
2

)
. Deduce that I cannot be

generated by less than
(
d
2

)
elements unless A = 0.

(2) Show that I is generated by I ∩R2. (Hint. Show that I ∩Rn is generated by
xi0 · · ·xin − xj0 · · · xjn with i0 + · · ·+ in = j0 + · · ·+ jn. Proceed by induction
on n to show that such elements are generated by I ∩R2.)

(3) Assume d = 3. Let J = (x2
1 − x0x2, x

3
2 − x0x

2
3) ⊆ I. Check that

√
J =
√
I.

Problem 24. We say that a scheme X is locally integral if OX,x is a domain for
every x ∈ X. Show that the irreducible components of a locally integral scheme
are disjoint. Deduce that a locally integral scheme with finitely many irreducible
components is a finite coproduct of integral schemes.

Problem 25. Let k be a field.

(1) Let A be a finitely generated k-algebra that is a domain. Assume that Ap is
integrally closed for every prime ideal p of height 1. Show that the integral
closure of A is ⋂pAp, where p runs through height 1 prime ideals. (Remark.
The assumption that A is a finitely generated k-algebra can be weakened to
A being a universally catenary Japanese Noetherian domain. The universal
catenarity cannot be dropped. See [EGA IV, Exemple 5.6.11].)

(2) Let R be a finitely generated graded k-algebra that is a domain generated by
R1 over R0. Assume that R+ has height ≥ 2 and X = Proj(R) is normal.
Show that the canonical map R → Γ∗(OX) := ⊕

n∈Z Γ(X,OX(n)) identifies
Γ∗(OX) with the integral closure of R.

Problem 26. Let X be a scheme and L an invertible sheaf on X. Let s ∈ Γ(X,L).
Show that for any affine open U of X, Xs ∩ U is affine.

Problem 27. LetA be a ring. For anA-moduleM , we let PA(M) denote Proj(SymA(M)).
Let 0→M ′ f−→M

g−→M ′′ → 0 be a short exact sequence of A-modules.

(1) Show that g induces a closed immersion PA(g) : PA(M ′′) → PA(M) and f
induces an affine morphism PA(g) : PA(M)\im(PA(g))→ PA(M ′).

(2) Assume that the exact sequence splits. Show that PA(g) can be identified
with the projection V(OY (−1) ⊗A M ′′) → Y . Here Y := PA(M ′), and, for a
quasi-coherent OY -module F , V(F) := Spec(SymOY (F)).
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Problem 28. Let f : X → Y be a morphism of schemes with X quasi-compact.
Let L and L′ be invertible sheaves on X andM an invertible sheaf on Y .

(1) Show that X = ⋃
s∈S+,homog Xs if and only if L⊗n is globally generated for some

n ≥ 1. Here S = ⊕
n≥0 Γ(X,L⊗n). In this case we say that L is semiample.

(2) Show that if L is ample and L′ is semiample, then L ⊗OX L′ is ample.

(3) Show that if L is f -ample andM is ample, then for n� 0, L⊗OX f ∗M⊗n is
ample.

(4) Show that if L is f -very ample and L′ is globally generated, then L⊗OX L′ is
f -very ample.

(5) Show that if f is locally of finite type and L is ample, then there exists an
integer n0 such that L⊗n is f -very ample for all n ≥ n0. (Hint. Use (d).)

Problem 29. (1) Let f : X → S be a separated morphism of schemes. Show that
every section s of f is a closed immersion.

(2) Let S be a scheme and E a quasi-coherent OS-module. Let f : V(E)→ S and
let s : S → V(E) be the zero section of f , namely the section induced by
0: E → OS. Let I ⊆ OV(E) be ideal sheaf corresponding to s. Show that
s∗I ' E .

Problem 30. Let S be a scheme and E a quasi-coherent OS-module. Let P =
P(E ⊕OS). Let ZP and 0P denote the closed subschemes defined respectively by the
closed immersions P(E)→ P and P(O)→ P given by the projections E ⊕ OS → E
and E ⊕ OS → OS. We call ZP the infinity locus and 0P the zero section of
P → S.

(1) Show that ZP is an effective Cartier divisor of P and that P\ZP can be
identified with V(E). We call P the projective closure of V(E).

(2) Let X = P(OP(E)(1)⊕OP(E)). Let ZX and 0X denote respectively the infinity
locus and zero sections of X → P(E). Construct an S-morphism π : X → P
identifying X with the blowing up of P at 0P such that π−1(0P ) = 0X and
π−1(ZP ) = ZX as subschemes of X. Describe π in terms of the functors
(Sch/S)op → Set that X and P represent.

(3) Deduce that V(OP(E)(1)) ' Bl0P (V(E)) and V(OP(E)(−1)) ' P\0P . (For the
last isomorphism, see also Problem 27(b).)

Problem 31. Let k be a field of characteristic 6= 2 and let S = Spec(k[x, y]/(y2 −
x4)). (The point V (x, y) is called a tacnode.) Find a blowing up S ′ → S with S ′
normal.



145

Problem 32. Show that, in a triangulated category, the direct sum of two distin-
guished triangles is a distinguished triangle. (Hint. Let Ti : Xi

fi−→ Yi → Zi → Xi[1],
i = 1, 2 be distinguished triangles. Extend f1⊕ f2 to a distinguished triangle T and
construct a morphism from T1 ⊕ T2 to T .)

Problem 33. Let D be a triangulated category.

(1) Show that for objects X and Y in D, the triangle X i−→ X ⊕ Y p−→ Y
0−→ X[1],

where i and p are the canonical morphisms, is a distinguished triangle. (Hint.
Use Problem 32.)

(2) Conversely, show that every distinguished triangle X f−→ Y
g−→ Z

h−→ X[1] in D
with h = 0 is isomorphic to the distinguished triangle in (1).

Problem 34. Let A be an abelian category. For every L ∈ D(A) and n ∈ Z,
construct a distinguished triangle τ≤nL → L → τ≥n+1L

h−→ (τ≤nL)[1] in D(A).
Show that H ih = 0 for all i. Give an example with h nonzero in D(A).

Problem 35. Let F : A → B be a left exact functor between abelian categories
admitting an F -injective subcategory J ⊆ A. We say that X ∈ A is F -acyclic if
RnFX = 0 for all n ≥ 1. We let I denote the full subcategory of A spanned by
F -acyclic objects.

(1) Show that I is F -injective.

In the rest of this problem, assume that there exists N > 0 such that RNFX = 0
for all X ∈ A.

(b) Show that RnFX = 0 for all X ∈ A and n ≥ N .

(c) Show that for every exact sequence XN−1 → · · · → X1 → Y → 0 in A with
RjFXi = 0 for all j ≥ i, Y is F -acyclic.

(d) Deduce that for every L ∈ C(I) acyclic, FL is acyclic.

Problem 36 (Serre). LetX be a quasi-compact scheme. Assume thatH1(X, I) = 0
for every quasi-coherent ideal I of OX . Proceed in the following steps to show that
X is affine.

(1) Show that for every closed point x ∈ X, there exists f ∈ OX(X) such that
x ∈ Xf and Xf is affine. (Hint. Choose an affine open neighborhood U of x
and consider the short exact sequence 0 → IZ′ → IZ → IZ/IZ′ → 0, where
Z = X\U and Z ′ = Z ∪ {x} are equipped with the reduced closed subscheme
structures.)

(2) Use Problem 9 to deduce that there exist f1, . . . , fn ∈ OX(X) with X =⋃n
i=1 Xfi and Xfi affine.

(3) Show that f1, . . . , fn generate the unit ideal in OX(X). Conclude by Problem
10(c).
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Problem 37. Let F : D+(A)→ D+(B) be a triangulated functor carrying D≥0(A)
into D≥0(B). Let X ∈ D≥0(A). Prove the existence of an isomorphism H0FH0X '
H0FX and an exact sequence

0→ H1FH0X → H1FX → H0FH1X → H2FH0X → H2FX.

(Hint. Use the distinguished triangle H0X → X → τ≥1X → (H0X)[1].)

Problem 38. Let G be a sheaf of groups on a topological space X. A sheaf F of
sets on X equipped with a (left) action of G is called a G-torsor if

• For every open subset U of X and every pair of sections s, t ∈ F(U), there
exists a unique g ∈ G(U) such that gs = t.

• Fx 6= ∅ for all x ∈ X.

A morphism of G-torsors is a morphism of sheaves preserving the G-action.

(1) Show that every morphism of G-torsors is an isomorphism. Let Tors(G) denote
the set of isomorphism classes of G-torsors.

(2) In the case with G abelian, establish a bijection between Tors(G) andH1(X,G).
For every open cover U of X, describe the collection of G-torsors corresponding
to the image of the map H1(U ,G)→ H1(X,G).

(3) Let OX be a sheaf of rings on X. Let Locn(OX) denote the set of isomorphism
classes of locally free OX modules of rank n. Establish a bijection between
Locn(OX) and Tors(GLn(OX)), where GLn(OX) denotes the sheaf of groups
U 7→ GLn(OX(U)). (Hint. For a locally freeOX-module F of rank n, consider
IsomOX (OnX ,F).)

(4) Establish a group isomorphism Pic(X,OX) ' H1(X,O×X), where O×X denotes
the abelian sheaf U 7→ OX(U)×.

Problem 39. LetX be a quasi-compact quasi-separated topological space such that
quasi-compact open subsets form a basis. The goal of this problem is to show that
Hq(X,−) commutes with filtered colimit: for every filtered system (Fi) of abelian
sheaves on X, the canonical map

colim
i

Hq(X,Fi)→ Hq(X, colim
i
Fi)

is an isomorphism.

(1) Let Cov denote the collection of finite quasi-compact open covers of open
subsets of X. Show that the full subcategory J of Shv(X) consisting of G
satisfying Ȟp(U ,G) = 0 for all U ∈ Cov and p ≥ 1 is Γ(X,−)-injective.

(2) Let Gi be a filtered system of flabby sheaves. Show that colimi Gi ∈ J .

(3) Conclude by induction on q. (Hint. Choose a functorial monomorphism
Fi → Gi with Gi flabby.)
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Problem 40.

(1) Let X be a scheme. Let I be a quasi-coherent ideal sheaf of OX such that
In = 0. Assume that the closed subscheme X0 = (X,OX/I) of X defined by
I is affine. Show that X is affine. (Hint. Show that H1(X,F) = 0 for every
quasi-coherent OX-module F using the filtration (ImF)0≤m≤n.)

(2) Deduce that a Noetherian scheme X such that Xred is affine is affine.
Remark. (Yin Hang) The Noetherian assumption can be removed by apply-
ing Problem 10(c) and a limit argument.

(3) Show that a reduced scheme X admitting a finite cover by affine closed sub-
schemes is affine.
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Problem 41. Let f : X → Y be a finite surjective morphism of Noetherian schemes
with X affine. Show that Y is affine. You may follows the following steps.

(1) In the case where X and Y are integral, show that there exists a coherent
sheaf M on X and a morphism of OY -modules α : OrY → f∗M with r > 0
which is an isomorphism at the generic point ηY of Y .

(2) Deduce in the case of (a) that for every coherent sheaf F on Y , there exists a
coherent sheaf G on X and a morphism of OY -modules f∗G → F r that is an
isomorphism at ηY . (Hint. Apply Hom(−,F) to α.)

(3) Use Problem 40 to reduce to the integral case. Conclude by Serre’s criterion
(Problem 36) and Noetherian induction on Y .

Remark. This result is due to Chevalley in the case of schemes of finite type
over a field. It holds in fact more generally without the Noetherian assumption,
generalizing Problem 40.

Problem 42. Let X be a scheme proper over a field k. Assume that X is geomet-
rically connected and geometrically reduced over k. Show that the canonical map
k → Γ(X,OX) is an isomorphism.

Problem 43. Let S be a scheme and let X and Y be schemes over S.

(1) Assume that X is integral and Y is of finite type over S. Let s ∈ S be a
point and let x ∈ X and y ∈ Y be points above s. Let φ : OY,y → OX,x be a
homomorphism of OS,s-algebras. Show that there exists an open neighborhood
U ⊆ X of x and a morphism f : U → Y over S such that f(x) = y and f ]x = φ.

(2) Assume that X is Noetherian normal of dimension 1 and Y is proper over S.
Let U ⊆ X be a dense open subset. Show that every S-morphism U → Y
extends uniquely to an S-morphism X → Y :

U //� _

��

Y

��
X //

>>

S

(3) Deduce from Chow’s lemma that a normal scheme of dimension 1 and proper
over k is projective over k. (Remark. This holds in fact without the normality
assumption.)

Problem 44. LetX → S and Y → S be morphisms of schemes and let p : X×SY →
X and q : X ×S Y → Y be the projections. Show that the canonical morphism
p∗ΩX/S ⊕ q∗ΩY/S → ΩX×SY/S is an isomorphism.
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Problem 45. Let X f−→ Y
g−→ S be morphisms of schemes. Consider the condition

(∗): the sequence
0→ f ∗ΩY/S → ΩX/S → ΩX/Y → 0.

is exact and locally splits.

(1) Show that if f is formally smooth, then (∗) holds.

(2) Show that if (∗) holds and gf is formally smooth, then f is formally smooth.

Problem 46. (1) Let A → B be a flat local homomorphism of Noetherian local
rings. Show that if B is regular, then so is A. (Hint. By theorems of Serre
and Auslander, a Noetherian local ring A is regular if and only if A has finite
weak dimension, namely there exists an integer d such that TorAn (M,N) = 0
for all A-modules M , N and all n > d.)

(2) Let X f−→ Y
g−→ S be morphisms of schemes, locally of finite presentation.

Show that if f is flat and surjective and gf is smooth, then g is smooth.

Problem 47. (1) Let A be a ring and let R = A[x0, . . . , xn]/I, where I is a
finitely generated graded ideal. Show that X = Proj(R) is smooth over A if
and only if Spec(R)\V (R+) is smooth over A. (Hint. Identify the latter with
V(OX(1))\0X , where 0X denotes the zero section.)

(2) Let n ≥ 1 and d ≥ 3 be integers and let k be a field of characteristic p | d.
Show that Gabber’s hypersurface X = Proj(k[x0, . . . , xn]/(f)) in Pn, where
f = xd0 +∑n−1

i=0 xix
d−1
i+1 , is smooth over k.

Problem 48. Let k be an infinite field. Let X be a variety over k admitting a
dominant rational map Pnk 99K X over k (such a variety said to be unirational).
Show that X(k) is dense in X.
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Problem 49. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. Show
that we have isomorphisms

Rf∗RHomX(Lf ∗N,M) ' RHomY (N,Rf∗M),
RHomX(Lf ∗N,M) ' RHomY (N,Rf∗M),

functorial in M ∈ D(X) and N ∈ D(Y ).

Problem 50. (1) Let fi : Xi → S, i = 1, 2 be quasi-compact quasi-separated
morphisms of schemes. Let X := X1 ×S X2 and f := f1 ×S f2 : X → S.
Assume that f1 is flat. Prove the Künneth formula

Rf1∗M1 ⊗L Rf2∗M2 ' Rf∗(M1 �
L
S M2)

for Mi ∈ Dqcoh(Xi). Here M1 �LS M2 := Lp∗1M1 ⊗LOX Lp
∗
2M2 and pi : X → Xi

is the projection. (You may admit the fact that the flat base change theorem
extends to Dqcoh.)

(2) Let X1 and X2 be proper smooth schemes over a field k. Express the Hodge
numbers hp,q of X := X1 ×Spec(k) X2 in terms of those of X1 and X2.

Problem 51. Let A be a ring and let P = PnA, where n ≥ 0 is an integer.

(1) Show that Hq(P,Ωp
P/A(m)) = 0 unless one of the following holds:

(i) 0 ≤ p = q ≤ n and m = 0, in which case Hp(P,Ωp
P/A) ' A;

(ii) q = 0 and m > p;
(iii) q = n and m < p− n.

(Hint. Use the exact sequence

0→ Ωp
P/A →

p∧
(OP (−1)⊕n+1)→ Ωp−1

P/A → 0.

The fact Hq(P,Ωp
P/A(m)) = 0 for q > 0 and m > 0 is called Bott vanishing.)

Assume in the sequel that A = k is a field.

(b) Compute dimkH
q(P,Ωp

P/k(m)).

(c) Let X ⊆ P be a hypersurface of degree d smooth over k. Show that the
canonical map Hq(P,Ωp

P/k(m))→ Hq(X,Ωp
X/k(m)) is an isomorphism for p+

q < n− 1 and m < d. Deduce that Hq(X,Ωp
X/k(m)) = 0 for p+ q > n− 1 and

m > 0. (Remark. For k of characteristic zero, the last statement is a special
case of the Kodaira vanishing theorem.)
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Problem 52. Let k be an algebraically closed field and let X be a smooth projective
curve over k of genus g. The gonality of X, denoted gon(X), is defined to be the
least integer d ≥ 1 such that there exists a morphism X → P1

k over k of degree d.

(1) Show that gon(X) = min{deg(L) | h0(L) ≥ 2}.

(2) Show that gon(X) ≤ g + 1.

Problem 53. Let k be an algebraically closed field.

(1) Let X be a smooth projective curve of genus g over k. Let D be an effective
divisor on X of degree ≥ 2g. Show that D is rationally equivalent to an
effective divisor D′ on X disjoint from D. (Hint. Apply the Riemann-Roch
theorem to D and D − x for every x in the support of D.)

(2) Deduce that a curve C over k is either proper or affine. (Hint. Use Problem 41
to reduce to the case where C is smooth. Then apply (a) to an effective divisor
whose support is precisely C\C. Here C denotes a smooth compactification
of C.)

Problem 54. Let X be a nonempty scheme proper over a field k. The arithmetic
genus of X is defined to be ga(X) := (−1)dim(X)(χ(OX)− 1).

(1) Let X be a hypersurface of degree d in Pnk . Show that ga(X) =
(
d−1
n

)
.

(2) Assume that k is algebraically closed. Let X be a proper curve over k. Show
that ga(X) = g(Xν) +∑

x∈X dimk(OνX,x/OX,x), where Xν denotes the normal-
ization of X and OνX,x denotes the normalization of OX,x, and x runs through
the singular points of X. Deduce that ga(X) = 0 implies X ' P1

k.

Problem 55. Let k be a field, R = k[x0, . . . , xn], and X = Proj(R/I), where I ⊆ R
is the ideal generated by a regular sequence of c ≤ n homogeneous elements of
positive degrees.

(1) Show that X has dimension n − c. We call X a complete intersection in
Pnk . (Remark. In fact a complete intersection in Pnk can be characterized as
a scheme-theoretic intersection of dimension n− c of c hypersurfaces in Pnk .)

(2) Assume that n−c ≥ 1. Show that H0(Pnk ,O(m))→ H0(X,O(m)) is surjective
and H i(X,O(m)) = 0 for all m ∈ Z and 0 < i < n − c. Deduce that X is
geometrically connected.

(3) Let X be a complete intersection of a hypersurface of degree d and a hyper-
surface of degree e in P3

k. Show that ga(X) = 1
2de(d+ e− 4) + 1.
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