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Chapter 1

Fields and Galois theory

Convention 1.0.1. Rings are assumed to have identities and ring homomorphisms
are assumed to preserve the identities. Some authors, notably Noether, do not follow
this convention.

1.1 Introduction: Solvability by radicals
Let F be a field. One goal of this chapter is to address the question of solvability by
radicals of a polynomial equation anXn+· · ·+a0 = 0 in one variable with coefficients
in F . We let F [X] denote the ring of polynomials in X with coefficients in F .

Example 1.1.1. Assume that the characteristic of F 6= 2. Then the roots of a
quadratic polynomial P (X) = aX2 + bX + c ∈ F [X] (a 6= 0) are

α± = −b±
√

∆
2a

,

where ∆ = b2 − 4ac = a2(α+ − α−)2 is the discriminant.

Solutions of cubic and quartic equations by radicals were published by Cardano
in 1545 and attributed to del Ferro and Tartaglia for cubic equations and Ferrari
for quartic equations.

Example 1.1.2. Assume that the characteristic of F 6= 2, 3. Let P (X) = aX3 +
bX2 + cX + d ∈ F [X] (a 6= 0) be a cubic polynomial. Up to scaling we may assume
a = 1. Up to replacing X by X − b

3 , we may assume P (X) = X3 + cX + d. Write
P (X) = (X−α1)(X−α2)(X−α3). Let ω = 1

2(−1+
√
−3) be a primitive cube root

of unity. Consider the Lagrange resolvents

0 = α1 + α2 + α3,

β1 = α1 + ωα2 + ω2α3,

β2 = α1 + ω2α2 + ωα3

and the polynomial

(Y−β1)(Y−ωβ1)(Y−ω2β1)(Y−β2)(Y−ωβ2)(Y−ω2β2) = (Y 3−β3
1)(Y 3−β3

2) = Q(Y 3).

1



2 CHAPTER 1. FIELDS AND GALOIS THEORY

We have

β3
1 + β3

2 = (β1 + β2)(β1 + ωβ2)(β1 + ω2β2) = 3α1 · 3ω2α3 · 3ωα2 = −27d,
β1β2 = α2

1 + α2
2 + α2

3 − α1α2 − α2α3 − α3α1 = −3c.

Thus β3
1 and β3

2 are the roots of the polynomial Q(Z) = Z2 + 27dZ − 27c3. Let
γi = βi/3, i = 1, 2. Then (up to reordering)

γ3
1 = −d

2
+
√
d2

4
+ c3

27
, γ3

2 = −d
2
−
√
d2

4
+ c3

27
.

Take (γ1, γ2) satisfying γ1γ2 = −c/3. Finally,

α1 = γ1 + γ2, α2 = ω2γ1 + ωγ2, α3 = ωγ1 + ω2γ2.

Example 1.1.3. Assume that the characteristic of F 6= 2. Without loss of gener-
ality, let P (X) = X4 + cX2 + dX + e ∈ F [X] be a quartic polynomial. Write

P (X) = (X − α1)(X − α2)(X − α3)(X − α4).

Consider

β1 = 1
2

(α1 + α2 − α3 − α4),

β2 = 1
2

(α1 − α2 + α3 − α4),

β3 = 1
2

(α1 − α2 − α3 + α4)

and the polynomial

(Y−β1)(Y+β1)(Y−β2)(Y+β2)(Y−β3)(Y+β3) = (Y 2−β2
1)(Y 2−β2

2)(Y 2−β2
3) = Q(Y 2).

An elementary computation gives Q(Z) = Z3 + 2cZ2 + (c2− 4e)Z − d2 ∈ F [Z]. For
char(F ) 6= 2, 3, one can thus find β1, β2, β3 by radicals up to signs. Finally

α1 = 1
2

(β1 + β2 + β3), αi+1 = βi − α1, i = 1, 2, 3.

The correct signs can be determined by trial. This is Euler’s solution of the quartic
equation.

By contrast, polynomial equations of degree ≥ 5 are not solvable by radicals in
general.

Theorem 1.1.4 (Abel–Ruffini 1824). Let P (X) = Xn + T1X
n−1 + · · · + Tn ∈

F (T1, . . . , Tn)[X] be the generic monic polynomial of degree n ≥ 5. Here F (T1, . . . , Tn)
is the fraction field of the polynomial ring F [T1, . . . , Tn]. Then P (X) = 0 is not solv-
able by radicals.

We will deduce the theorem from Galois theory and Kummer theory.
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1.2 Fields and field extensions
Definition 1.2.1. A field is a nonzero commutative ring whose nonzero elements
are invertible.

We will usually denote fields by the letters F , E (for extensions), K (for Ger-
man Körper), L, and occasionally k. Other letters such as C are also used in the
literature.

Lemma 1.2.2. (1) A commutative ring A is a field if and only if 0 is a maximal
ideal A.

(2) Let F be a field and R a nonzero ring. Then every ring homomorphism ι : F →
R an injection.

Proof. (1) Indeed,

A is a field ⇐⇒ A is nonzero and aA = A for every nonzero a ∈ A
⇐⇒ A is nonzero and the only ideals are 0 and A

⇐⇒ 0 is a maximal ideal of A.

(2) The kernel of ι is an ideal of F not containing 1, and thus must be zero by
(1).

In particular every ring homomorphism ι : F → E of fields is an embedding. The
embedding ι factorizes as F ' ι(F ) ⊆ E, where F ' ι(F ) is an isomorphism (of
fields, namely of rings). Given an inclusion of fields F ⊆ E (preserving 1), K is called
a subfield of E and E is called a (field) extension of F , and we adopt the notation
E/F (not to be confused with quotient). We sometimes extend the terminology of
field extensions to field embeddings. See Remark 1.4.14 for an example of extension
of results from field extensions to field embeddings.

Inclusions of fields F ⊆ E ⊆ K is called a tower K/E/F of field extensions. In
this case, E is called an intermediate field of K/F .

Recall the characteristic of a ring R is the number n ∈ Z≥0 such that ker(Z →
R) = nZ. The characteristic of a field is 0 or a prime number. A prime field is a field
not containing any proper subfield. It is uniquely isomorphic to Q or Fp = Z/pZ
for some prime number p. Every field F admits a smallest subfield of F , called
the prime field of F . For any field embedding F ↪→ E, F and E have the same
characteristic.

Given a field extension E/F and a subset S ⊆ E, there exists a smallest subring
F [S] ⊆ E containing F and S. This is a commutative domain and its fraction field
F (S) ⊆ E is the smallest subfield containing F and S, called the subfield obtained
by adjoining S to F or the subfield generated by S over F .

Given field extensions K/F and K/F ′, the smallest subfield E ⊆ K containing
F and F ′ is called the composite of F and F ′ in K and denoted by F · F ′ (or FF ′).
Every element of F · F ′ has the form

a1b1 + · · ·+ ambm
c1d1 + · · ·+ cndn

,
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where a1, . . . , am, c1, . . . , cn ∈ F and b1, . . . , bm, d1, . . . , dn ∈ F ′ satisfying c1d1 +
· · · + cndn 6= 0. More generally, given a family of field extensions, (K/Fi)i∈I , the
smallest subfield E ⊆ K containing the Fi’s is called the composite of (Fi)i∈I in K
and denoted by ∨i∈I Fi. We have∨

i∈I
Fi =

∪
J⊆I

∨
j∈J

Fj

where J runs through finite subsets of I.

Warning 1.2.3. Given field embeddings ι : F ↪→ K, ι′ : F ′ ↪→ K, the composite
ι(F ) · ι′(F ′) depends on the choice of ι, ι′, and K. See Example 1.2.6 below.

Given a field extension E/F , E is an F -vector space.

Definition 1.2.4. The degree of a field extension E/F is [E : F ] = dimF (E) (a
cardinal number). A field extension is said to be finite if [E : F ] is finite.

Lemma 1.2.5. Let K/E/F be a tower of field extensions.
(1) We have [K : F ] = [K : E][E : F ] (as cardinal numbers). More precisely, if

(ai)i∈I is a basis for K/E and (bj)j∈J is a basis for E/F , then (aibj)(i,j)∈I×J
is a basis for K/F .

(2) K/F is finite if and only if both K/E and E/F are finite.

Proof. (1) Every element x ∈ K can be written uniquely as x = ∑
i∈I ciai with

ci ∈ E and each ci can be written uniquely as ci = ∑
j∈J ci,jbj with ci,j ∈ F . Thus

we have a unique expression

x =
∑

(i,j)∈I×J
ci,jaibj.

(2) follows from (1).

Example 1.2.6. Let E ⊆ C where E = Q( 3
√

2) and let ι : E ↪→ C be the embedding
carrying 3

√
2 to ω 3

√
2, where ω = e2πi/3 is a primitive cube root of unity. Then E ·ι(E)

is not isomorphic to E · E = E. Indeed, [E : Q] = 3 but

[E · ι(E) : Q] = [E · ι(E) : E][E : Q] = 6.

1.3 Simple extensions
A field extension K/F generated by one element α ∈ K is called a simple extension.
The element α is called a primitive element of K/F .

Definition 1.3.1. Let E/F be a field extension and let α ∈ E. We say that α is
algebraic over F if there exists a nonzero polynomial P ∈ F [X] such that P (α) = 0.
Otherwise we say that α is transcendental over F .

Example 1.3.2. 3
√

2, i ∈ C are algebraic over Q. It is well known that e, π ∈ R are
transcendental over Q.
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Consider the ring homomorphism hα : F [X]→ E carrying X to α, which induces
an isomorphism F [X]/ ker(hα) ∼−→ F [α]. By definition, α is algebraic if and only if
ker(hα) is nonzero. In this case, since F [X] is a Principal Ideal Domain (PID) and
F [X]× = F×, ker(hα) = (P (X)) for a unique monic polynomial P (X). Since ker(hα)
is a prime ideal, P (X) is irreducible. We call P (X) the minimal polynomial of α
over F .

Proposition 1.3.3. Let E/F be a field extension and let α ∈ E.
(1) If α is algebraic over F of minimal polynomial P (X), then hα induces an

isomorphism F [X]/(P (X)) ∼−→ F [α]. In this case F [α] = F (α), and [F (α) :
F ] = deg(P ).

(2) If α is transcendental over F , then hα induces isomorphisms F [X] ∼−→ F [α]
and F (X) ∼−→ F (α). In this case [F (α) : F ] is infinite.

In particular, α is algebraic over F if and only if F (α)/F is a finite extension.

Proof. (1) The first sentence is clear. Note that (P (X)) is a maximal ideal, F [α] is
a field, so that F [α] = F (α). Let d = deg(P ). Then 1, α, . . . , αd−1 form a basis for
F (α)/F .

(2) The first sentence is clear. For the second sentence, note that 1, α, α2, . . .
are F -linearly independent.

Remark 1.3.4. In (2), we have

[F (α) : F ] = card(F (α)) = max(card(F ),ℵ0).

Here the second equality follows from Lemma 1.3.5 below. Clearly [F (α) : F ] ≤
card(F (α)). It remains to show [F (α) : F ] ≥ max(card(F ),ℵ0). We have already
seen that [F (α) : F ] ≥ ℵ0. For the inequality [F (α) : F ] ≥ card(F ), it suffices to
note that 1

α−a , a ∈ F are F -linearly independent.

Lemma 1.3.5.
(1) Let M be a nonzero monoid and I a nonempty set. Then

max(card(M⊕I),ℵ0) = max(card(M), card(I),ℵ0).

(2) Let R be a nonzero ring and I a nonempty set. Then

card(R[Xi]i∈I) = max(card(R), card(I),ℵ0).

(3) Let R be an infinite commutative domain. Then card(Frac(R)) = card(R).

Proof. (1) Obviously card(M⊕I) ≥ max(card(M), card(I)). For the equality, the
case where I is finite being clear, we may assume that I is infinite. For J ⊆ I, let
NJ = M⊕J . We have NI = ∪

J∈P NJ , where P is the set of finite subsets of I. Note
that there is an obvious surjection ⨿n≥0 I

n → P so that card(P) = card(I). Thus

card(NI) ≤ card(P) · card(M) = card(I) · card(M) = max(card(M), card(I)).

(2) The underlying abelian group of R[Xi]i∈I is ⊕s∈S Rs, where S ' (Z≥0)⊕I is
the monoid of monomials in (Xi)i∈I . Applying (1) twice, we get

card(R[Xi]i∈I) = max(card(R[Xi]i∈I),ℵ0)
= max(card(R), card(S),ℵ0) = max(card(R), card(I),ℵ0).
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(3) We have R ⊆ Frac(R). Conversely, we have a surjection R × (R\{0}) →
Frac(R) carrying (a, b) to a/b.

Part (1) of Proposition 1.3.3 has the following converse.

Proposition 1.3.6. Let F be a field and let P (X) ∈ F [X] be a monic irreducible
polynomial. Then there exists a simple field extension F (α)/F such that P (X) is
the minimal polynomial of α over F .

Proof. We take α to be the image of X in F [X]/(P (X)).

Definition 1.3.7. Let E/F and E ′/F be field extensions. An embedding E ↪→ E ′

(resp. isomorphism E
∼−→ E ′) whose restriction to F is an identity is called an F -

embedding (resp. F -isomorphism).

The simple extension in the above proposition is unique up to (not necessarily
unique) F -isomorphism by the following.

Proposition 1.3.8. Let F (α)/F be a field extension with α algebraic and let P (X) ∈
F [X] be the minimal polynomial of α. Let E/F be a field extension and let β ∈ E
be a root of P (X). Then there exists a unique F -embedding ι : F (α) → E carrying
α to β. Moreover, ι induces an isomorphism F (α) ∼−→ F (β).

Proof. The uniqueness is clear. For the existence, it suffices to take ι = ιβι
−1
α , where

ια : F [X]/(P (X)) ∼−→ F (α) and ιβ : F [X]/(P (X)) ∼−→ F (β).

Example 1.3.9. Let E/F be an extension of prime degree. Then E = F (α) for
any α ∈ E\F (exercise).

Example 1.3.10. A quadratic extension E/F of characteristic 6= 2 has the form
E = F (

√
∆) for some ∆ ∈ F×\(F×)2. Here

√
∆ denotes a square root of ∆. By

contrast, even in characteristic 0, an extension of degree n ≥ 3 is not necessarily of
the form F ( n

√
a) for any a ∈ F .

More on algebraic elements
Remark 1.3.11. Let K/E/F be a tower of field extensions and α ∈ K algebraic
over F . Then α is algebraic over E and [E(α) : E] ≤ [F (α) : F ]. In fact, if
P (X) ∈ F [X] denotes the minimal polynomial of α over F , then P (α) = 0 so that
the minimal polynomial of α over E divides P (X).

Example 1.3.12. For E = Q( 3
√

2) and ω = e2πi/3 ∈ C as in Example 1.2.6,
[E(ω 3

√
2) : E] = 2 < 3 = [Q(ω 3

√
2) : Q].

Proposition 1.3.13. Let E/F be a field extension and let S ⊆ E be a set of
elements algebraic over F . Then F [S] = F (S).

Proof. It suffices to show that F [S] is a field. Since F [S] = ∪
T⊆S F [T ], where T

runs through finite subsets of S, we may assume that S = {a1, . . . , an} is finite. By
Proposition 1.3.3 (1) and induction, F [a1, . . . , ai] = F (a1, . . . , ai) for all i.
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Remark 1.3.14. It follows from Proposition 1.3.13 that for any set S of algebraic
elements over F , we have [F (S) : F ] ≤ max(card(S),ℵ0). Indeed, F (S) = F [S]
and the multiplicative monoid generated by S has cardinality ≤ max(card(S),ℵ0)
by Lemma 1.3.5 (1).
Proposition 1.3.15. Let E/F be a field extension. Then the set of elements α ∈ E
algebraic over F form a subfield of E. In other words, if α, β ∈ E are algebraic
over F , then α + β, αβ, and α−1 (if α 6= 0) are algebraic over F .
Proof. Indeed, F (α)/F is finite and F (α, β)/F (α) is finite by Remark 1.3.11. Thus
F (α, β)/F is finite, so that every γ ∈ F (α, β) is algebraic over F .

Note that α 6= 0 is a root of P (X) ∈ F [X] of degree n ≥ 0 if and only if 1/α is a
root of XnP (1/X) ∈ F [X]. Moreover, given polynomials in F [X] with α and β as
roots, we can construct polynomials in F [X] with α+ β and αβ as roots as follows.
Let P (X) = ∏m

i=1(X − αi) ∈ F [X], Q(Y ) = ∏n
j=1(Y − βj) ∈ F [Y ] with αi and βj

in an extension E of F . (The existence of such an extension is easy. See Lemma
1.5.4.) For every polynomial R(X,Y ) ∈ F [X,Y ], we have

m∏
i=1

n∏
j=1

(Z −R(αi, βj)) ∈ F [Z].

Indeed, the coefficients are symmetric polynomials over F in α1, . . . , αm and in
β1, . . . , βn.
Example 1.3.16. Let F be a field of characteristic 6= 2. For a, b ∈ F ,

√
a +
√
b is

a root of

P (X) = (X −
√
a−
√
b)(X −

√
a+
√
b)(X +

√
a−
√
b)(X +

√
a+
√
b)

= (X2 − a− b)2 − 4ab ∈ F [X].

It is easy to see that if a, b, ab ∈ F×\F×2, then P (X) is irreducible in F [X] (exercise).

Finitely generated extensions
Definition 1.3.17. A field extension E/F is said to be finitely generated if there
exists a finite subset S ⊆ E such that E = F (S).
Remark 1.3.18.

(1) Given a tower of field extensions K/E/F with F/E and E/K finitely gener-
ated, then K/F is finitely generated: F (S1)(S2) = F (S1 ∪ S2). We will see
later that the converse also holds (Proposition 1.24.23).

(2) Let E and E ′ be two intermediate fields of a field extension K/F with E ′/F
finitely generated. Then E · E ′/E is finitely generated: E · F (S) = E(S).

(3) In the situation of (2), if E/F and E ′/F are finitely generated, then E ·E ′/F
is finitely generated. This follows from (1) and (2).

Warning 1.3.19. Finite generation as a field extension is not the same as finite
generation as a commutative algebra. For example, F (X) is a finitely-generated
field extension of F , but not a finitely-generated commutative F -algebra. One can
show that a field extension E/F is finite if and only if E is a finitely-generated
commutative F -algebra [AM, Corollary 5.24].
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1.4 Algebraic extensions
Definition 1.4.1. We say that a field extension E/F is algebraic if every α ∈ E is
algebraic over F . Otherwise we say that E/F is transcendental.

Note that F (α)/F is algebraic if and only if α is algebraic. Indeed, the “only if”
part is trivial and the “if” part follows from the last assertion of Proposition 1.3.3.

Proposition 1.4.2. Let E/F be a field extension. Then E/F is finite if and only
if it is algebraic and finitely generated.

Proof. We have already seen that if E/F is finite and a1, . . . , ad form an F -linear
basis, then each α ∈ E is algebraic over F and E = F (a1, . . . , ad). Conversely, if
E = F (a1, . . . , an) with ai algebraic over F , we have seen that Fi/Fi−1 is finite,
where Fi = F (a1, . . . , ai).

Proposition 1.4.3. Let E/F be an algebraic extension. Then every F -endomorphism
of E is an F -automorphism.

Proof. Let ι : E → E be an F -endomorphism and let x ∈ E. Let P (X) ∈ F [X]
be the minimal polynomial of x and let S be the set of roots of P in E. Then ι
permutes S. Thus x ∈ S is in the image of ι.

Proposition 1.4.4. (1) Let K/E/F be a tower of field extensions. Then K/F is
algebraic if and only if both K/E and E/F are algebraic.

(2) Let E and E ′ be two intermediate fields of a field extension K/F with E ′/F
algebraic. Then E · E ′/E is algebraic.

(3) Let Ei, i ∈ I be a family of intermediate fields of a field extension K/F with
Ei/F algebraic. Then ∨

i∈I Ei/F is algebraic.

Proof. (1) The “only if” part is trivial. Conversely, if E/F is algebraic and α is
algebraic with minimal polynomial P (X) = ∑d

i=0 aiX
i over E, then α is algebraic

over E0 = F (a0, . . . , ad), which is finite over F , so that F (α) ⊆ E0(α) is finite
over F .

(2) E · E ′ = E(E ′) is algebraic over E by Proposition 1.3.15.
(3) We may assume that I is finite. By induction, we then reduce to the case

I = {1, 2}, which follows from (1) and (2).

Proposition 1.4.5. Let E and E ′ be two intermediate fields of a field extension
K/F with E ′/F algebraic. Then [E · E ′ : E] ≤ [E ′ : F ]. More precisely, for any
S ⊆ E ′ satisfying E ′ = ∑

e∈S Fe, we have E · E ′ = ∑
e∈S Ee.

The inequality generalizes Remark 1.3.11. The inequality fails for E ′/F tran-
scendental in general, by Remark 1.3.4.

Proof. It suffices to show this for one S. Taking S = E ′, we have E ·E ′ = E(E ′) =
E[E ′] = ∑

e∈E′ Ee. Here we used Proposition 1.3.13.

Remark 1.4.6. Using tensor product, one can reformulate the proposition as fol-
lows: the homomorphism E ⊗F E ′ → E · E ′ carrying a ⊗ b to ab is surjective for
E ′/F algebraic. By symmetry, the same holds for E/F algebraic.

Let us mention that tensor product is an important tool in the study of composite
fields. Note that in general E ⊗F E ′ does not depend on K.
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Corollary 1.4.7. Let E and E ′ be two intermediate fields of a field extension K/F
with E ′/F finite. Then E ·E ′/E is finite. In particular, if E/F and E ′/F are both
finite, then E · E ′/F is finite.

Proof. This follows immediately from Proposition 1.4.5 (or from Proposition 1.4.4
and Remark 1.3.18).

Algebraically closed fields
Definition 1.4.8. (1) Let E/F be a field extension. We say that F is alge-

braically closed in E if there is no algebraic subextension of E/F other than
F .

(2) We say that a field F is algebraically closed if there is no algebraic extension
of F other than F itself.1

Let E/F be a field extension. The elements α ∈ E algebraic over F form a field
Ealg, called the algebraic closure of F in E. Note that Ealg/F is algebraic and Ealg
is algebraically closed in E by Proposition 1.4.4 (1).

Remark 1.4.9. Let F be a field. The following conditions are equivalent:
(1) F is algebraically closed.
(2) Every polynomial P (X) ∈ F [X] of degree ≥ 1 has a root in F .
(3) Every polynomial P (X) ∈ F [X] of degree ≥ 1 splits into linear factors.

Indeed, (1) ⇐⇒ (2) ⇐⇒ (3). (For (1) =⇒ (2), apply Proposition 1.3.6 to a
monic irreducible factor of P (X).)

Let E/F be a field extension with E algebraically closed. Then the algebraic
closure Ealg of F in E is algebraically closed. Indeed, if P (X) ∈ Ealg[X] is a
polynomial of degree ≥ 1, then it admits a root α ∈ E. Since α is algebraic over
Ealg, we have α ∈ Ealg by Proposition 1.4.4 (1).

Theorem 1.4.10 (Fundamental Theorem of Algebra). The field C of complex num-
bers is algebraically closed.

We will give a proof based on Galois theory in Section 1.18.

Definition 1.4.11. Let E/F be a field extension. We say that E is an algebraic
closure of F if E/F is algebraic and E is algebraically closed. Algebraic closures of
F are denoted by F alg or F̄ .

Example 1.4.12. (1) C is an algebraic closure of R.
(2) The algebraic closure Qalg of Q in C is an algebraic closure of Q.

Algebraic closures exist in general and are unique in the following sense.

Theorem 1.4.13. Let F be a field.
(1) There exists an algebraic closure F alg/F .
(2) For field extensions E/F and K/F with E/F algebraic and K algebraically

closed, there exists an F -embedding E ↪→ K, which is an F -isomorphism if
both E and K are algebraic closures of F .

1In French, (1) is algébriquement fermé while (2) is algébriquement clos.
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We postpone the proof to the next section.

Remark 1.4.14. It is often necessary to apply (2) in the context of field embeddings
instead of field extensions. In this context, (2) takes the following form: For field
embeddings i : F ↪→ E and j : F ↪→ K with E/i(F ) algebraic and K algebraically
closed, there exists an embedding ι : E ↪→ K satisfying ι ◦ i = j. Moreover, ι is an
isomorphism if E is an algebraic closure of i(F ) and K is an algebraic closure of
j(F ).

Given a field extension E/F , we let Aut(E/F ) denote the group of F -automorphisms
of E. The group law is given by composition. For any field F with algebraic closure
F alg, Aut(F alg/F ) is called the absolute Galois group of F . This group, equipped
with a topology that we will specify later, governs all algebraic extensions of F at
least for F of characteristic 0.

1.5 Splitting fields and normal extensions
Definition 1.5.1. Let E/F be a field extension and P a family of polynomials in
F [X] of degree ≥ 1. We say that P splits in E[X] if every P ∈ P splits into linear
factors in E[X]. We say that E is a splitting field of P over F if moreover the roots
of P ∈ P generate E/F .

A splitting field of P over F is an algebraic extension of F . A splitting field of
F [X]\F is precisely an algebraic closure of F by the following lemma, which extends
(1) ⇐⇒ (3) of Remark 1.4.9.

Lemma 1.5.2. Let E/F be an algebraic field extension. Assume that every poly-
nomial P (X) ∈ F [X] of degree ≥ 1 splits into linear factors in E[X]. Then E is
algebraically closed.

Proof. Let K/E be an algebraic extension. Then K/F is an algebraic extension by
Proposition 1.4.4 (1). Let α ∈ K. Since the minimal polynomial of α over F splits
into linear factors in E[X], we have α ∈ E. Thus K = E.

We will prove the following generalization of Theorem 1.4.13. To see that Theo-
rem 1.5.3 (2) implies Theorem 1.4.13 (2), note that in the latter we may replace E
by an algebraic closure of E.

Theorem 1.5.3. Let F be a field and P a family of polynomials in F [X] of degree
≥ 1.

(1) There exists a splitting field of P over F .
(2) For field extensions E/F and K/F such that E/F is generated by some roots of

polynomials in P and P splits in K[X], there exists an F -embedding E ↪→ K,
which is an F -isomorphism if E and K are both splitting fields of P over F .

We start by constructing a splitting field in the case where P consists of one
single polynomial.

Lemma 1.5.4. Let F be a field and P (X) ∈ F [X] a polynomial of degree n ≥ 1.
Then there exists a splitting field E of P (X) over F such that [E : F ] ≤ n!.
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Proof. We proceed by induction on n. The case n = 1 is trivial. For n ≥ 2, there
exists an extension F (α)/F of degree ≤ n such that P (α) = 0 by Proposition 1.3.6
applied to a monic irreducible factor of P (X), and we apply induction hypothesis
to P (X)/(X − α) ∈ F (α)[X].

This also settles the construction of the splitting field of finitely many polyno-
mials, which is the same as the splitting field of the product of the polynomials. We
will use the following lemma to handle the case where P is infinite.

Lemma 1.5.5. Let (Ei/F )i∈I be a family of field extensions. Then there exists a
field extension K/F equipped with F -embeddings Ei ↪→ K.

Proof. Consider the commutative ring R = ⊗
i∈I Ei, where the tensor product is

taken over F . Explicitly, choosing an F -linear basis Si 3 1 for each Ei, R is an F -
vector space with a basis consisting of ⊗i∈I ei, where ei ∈ Si for all i and ei = 1 for
all but finitely many i, with multiplication defined in the obvious way (see Remark
3.1.7 for a generalization). Since R is nonzero, it admits a maximal ideal m by the
axiom of choice. Take K = R/m.

Proof of Theorem 1.5.3. (1) For every P ∈ P , choose a splitting field FP/F of P ,
which exists by Lemma 1.5.4. By Lemma 1.5.5, there exists an extension L/F and
F -embeddings ιP : FP ↪→ L for all P . We may assume that ιP (FP ) generate L/F .
Then L is a splitting field of P over F .

(2) Consider the set S of pairs (L, ι), where L is an intermediate field for E/F
and ι : L ↪→ K. We say (L, ι) ≤ (L′, ι′) if L ⊆ L′ and ι′ extends ι. This defines a
partial order on S. Every chain (Li, ιi) has an upper bound (∪i Li, ι), with ι given by
ιi. By Zorn’s Lemma, there exists a maximal element (L, ι). For α ∈ E satisfying
P (α) = 0 for some P ∈ P , ι extends to an F -embedding L(α) ↪→ K. By the
maximality of (L, ι), we have α ∈ L. Thus E = L. The last assertion is clear.

Splitting fields have the following characterizations.

Theorem 1.5.6. Let E/F be an algebraic extension. The following conditions are
equivalent:

(1) Every irreducible polynomial P (X) ∈ F [X] having a root in E splits in E[X].
(2) There exists a family P of polynomial in F [X] of degree ≥ 1 such that E is

the splitting field of P over F .
(3) For every extension K/E and every F -embedding ι : E → K, we have ι(E) =

E.
(4) There exists an extension K/E with K algebraically closed such that for every

F -embedding ι : E → K, we have ι(E) ⊆ E.

Proof. (1) =⇒ (2). It suffices to take P ⊆ F [X] to be the set of irreducible
polynomials having a root in E.

(2) =⇒ (3). For every P ∈ P , ι permutes the roots of P . Since E is generated
by such roots over F , ι(E) = E.

(3) =⇒ (4). We can take K to be an algebraic closure of E.
(4) =⇒ (1). Let x ∈ E be a root of some P ∈ P and let y be another root

of P . Consider the F -embedding F (x) → K carrying x to y. By Remark 1.4.14,
this extends to an F -embedding ι : E ↪→ K. By (4), y = ι(x) ∈ E.
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Definition 1.5.7. A field extension E/F satisfying the conditions of Theorem 1.5.6
is said to be normal.

Remark 1.5.8. A finite normal extension E/F is the splitting field of one polyno-
mial P (X). Indeed, one can take P (X) to be the product of the minimal polynomials
of a finite set of generators of E/F .

Example 1.5.9. Every quadratic extension E/F is normal. Indeed, every irre-
ducible polynomial in F [X] admitting a root in E splits in E[X].

Warning 1.5.10. A subextension of a normal extension is not normal in general.
For example, let E ⊆ C be the splitting field of X3−2 over Q and let F = Q( 3

√
2) ⊊

E. Then E/Q is normal but F/Q is not. We have the following criterion for the
normality of a subextension.

Proposition 1.5.11. Let K/F be a normal extension and let E/F be a subexten-
sion. The following conditions are equivalent:

(1) E/F is normal;
(2) For every F -embedding ι : E ↪→ K, ι(E) ⊆ E;
(3) For every F -automorphism σ of K, σ(E) ⊆ E.

Proof. (1) =⇒ (2). This is a special case of Condition (3) of Theorem 1.5.6.
(2) =⇒ (3). It suffices to take ι = σ|E.
(3) =⇒ (1). Let Kalg be an algebraic closure of K and let ι : E → Kalg be

an F -embedding. By Remark 1.4.14, ι extends to an F -embedding σ : K → Kalg.
Since K/F is normal, σ(K) = K and ι(E) = σ(E) ⊆ E.

The proof above also shows the following property of normal extensions.

Proposition 1.5.12. Let K/E/F be a tower of field extensions such that K/F is
normal. Let ι : E → K be an F -embedding. Then ι extends to an F -automorphism
of K.

Proof. Let Kalg be an algebraic closure of K. By Remark 1.4.14, ι extends to an
F -embedding σ : K → Kalg. Since K/F is normal, σ(K) = K.

Alternatively, the proposition also follows directly from a version of Theorem
1.5.3 (2) for field embeddings. Let P ⊆ F [X] be a family such that K is the splitting
field of P over F . Let (K, i) denote K regarded as an extension of E via the inclusion
i : E → K and let (K, ι) denote K regarded as an extension of E via ι. Then (K, i)
and (K, ι) are both splitting fields of P over E. By Theorem 1.5.3 (2), there exists
an E-embedding (K, i) → (K, ι), namely an embedding σ : K → K extending ι.
In particular, σ is an F -endomorphism, which is necessarily an F -isomorphism by
Proposition 1.4.3.

Corollary 1.5.13. Let K/E/F be a tower of extensions with K/F and E/F normal.
Then the homomorphism Aut(K/F )→ Aut(E/F ) given by σ 7→ σ|E is surjective.

Given a normal extension E/F , the elements of an orbit of Aut(E/F ) are said
to be conjugates of each other over F . Corollary 1.5.13 implies that for a tower of
extensions K/E/F with K/F and E/F normal, the conjugates over F of α ∈ E in
E and in K coincide.
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Definition 1.5.14. Given an algebraic extension E/F , the splitting field of the
minimal polynomials Px of elements of x ∈ E over F is called the normal closure of
E/F .

In the above definition, it suffices in fact to restrict to a set of generators of E/F .
In particular, the normal closure of a finite extension is finite.

Warning 1.5.15. For a tower of field extensions K/E/F with both E/F and
K/E normal, K/F is not normal in general. For example, both Q(

√
2)/Q and

Q( 4
√

2)/Q(
√

2) are normal, but Q( 4
√

2)/Q is not normal: Q( 4
√

2) ⊆ R but the split-
ting field of X4−2 over Q in C contains i (one checks easily that X4−2 is irreducible
over Q).

Proposition 1.5.16. (1) Let K/E/F be a tower of field extensions. Then K/F
normal implies K/E normal.

(2) Let E and E ′ be two intermediate fields of a field extension K/F . Then E ′/F
normal implies E · E ′/E normal.

(3) Let Ei, i ∈ I be a family of intermediate fields of a field extension K/F .
Then Ei/F normal for all i ∈ I implies ∩i∈I Ei (assuming I nonempty) and∨
i∈I Ei/F normal.

Proof. For (2), if E ′/F is the splitting field of a family of polynomials P , then
E · E ′/E is the splitting field of P . For (1) and (3), we check Condition (4) of
Theorem 1.5.6, using Condition (3) of Theorem 1.5.6 for each Ei.

Remark 1.5.17. Let E and E ′ be two intermediate fields of a field extension K/F
with E ′/F normal. The composite field E ·E ′ does not depend on the choice of K,
up to F -isomorphisms. More precisely, given embeddings ι : E ↪→ L and ι′ : E ′ ↪→ L,
we have an F -isomorphism E ·E ′ ' ι(E) · ι′(E ′). Indeed, if P denotes the collection
of minimal polynomials of elements of E ′ over F , then both composite fields are
splitting fields of P over E.

1.6 Separable extensions and purely inseparable
extensions

Definition 1.6.1. Let F be a field.
(1) A nonzero polynomial P ∈ F [X] is said to be separable if all roots of P in a

splitting field of P are simple. A nonzero polynomial P ∈ F [X] is said to be
purely inseparable if P has only one root in a splitting field of P .

(2) In a field extension E/F , an algebraic element α is said to be separable (resp.
purely inseparable) over F if its minimal polynomial over F separable.

(3) An algebraic extension E/F is said to be separable (resp. purely inseparable)
if every element α ∈ E is separable (resp. purely inseparable) over F .2,3

2In these notes, separable extensions are assumed to be algebraic. We will not discuss the
notion of separability for transcendental extensions here.

3French has a word for “purely inseparable” – radiciel.
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Remark 1.6.2. If α is separable and purely inseparable over F , then α ∈ F . If
E/F is separable and purely inseparable over F , then E = F .

The derivative of a polynomial P = ∑d
k=0 akX

k is P ′ = ∑d
k=1 kakX

k−1.
To unify statements in all characteristics, it is convenient to adopt the following

terminology: the characteristic exponent p of a field F is max{1, char(F )}. The
Frobenius endomorphism F → F carrying x to xp is a field embedding:

(x+ y)p =
p∑
i=0

(
p

i

)
xiyp−i = xp + yp.

In particular, p-th root of an element of F is unique when it exists.

Proposition 1.6.3. Let F be a field of characteristic exponent p.
(1) A nonzero polynomial P ∈ F [X] is separable if and only if (P, P ′) = (1).
(2) An irreducible polynomial P ∈ F [X] is separable if and only if P ′ 6= 0. In

particular, if p = 1, every irreducible polynomial P ∈ F [X] is separable; if
p > 1, an irreducible polynomial P ∈ F [X] is inseparable if and only if P =
P1(Xp) for some P1 ∈ F [X].

(3) Every irreducible polynomial P ∈ F [X] can be written as P (X) = Pk(Xpk)
with k ∈ Z≥0 and Pk ∈ F [X] separable. This expression is unique for p > 1.

(4) The polynomial aXpk − b, a ∈ F×, b ∈ F , k ∈ Z≥0 is purely inseparable.
Conversely, every irreducible purely inseparable polynomial in F [X] is of this
form.

Proof. (1) Up to replacing F by an algebraic closure, we may assume that P splits
in F . Let a be a root in F . Then P (X) = (X − a)Q(X), so that P ′(X) =
Q(X) + (X − a)Q′(X) and P ′(a) = Q(a). Thus a is a simple root of P if and only
if P ′(a) 6= 0. Thus P is separable if and only if P and P ′ have no common root.

(2) If P ′ = 0, then (P, P ′) 6= (1). Conversely, if (P, P ′) 6= (1), then P | P ′, which
implies P ′ = 0 because deg(P ′) < deg(P ).

(3) For p = 1, Pk = P is separable for any k. For p > 1, we apply the last
assertion of (2) recursively to construct P0, P1, . . . . The process will stop because
the degree is strictly decreasing: deg(Pi) = deg(P )/pi.

(4) Clearly aXpk − b = a(X − pk
√
b/a)pk is purely inseparable. Conversely, if

P (X) = Pk(Xpk) as in (3) is purely inseparable, then Pk must be both separable
and purely inseparable, and hence of degree 1.

Remark 1.6.4. By (4), for a field extension E/F of characteristic exponent p,
x ∈ E is purely inseparable over F if and only if xpk ∈ F for some k ∈ Z≥0. Let k be
the smallest such number and let a = xp

k . Then Xpk − a is the minimal polynomial
of x and [F (x) : F ] = pk. It follows that if E/F is finite and purely inseparable,
then [E : F ] is a power of p.

Example 1.6.5. The Frobenius embedding F → F gives rise to a purely inseparable
extension F/F p, where F p denotes the image of the Frobenius embedding. For
example, for F = Fp(X), we have F p = Fp(Xp).

Next we discuss the relationship between separability and embeddings.
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Lemma 1.6.6. Let E/F be a purely inseparable extension. Then the restriction
map Hom(E,K)→ Hom(F,K) is an injection for every field K.

Proof. We may assume that K and F have the same characteristic exponent p. Let
x ∈ E. Then xp

k ∈ F for some k. For any ι : E → K, ι(x) is the unique pk-th root
of ι(xpk).

Definition 1.6.7. The separable degree of a finite extension E/F is [E : F ]sep =
card(HomF (E,F alg)), where F alg denotes an algebraic closure of F . This definition
does not depend on the choice of F alg.

Lemma 1.6.8. Let F be a field of characteristic exponent p, F (x)/F a simple
extension with x algebraic over F of minimal polynomial P (X) = Pk(Xpk), with Pk
separable. Then [F (x) : F ]sep = deg(Pk) | [F (x) : F ]. In particular, x is separable
over F if and only if [F (x) : F ]sep = [F (x) : F ]. Moreover, x is purely inseparable
over F (xpk) and xpk is separable over F .

Proof. The first assertion follows from the fact that P has exactly deg(Pk) distinct
roots in F alg. For the last assertion, note that the minimal polynomial of xpk over
F is Pk.

Lemma 1.6.9. Let F ⊆ E ⊆ K be a tower of finite extensions. Then [K : F ]sep =
[K : E]sep[E : F ]sep.

Proof. The fiber of the restriction map HomF (K,F alg)→ HomF (E,F alg) at any ι ∈
HomF (E,F alg) can be identified with HomE(K,Ealg), where Ealg is F alg, regarded
as an algebraic closure of E via ι.

Remark 1.6.10. More generally, the above proof shows that for a tower F ⊆ E ⊆ K
of algebraic extensions, we have an equality of cardinals

card(HomF (K,F alg)) = card(HomF (E,F alg))card(HomE(K,Ealg)).

Remark 1.6.11. Let F ⊆ E ⊆ K be field inclusions and α ∈ K separable (resp.
purely inseparable) over F . Then α is separable (resp. purely inseparable) over E.
This follows from the fact that any factor of a separable (resp. purely inseparable)
polynomial is separable (resp. purely inseparable).

Theorem 1.6.12. Let E/F be an algebraic extension.
(1) The elements of E separable over F form a subfield Esep, called the separa-

ble closure of F in E. Moreover, Esep/F is separable and E/Esep is purely
inseparable.

(2) For E/F finite, we have [E : F ]sep = [Esep : F ]. In particular,
(a) a finite extension E/F is separable if and only if [E : F ]sep = [E : F ];
(b) a finite extension E/F is purely inseparable if and only if [E : F ]sep = 1.

Proof. Let us start by showing (a). WriteE = F (a1, . . . , an) and let Fi = F (a1, . . . , ai).
Applying Lemma 1.6.8 to Fi/Fi−1 and the tower properties of degree and separa-
ble degree, we obtain [E : F ]sep | [E : F ] and that if E/F is separable, then
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[E : F ]sep = [E : F ]. Now assume [E : F ]sep = [E : F ]. For any intermediate field
F ′ of E/F , we have

[E : F ′]sep[F ′ : F ]sep = [E : F ]sep = [E : F ] = [E : F ′][F ′ : F ].

Since [E : F ′]sep | [E : F ′] and [F ′ : F ]sep | [F ′ : F ], we have [F ′ : F ]sep = [F ′ : F ]. In
particular, for every x ∈ E, [F (x) : F ]sep = [F (x) : F ], so that x is separable over F
by Lemma 1.6.8.

(1) For the first assertion, it suffices to show that if x, y ∈ E are separable over F ,
then F (x, y) is separable over F . By Lemma 1.6.8,

[F (x, y) : F ]sep = [F (x, y) : F (x)]sep[F (x) : F ]sep = [F (x, y) : F (x)][F (x) : F ] = [F (x, y) : F ].

By (a), F (x, y) is separable over F . By definition, Esep/F is separable. By the last
assertion of Lemma 1.6.8, E/Esep is purely inseparable.

(2) By Lemma 1.6.6, the restriction map HomF (E,F alg)→ HomF (Esep, F
alg) is

a bijection. Thus [E : F ]sep = [Esep : F ]sep = [Esep : F ] by (a).

Definition 1.6.13. For a finite extension E/F , we define the inseparable degree by
[E : F ]insep = [E : Esep].

We have [E : F ] = [E : F ]sep[E : F ]insep.

Warning 1.6.14. By Remark 1.6.4, for an algebraic extension E/F , the purely
inseparable elements of E over F form a subfield Einsep. However, E/Einsep is not
separable in general for p > 1. For example, if k is a field of characteristic p with
x ∈ k\kp (e.g. k = Fp(X) with x = X), E = k(Y ), F = k(Y p2

/(Y p + x)), then
Einsep = F and Esep = k(Y p) [B2, §V.7, exerc. 2]. (For the last equality note that
Y p is a root of the separable polynomial Zp − aZ − ax ∈ F [Z], where a = Y p2

Y p+x .)
Nonetheless, we will see later that E/Einsep is separable if E/F is normal.

Proposition 1.6.15. (1) Let K/E/F be a tower of field extensions. Then K/F
is separable if and only if both K/E and E/F are separable.

(2) Let E and E ′ be two intermediate fields of a field extension K/F with E ′/F
separable. Then E · E ′/E is separable.

(3) Let Ei, i ∈ I be a family of intermediate fields of a field extension K/F with
Ei/F separable. Then ∨

i∈I Ei/F is separable.
The same holds with “separable” replaced everywhere by “purely inseparable”.

Proof. The only nontrivial part is K/E and E/F separable implies K/F separable.
As in the proof of Proposition 1.4.4 (1), we may assume K/E and E/F finite. Then
the assertion follows from Theorem 1.6.12.

The following remark will not be used in the rest of these notes.

Remark 1.6.16. For an algebraic extension E/F , we define [E : F ]sep := [Esep : F ],
where Esep denotes the separable closure of F in E.

(1) Theorem 1.6.12 (2) ensures that this definition extends Definition 1.6.7. More
generally, for [E : F ]sep finite, the same proof gives

card(HomF (E,F alg)) = [E : F ]sep.
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(2) For [E : F ]sep infinite, we have

card(HomF (E,F alg)) = 2[E:F ]sep > [E : F ]sep.

It is easy to see card(HomF (E,F alg)) ≤ 2[E:F ]sep . Indeed, the restriction maps
induce an injection HomF (E,F alg) → ∏

x HomF (F (x), F alg), where x runs
through an F -linear basis of Esep. The proof of the equality is harder. Note
first that the extension Esep/F can be constructed by transfinite induction:
there exists an ordinal α, intermediate fields Eβ of Esep/F for all β ≤ α and
xβ ∈ Esep for all β < α such that
(a) E0 = F ;
(b) Eβ ⊊ Eβ+1 = Eβ(xβ) for all β < α;
(c) If β ≤ α is a limit ordinal, Eβ = ∪

γ<β Eγ;
(d) Eα = Esep.

The restriction maps induce a bijection

HomF (E,F alg) '
∏
β<α

HomEβ
(Eβ+1, E

alg
β ).

Moreover, since {xβ}β<α generates Esep/F , we have card(α) ≥ [E : F ]sep by
Remark 1.3.14. (In fact, we have card(α) = [E : F ]sep, since {xβ}β<α is
F -linearly independent.) Thus card(HomF (E,F alg)) = 2[E:F ]sep .
For example, for E = Q(21/2∞) = Q(

√
2, 4
√

2, 8
√

2, . . . ), [E : Q] = ℵ0 is count-
able, but HomQ(E,Qalg) = limn Hom(Q(21/2n),Qalg) has the continuum as
cardinality.

(3) Lemma 1.6.9 admits the following generalization: For any tower F ⊆ E ⊆ K
of algebraic extensions, we have

[K : F ]sep = [K : E]sep[E : F ]sep.

In fact, if Esep and Ksep denote the separable closures of F in E and K,
respectively, then K/EKsep is purely inseparable and EKsep/E is separable,
so that EKsep is the separable closure of E in K. Moreover, [EKsep : E] =
[Ksep : Esep] by Example 3.1.13.

Separably closed fields and perfect fields
Definition 1.6.17. We say that a field F is separably closed if every separable
extension of F is trivial.

By Theorem 1.6.12, F is separably closed if and only if every algebraic extension
of F is purely inseparable.

A splitting field for all separable irreducible polynomials in F [X] is called a
separable closure F sep of F . Note that F sep/F is separable and F sep is separably
closed (here we used Proposition 1.6.15 (1)).

Proposition 1.6.18. Let F be a field. The following conditions are equivalent:
(1) Every algebraic extension of F is separable.
(2) Every purely inseparable extension of F is trivial.
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(3) The Frobenius endomorphism F → F is an automorphism.

Proof. (1) =⇒ (2). By (1), every purely inseparable extension is separable and
hence trivial.

(2) =⇒ (3). By (2), the extension F → F given by the Frobenius embedding
is trivial.

(3) =⇒ (1). For E/F algebraic and x ∈ E, let P (X) = Pk(Xpk) be the minimal
polynomial of x over F , with Pk = ∑

i aiX
i separable and k ≥ 0. By (3), there exists

bi ∈ F such that bp
k

i = ai. Then P (X) = (∑i biX
i)pk , so that pk = 1 and P = P0 by

the irreducibility of P . It follows that x is separable over F .

Definition 1.6.19. We say that a field F is perfect if it satisfies the above conditions.

This notion extends to commutative rings of characteristic p > 0 using Condition
(3).

Example 1.6.20. (1) Any field of characteristic 0 is perfect.
(2) Any finite field is perfect. In fact, the Frobenius embedding of a finite field

must be an isomorphism.

Given a field F , a splitting field for all purely inseparable irreducible polyno-
mials in F [X] is called a perfect closure (or perfection) and denoted F perf . Note
that F perf/F is purely inseparable and F perf is perfect. We have F perf = F 1/p∞ =∪∞
n=0 F

1/pn . Here F 1/pn = {a ∈ F perf | apn ∈ F}. Note that the n-th iterate of
Frobenius induces an isomorphism F 1/pn ∼−→ F .

Example 1.6.21. Fp(X1/p∞) := ∪∞
n=0 Fp(X1/pn) is a perfect closure of Fp(X).

Perfect closures have the following universal property.

Proposition 1.6.22. Let F be a field with F perf as a perfect closure and let K
be a perfect field. Then any embedding F → K extends uniquely to an embedding
F perf → K.

Proof. The extension exists by Theorem 1.5.3 and is unique by Lemma 1.6.6.

In the language of adjoint functors, F 7→ F perf defines a left adjoint of the
inclusion functor from the category of perfect fields to the category of fields.

1.7 The Primitive Element Theorem
Theorem 1.7.1. Every finite separable extension E/F admits a primitive element.
More precisely, for F infinite and E = F (x1, . . . , xn)/F finite separable, E/F has a
primitive element of the form ∑n

i=1 tixi for some t1, . . . , tn ∈ F .

Lemma 1.7.2. Let F be a field. Then every finite subgroup A of F× is cyclic. In
particular, F× is cyclic if F is a finite field.

Proof. By the structure theorem of finite abelian groups, A ' ⊕n
i=1 Z/diZ with

d1 | · · · | dn. Note that #A = d1 · · · dn and each a ∈ A satisfies adn = 1. However,
Xdn − 1 has at most dn roots. Thus d1 = · · · = dn−1 = 1 and A ' Z/dnZ is
cyclic.
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Proof of Theorem 1.7.1. If F is a finite field, then E is also finite. In this case, any
generator of E× is a primitive element for E/F .

Assume F infinite and E = F (x1, . . . , xn). By induction it suffices to show
that F (x1, x2) = F (x1 + tx2) for some t ∈ F . We will show that F (x1, x2) =
F (x1 +tx2) for all but finitely many t ∈ F . The idea is to construct two polynomials
in F (x1+tx2)[X] with x2 as the only common root. Let Pi be the minimal polynomial
of xi over F . Let R ∈ F (x1 + tx2)[X] be the monic greatest common divisor of
P1(x1 + tx2 − tX) and P2(X). Then x2 is a root of R. For every root z of R in an
algebraic closure F alg of F (x1, x2), y = x1 + tx2 − tz is a root of P1. Let T be the
finite set of t ∈ F of the form t = y−x1

x2−z for some root z ∈ F alg of P2 different from
x2 and some root y ∈ F alg of P1. Let t ∈ F\T . Then x2 is the only root of R in
F alg. Since R | P2 is separable, we have R = X − x2. Thus x2 ∈ F (x1 + tx2) and
x1 = (x1 + tx2)− tx2 ∈ F (x1 + tx2).

Example 1.7.3. Let F = Fp(X,Y ). Then F/F p is a finite purely inseparable
extension with no primitive element. Indeed, [F : F p] = p2, but [F p(x) : F p] = p for
every x ∈ F\F p.

The following theorem, which gives a necessary and sufficient condition for simple
extensions, will not be used in the rest of these notes.

Theorem 1.7.4 (Steinitz). A finite extension K/F admits a primitive element if
and only if there are only finitely many intermediate fields F ⊆ E ⊆ K.

Proof. The “only if” part. As before we may assume that F is infinite. By Lemma
1.7.5 below, there exists x ∈ K that is not contained in any intermediate field
F ⊆ E ⊊ K. Since F ⊆ F (x) ⊆ K. We must have F (x) = K.

The “if” part. Let x ∈ K be a primitive element. Let P ∈ F [X] be the minimal
polynomial of x over F . Consider the map

{intermediate fields E of K/F} → {factors of P in K[X]}
E 7→ PE,

where PE = Xd + ad−1X
d−1 + · · · + a0 ∈ E[X] denotes the minimal polynomial of

x over E. We claim that E = F (a0, . . . ad−1). Clearly F (a0, . . . ad−1) ⊆ E. Since
P (x) = 0, [K : F (a0, . . . , ad−1)] ≤ d = [K : E]. This finishes the proof of the claim.
It follows from the claim that the map E 7→ PE is an injection. Since there are only
finitely many factors of P , the same holds for intermediate fields of K/F .

Lemma 1.7.5. Let F be an infinite field and let A = F d be an affine F -space. Then
A cannot be covered by finitely many hyperplanes.

Proof. We proceed by induction on d. The case d = 0 is trivial. Let d ≥ 1. Assume
that A = ∪n

i=1 Hi, where each Hi is a hyperplane of A. Since F is infinite, there are
infinitely many hyperplanes of A. Let H be a hyperplane of A that is not one of the
Hi’s. Then H = ∪n

i=1(H ∩Hi), where each H ∩Hi is either empty or a hyperplane
of H. This contradicts the induction hypothesis.

In the case where K/F is finite separable, Galois theory gives a description of
the finite partially ordered set of intermediate fields of K/F .
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1.8 Finite Galois extensions
Definition 1.8.1. A separable and normal field extension E/F is called a Galois
extension. Gal(E/F ) := Aut(E/F ) is called the Galois group of the extension.

Given a separable extension E/F , the normal closure is a Galois extension over
F and is called the Galois closure of E/F .

Combining Propositions 1.5.16 and 1.6.15, we get the following properties.

Proposition 1.8.2. (1) Let K/E/F be a tower of field extensions. Then K/F
Galois implies K/E Galois.

(2) Let E and E ′ be two intermediate fields of a field extension K/F . Then E ′/F
Galois implies E · E ′/E Galois.

(3) Let Ei, i ∈ I be a family of intermediate fields of a field extension K/F .
Then Ei/F Galois for all i ∈ I implies ∩i∈I Ei (assuming I nonempty) and∨
i∈I Ei/F Galois.

In the rest of this section, we study finite Galois extensions.

Proposition 1.8.3. Let E/F be a finite extension. Then #Aut(E/F ) ≤ [E : F ].
The equality holds if and only if the extension is Galois.

Proof. Let Ealg be an algebraic closure of E. Then #Aut(E/F ) ≤ HomF (E,Ealg) =
[E : F ]sep ≤ [E : F ]. The first inequality is an equality if and only if E/F is normal.
The second inequality is an equality if and only if E/F is separable.

For a subgroup H < Aut(E), the fixed point set

EH = {x ∈ E | σ(x) = x for all σ ∈ H}

is a field, called the fixed field.

Theorem 1.8.4 (Fixed Field Theorem). Let H < Aut(E) be a finite subgroup.
Then E/EH is a finite Galois extension with Galois group H.

Proof. Let x ∈ E and let O = Hx ⊆ E. Then x is a root of P (X) = ∏
y∈O(X−y) ∈

EH [X]. Note that P (X) is a separable polynomial of degree dividing #H and P (X)
splits in E[X]. Thus E/EH is a Galois extension. Moreover, [E : EH ] ≤ #H by
Lemma 1.8.5 below. By Proposition 1.8.3, #Gal(E/EH) = [E : EH ] ≤ #H. Clearly
H < Gal(E/EH). Therefore, H = Gal(E/EH).

Lemma 1.8.5. Let E/F be an algebraic extension. Then

sup
E0

[E0 : F ] =

[E : F ] E/F finite
∞ otherwise.

Here E0 runs through intermediate fields of E/F such that E0/F is finite. Moreover,
if E/F is separable, then

sup
x∈E

[F (x) : F ] =

[E : F ] E/F finite
∞ otherwise.
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Proof. Assume that E/F is infinite and n = supE0 [E0 : F ] < ∞. Take an F -
linearly independent subset S ⊆ E of cardinality n + 1. Then [F (S) : F ] > n,
which contradicts the definition of n. The last assertion follows from the Primitive
Element Theorem.

E. Artin gave a direct proof of the inequality [E : EH ] ≤ #H, called Artin’s
lemma, using independence of characters (Lemma 1.15.5) and not using the Primi-
tive Element Theorem.

We have the following strengthening of the first assertion of Proposition 1.8.3.

Corollary 1.8.6. Let E/F be a finite extension. Then #Aut(E/F ) | [E : F ].

Proof. Let H = Aut(E/F ). Then F ⊆ EH , so that #H = [E : EH ] | [E : F ].

Theorem 1.8.7 (finite Galois correspondence). Let K be a field. Then we have a
bijection

{subfields E ⊆ K such that K/E is finite Galois} ↔ {finite subgroups H < Aut(K)}
E 7→ Gal(K/E)

KH ←[ H
satisfying the following properties:

(1) (order-reversal) For E ↭ H and E ′ ↭ H ′, E ⊆ E ′ if and only if H ⊇ H ′.
In particular, EE ′ ↭ H ∩H ′.

(2) (equivariance) For E ↭ H and σ ∈ Aut(K), σE ↭ σHσ−1.

Proof. By the Fixed Field Theorem, H = Gal(K/KH). Clearly E ⊆ KGal(K/E).
Moreover [K : E] = #Gal(K/E) = [K : KGal(K/E)] by the Fixed Field Theorem.
Thus E = KGal(K/E). Properties (1) and (2) are clear.

Warning 1.8.8. For E,E ′ ⊆ K such thatK/E andK/E ′ are finite Galois, K/E∩E ′

is not necessarily an algebraic extension. For example, if k is a field of characteristic
0 and K = k(X), E = k(X2), E ′ = k((X−1)2), then E∩E ′ = k. Indeed, E = K〈σ〉

and E ′ = K〈τ〉 with σ(X) = −X and τ(X−1) = 1−X, so that E∩E ′ ⊆ E〈στ〉 = k,
where στ(X) = X + 2.

Remark 1.8.9. For E ↭ H and E ′ ↭ H ′ under the above bijection, K is finite
Galois over E ∩ E ′ if and only if 〈HH ′〉 is finite. In this case, E ∩ E ′ ↭ 〈HH ′〉.
Here 〈HH ′〉 denotes the subgroup of Aut(K) generated by H and H ′.

Corollary 1.8.10. Let K/F be a finite Galois extension with Galois group G. Then
we have a bijection

{intermediate fields E of K/F} ↔ {subgroups H < G}
E 7→ Gal(K/E)

KH ←[ H
satisfying the following properties:

(1) (order-reversal) For E ↭ H and E ′ ↭ H ′, E ⊆ E ′ if and only if H ⊇ H ′.
In particular, EE ′ ↭ H ∩H ′ and E ∩ E ′ ↭ 〈HH ′〉.
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(2) (G-equivariance) For E ↭ H and σ ∈ G, σE ↭ σHσ−1. In particular,
E/F is normal if and only if H is a normal subgroup of G.

Remark 1.8.11.
(1) For E ↭ H under the above bijection, we have a bijection

φ : G/H ∼−→ HomF (E,K)
σH 7→ σ|E,

which is an isomorphism of groups G/H ∼−→ Gal(E/F ) for E/F normal. In-
deed, φ is a surjection by Proposition 1.5.12. Moreover, φ is an injection,
because for σ, σ′ ∈ G, σ|E = σ′|E if and only if σ−1σ′|E = idE.

(2) For E ↭ H and E ′ ↭ H ′ under the Galois correspondence, the bijection in
(1) induces a bijection

{σ ∈ G | σHσ−1 ⊇ H ′}/H ∼−→ HomF (E,E ′).

(Here {σ ∈ G | σHσ−1 ⊇ H ′} is a union of left cosets of H.) For E ′ = E, this
is an isomorphism of groups

NG(H)/H ∼−→ Aut(E/F ),

where NG(H) denotes the normalizer of H in G.

Proposition 1.8.12. Let E and K be intermediate fields of an extension L/F .
Assume that K/F is finite Galois. Then we have an isomorphism of groups

Gal(EK/E) ∼−→ Gal(K/E ∩K)
σ 7→ σ|K .

Proof. The homomorphism is clearly injective. Let H be its image. Then KH ⊆
(EK)Gal(EK/E) = E. Thus KH = E ∩K. It follows that H = Gal(K/E ∩K).

Corollary 1.8.13. Let E/F and K/F be finite Galois subextensions of an extension
L/F . We have an isomorphism of groups

Gal(EK/F ) ∼−→ Gal(E/F )×Gal(E∩K/F ) Gal(K/F )(1.8.1)
σ 7→ (σ|E, σ|K).

In particular, if F = E ∩K, this defines an isomorphism of groups

Gal(EK/F ) ∼−→ Gal(E/F )×Gal(K/F ).

Given maps α : G→ B and β : H → B, recall that the fiber product G×B H is
defined to be {(σ, τ) ∈ G×H | α(σ) = β(τ)}, which is a group if α and β are group
homomorphisms.

Proof. The homomorphism is clearly injective. It suffices to show that the source
and the target have the same cardinality. The cardinality of the source is

[EK : F ] = [EK : E][E : F ] = [K : E ∩K][E : F ],

where we used Proposition 1.8.12 in the second equality. Since Gal(K/F )→ Gal(E∩
K/F ) is a surjection of kernel Gal(K/E∩K), the cardinality of the target of (1.8.1)
is also [K : E ∩K][E : F ].
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We say that an extension E/F is abelian if it is Galois and Gal(E/F ) is abelian.
It follows from the above corollary that if E/F and K/F are both abelian, then
EK/F is abelian.

Example 1.8.14. Let K = Q( 3
√

2, ω) be the fraction field of the irreducible poly-
nomial X3 − 2 over Q, where ω = e2πi/3. Let αn = 3

√
2ωn−1, n = 0, 1, 2 be the

roots of X3 − 2. Then G = Gal(K/Q) acts faithfully on S = {α1, α2, α3}, so that
we have a group embedding G → ΣS ' Σ3 into the symmetric group. We have
seen [K : Q] = [K : Q( 3

√
2)][Q( 3

√
2) : Q] = 6 = #Σ3. Thus the embedding is an

isomorphism G
∼−→ Σ3. The subgroups of Σ3 are

1, 〈(23)〉, 〈(13)〉, 〈(12)〉, 〈(123)〉 = A3,Σ3.

The corresponding intermediate fields are

K,Q(α1),Q(α2),Q(α3),Q(ω),Q.

Proposition 1.8.15. Let k be a field and let K = k(X1, . . . , Xn) be the field of
rational functions, equipped with the obvious action of Σn. Then KΣn = F :=
k(T1, . . . , Tn) is the field of rational functions in the elementary symmetric polyno-
mials Tk = ∑

1≤i1<···<ik≤nXi1 · · ·Xik . Moreover, K/F is a finite Galois extension
with Galois group Σn.

Proof. By the Fundamental Theorem of Symmetric Polynomials, k[X1, . . . , Xn]Σn =
k[T1, . . . , Tn] = R is a polynomial ring in the Tk’s. Clearly F ⊆ KΣn . Conversely,
for f = P/Q ∈ KΣn , where P,Q ∈ k[X1, . . . , Xn], we have f = A/B, where
B = ∏

σ∈Σn
σQ ∈ R and A = fB ∈ R. The last assertion follows from the fact that

the action of Σn on K is faithful.

Remark 1.8.16. Given any field k and any finite group G, there exists a finitely
generated extension E/k, a finite Galois extension K/E and an isomorphism G '
Gal(K/E). Indeed, it suffices to embed G into Σn for some n and take K =
k(X1, . . . , Xn), E = KG.

1.9 Irreducibility of polynomials

Gauss’s Lemma
Proposition 1.9.1 (Gauss’s Lemma). Let R be a Unique Factorization Domain
(UFD) and let F = Frac(R). Let P ∈ R[X] such that P = P1P2 with P1, P2 ∈ F [X].
Then there exists c ∈ F× such that P = (c−1P1)(cP2) with c−1P1, cP2 ∈ R[X]. In
particular, every polynomial irreducible in R[X] of degree ≥ 1 is also irreducible in
F [X].

We will give a proof in the language of valuations.

Definition 1.9.2. Let F be a field. A valuation (of rank ≤ 1) on F is a group
homomorphism v : F× → (R,+) satisfying v(x+ y) ≥ min{v(x), v(y)} for all x, y ∈
F . We adopt the convention v(0) = +∞.
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Remark 1.9.3. (1) For any real number a > 1, we then obtain an absolute value
|x| = a−v(x) that satisfies the strong triangle inequality |x+ y| ≤ max{|x|, |y|}.

(2) For any root of unity ζ ∈ F , v(ζ) = 0.
(3) If v(x) 6= v(y), then v(x + y) = min{v(x), v(y)}. Indeed, if v(x) < v(y), then

v(x) = v((x+ y) + (−y)) ≥ min{v(x+ y), v(y)} implies v(x+ y) = v(x).

Example 1.9.4. Let R be a UFD and F = Frac(R). Let p be an irreducible element
of R. Then vp : F× → Z carrying u

∏
q q

a(q) to a(p) is a valuation on F , called the
p-adic valuation. Here u ∈ R× and q runs through a system of representatives of the
associate classes of irreducible elements of R. Note that R can be recovered from F
and the vp’s: we have R = {x ∈ F | vp(x) ≥ 0, ∀p}.

If R is a PID, every nontrivial valuation v of F satisfying v(R\{0}) ⊆ R≥0 is
of the form v = γvp for some γ ∈ R>0 and some irreducible element p. Indeed, if
p and q are nonassociate irreducible elements, then (p, q) = 1, so that v(p) = 0 or
v(q) = 0. In particular, for R = Z, the vp’s are the only nontrivial valuations v of
F = Q up to scalars (Ostrowski’s Theorem).

Lemma 1.9.5. Let v be a valuation on a field F . For a polynomial P (X) =∑n
i=0 aiX

i, define v(P ) = mini v(ai). Then v(PQ) = v(P ) + v(Q).

It is then easy to check that v extends to a valuation of F (X), called the Gauss
valuation, given by the formula v(P/Q) = v(P )− v(Q).

Proof. Let Q = ∑m
j=0 bjX

j, PQ = ∑n+m
k=0 ckX

k. Then ck = ∑
l albk−l. Clearly

v(ck) ≥ v(P ) + v(Q). Let i be the least integer such that v(P ) = v(ai) and let
j be the least integer such that v(Q) = v(bj). Then v(aibj) = v(P ) + v(Q) and
v(albi+j−l) > v(P ) + v(Q) for all l 6= i by Remark 1.9.3 (3). Thus v(ci+j) =
v(P ) + v(Q). Therefore, v(PQ) = v(P ) + v(Q)

Proof of Proposition 1.9.1. For every irreducible element p of R, vp(P1) + vp(P2) =
vp(P ) ≥ 0. Let ap = vp(P1). We have ap = 0 for all but finitely many associate
classes of p. Let c = ∏

p p
ap ∈ F×, where p runs through a system of representatives

of the associate classes of irreducible elements. Then P = (c−1P1)(cP2).

The associate class of c ∈ F× in the proof is called the content of P1.

Corollary 1.9.6. Let R be a UFD of fraction field F and let P ∈ R[X] and P1 ∈
F [X] be monic polynomials satisfying P1 | P in F [X]. Then P1 ∈ R[X].

Proof. By Gauss’s Lemma, there exists c ∈ F× such that cP1 is a factor of P in
R[X]. Since P and P1 are monic, we have c ∈ R× and P1 ∈ R[X].

Example 1.9.7. P (X) = X3 +X + 1 is irreducible in Q[X]. (By the proposition,
otherwise P would have a factor of the form X ± 1, which is not the case.)

Example 1.9.8. P (X) = X3 +X+999 is irreducible in Q[X]. (By the proposition,
otherwise P would have a root in Z, which is impossible modulo 2.)

Any factor Q(X) of P (X) in R[X] satisfies Q(a) | P (a) for all a ∈ R. This,
together with the Lagrange interpolation formula, gives an algorithm for factorizing
P (X) in R[X] in the case R = Z (or more generally for R a UFD such that R× is
finite).
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Remark 1.9.9. Let R be a commutative ring and I ⊊ R an ideal. If P ∈ R[X] is a
polynomial of degree d such that its reduction P̄ ∈ R/I[X] is of degree d and is not
a product of polynomials of lower degrees, then P is not a product of polynomials of
lower degrees in R[X]. In the case where R is a UFD, the latter implies by Gauss’s
Lemma that P is irreducible in F [X], where and F = Frac(R).

Example 1.9.10. P (X) = X4 + X + 1 is irreducible in Q[X], since the reduction
P̄ of P modulo 2 is irreducible. Indeed, P̄ has no root in F2[X] and is not divisible
by the X2 +X + 1, which is the only irreducible quadratic polynomial in F2[X].

Remark 1.9.11. The Chebotarev density theorem in number theory implies that
for P (X) ∈ Z[X] irreducible of prime degree, there exist infinitely many primes p
such that P (X) is irreducible modulo p. See Remark 1.12.8 and Lemma 1.10.35. On
the other hand, there are irreducible quartic polynomials in Z[X] that are reducible
modulo every prime p. See Example 1.12.7.

Remark 1.9.12. Gauss’s Lemma fails for R = Z[
√
−5]. For example

1
2

(2X + (1 +
√
−5))2 = 2X2 + 2(1 +

√
−5)X + (−2 +

√
−5)

is irreducible in Z[
√
−5][X] but not reducible in Q(

√
−5)[X].

When restricted to monic polynomials, Gauss’s Lemma holds for a much larger
class of rings than UFDs: a commutative domain R is integrally closed if and only
if every monic irreducible polynomial in R[X] is irreducible in F [X], where F =
Frac(R).

Newton polygons
Let F be a field equipped with a valuation v : F× → R.

Definition 1.9.13. Let P (X) = ∑n
i=0 aiX

i ∈ F [X] be a nonzero polynomial. The
Newton polygon NPP of P with respect to v is the lower boundary of the convex
hull of the points {(i, v(ai)) | ai 6= 0} in R2.

The polygonNPP is the graph of a lower-convex piecewise-linear function defined
on a closed interval of R. The endpoints and breakpoints are of the form (i, v(ai)).
The length of the interval on which the function has slope λ ∈ R is called the
multiplicity of λ.

Example 1.9.14. The Newton polygon of P (X) = 1 + 2X + 2X2 + 4X3 ∈ Q[X]
for v2 has slopes 1/2 (with multiplicity 2) and 1 (with multiplicity 1):

������
�

�
�

r
r r

r

(0, 0)

(1, 1)
(2, 1)

(3, 2)
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Given two nonvertical line segments L = AB and L′ = A′B′ (possibly of zero
length) of the same slope in R2, with A lying to the left of B and A′ lying to the
left of B′, we let L + L′ denote the line segment A′′B′′, where A′′ = A + A′ and
B′′ = B + B′. The graph of a lower-convex piecewise-linear function defined on a
closed interval can be written uniquely as Γ = ∪

λ∈R Lλ, where Lλ = `λ ∩ Γ is a line
segment (possibly of zero length), `λ is a line of slope λ. Let Γ′ = ∪

λ L
′
λ be another

such graph, of a lower-convex piecewise-linear functions defined on another closed
interval of R. We define Γ + Γ′ = ∪

λ(Lλ + L′
λ). It is easy to see that Γ + Γ′ is the

lower boundary of the convex hull of {C + C ′ | C ∈ Γ, C ′ ∈ Γ′}.

Proposition 1.9.15. Let P,Q ∈ F [X] be nonzero. Then NPPQ = NPP +NPQ.

Proof. Let P (X) = ∑
i aiX

i, Q(X) = ∑
i biX

i, PQ(X) = ∑
i ciX

i. Fix a slope λ.
The line segments of slope λ of NPP and NPQ have the form L = (i, v(ai))(i′, v(ai′)),
i ≤ j and M = (j, v(bj))(j′, v(bj′)), i′ ≤ j′, respectively. Then v(ak) ≥ v(ai)+λ(k−i)
and strict inequality holds for k 6∈ [i, i′]. Similarly for v(bk). Note that ck = ∑

l albk−l.
Thus v(ck) ≥ v(ai)+v(bj)+λ(k−i−j) and strict inequality holds for k 6∈ [i+i′, j+j′].
Moreover, v(ci+j) = v(ai)+v(bj) and v(ci′+j′) = v(ai′)+v(bj′). Thus the line segment
of NPPQ of slope λ is L+M .

Remark 1.9.16. Let K be the splitting field of P over F and let w : K× → R be
a valuation extending of v. (One can show that an extension of v to an algebraic
extension of F always exists, but is not unique in general.) It follows from the
proposition that the multiset of slopes of NPP is precisely the multiset of −w(α), α
running through nonzero roots of P .

Corollary 1.9.17. Let P (X) = ∑n
i=0 aiX

i ∈ F [X] be a polynomial with a0an 6= 0.
Assume that there exists a valuation v on F such that NPP is a line segment and
v(an)−v(a0)

p
6∈ v(F×) for all prime divisors p of n. Then P (X) is irreducible.

Proof. Assume that P = QR is reducible with i = deg(Q) satisfying 1 ≤ i ≤ n− 1.
Then NPQ is a line segment of slope λ = v(an)−v(a0)

n
so that iλ ∈ v(F×). It follows

that (i, n)λ ∈ v(F×), where (i, n) denotes the greatest common divisor of i and n.
This contradicts the assumption by taking a prime divisor of n/(i, n).

Corollary 1.9.18. Let P (X) = ∑n
i=0 aiX

i ∈ F [X]. Assume that there exists a
valuation v : F× → Z such that v(a0) = 1, v(an) = 0, and v(ai) ≥ 1 for all i =
1, . . . , n− 1. Then P (X) is irreducible.

Such a polynomial is called an Eisenstein polynomial for v.

Example 1.9.19. (1) X4 +2X+2 ∈ Q[X] is an Eisenstein polynomial for v2 and
hence is irreducible.

(2) X5 + 4X + 4 ∈ Q[X] is irreducible by Corollary 1.9.17 applied to v2.

1.10 Galois groups of polynomials
Let F be a field and P (X) ∈ F [X] a separable polynomial. Let K be the splitting
field of P over F , which is a finite Galois extension of F . Every finite Galois extension
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of F can be obtained in this way. The Galois group G = Gal(K/F ) is also called the
Galois group of P over F and sometimes denoted GP . Note that G acts faithfully
on the set S of roots of P in K: we have a group embedding G→ ΣS.

Lemma 1.10.1. There is a bijection between irreducible factors of P (X) in F [X]
and orbits O of S under G. More precisely, we have P (X) = c

∏
OQO(X), where c ∈

F× and QO(X) = ∏
α∈O(X − α) ∈ F [X] is irreducible. In particular, P (X) ∈ F [X]

is irreducible if and only if G acts transitively on S. Moreover, for every α ∈ S, we
have a bijection G/Gal(K/F (α)) ∼−→ O carrying σH to σα, where O = Gα is the
G-orbit of α.

A subgroup of ΣS is said to be transitive if it acts transitively on S.

Proof. Clearly QO(X) ∈ K[X]G = F [X]. Moreover, any factorization of QO corre-
sponds to a partition of O into G-stable subsets. Thus QO is irreducible. The last
assertion follows from Remark 1.8.11 (1).

We choose an enumeration α1, . . . , αn of S, which induces ΣS ' Σn.

Example 1.10.2. Let P (X) = Xn + T1X
n−1 + · · ·+ Tn ∈ F (T1, . . . , Tn)[X] be the

generic monic polynomial of degree n. The Galois group of P (X) is Σn by Proposi-
tion 1.8.15. Indeed, in the notation of 1.8.15, we have P (X) = (X+X1) · · · (X+Xn).

Discriminant
For P (X) = an

∏n
i=1(X − αi) (an 6= 0) not necessarily separable, let D(P ) =∏

i<j(αi − αj) in a splitting field K of P . Note that D(P ) 6= 0 if and only if
P is separable. In this case, for σ ∈ G = GP , σ(D(P )) = sgn(σ)D(P ), where
sgn(σ) = ±1 denotes the signature of σ. Then D(P )2 ∈ KG = F and does not
depend on the enumeration of the roots. The discriminant of P is defined to be

∆(P ) = a2n−2
n D(P )2 = a2n−2

n

∏
i<j

(αi − αj)2.

(The constant a2n−2
n ensures that ∆(P ) is a polynomial in the coefficients of P and

is not important for us.)

Example 1.10.3. (1) ∆(X2 + bX + c) = (α1 − α2)2 = b2 − 4c.
(2) ∆(X3 + bX2 + cX + d) = −4b3d + b2c2 + 18bcd − 4c3 − 27d2. In particular,

∆(X3 + cX + d) = −4c3 − 27d2.
(3) ∆(Xn + bX + c) = (−1)(n−1)(n−2)/2(n− 1)n−1bn + (−1)n(n−1)/2nncn−1.

Proposition 1.10.4. Assume char(F ) 6= 2. Let P ∈ F [X] be a separable polyno-
mial. Then Gal(K/F (D(P ))) = GP ∩ An. In particular, GP < An if and only if
∆(P ) ∈ F×2.

Proof. For σ ∈ G, σ(D(P )) = D(P ) if and only if σ ∈ An. Thus Gal(K/F (D(P ))) =
G ∩ An. It follows that F (D(P )) = F if and only if G ∩ An = G, or equivalently,
G < An.
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The same proof shows that D(P ) ∈ F if char(F ) = 2. In order to extend
Proposition 1.10.4 to all characteristics, note that D(P ) = det(αn−i

j ) = D+(P ) −
D−(P ) is a Vandermonde discriminant, where

D±(P ) :=
∑
σ∈Σn

sgn(σ)=±1

αn−1
σ(1)α

n−2
σ(2) · · ·ασ(n−1).

We have
Rsgn,P (X) := (X −D+(P ))(X −D−(P )) ∈ F [X].

Note that ∆(Rsgn,P ) = ∆(P ) for P monic. In particular, Rsgn,P is separable if and
only if P is separable.

Example 1.10.5. (1) Rsgn,X2+bX+c(X) = X2 + bX + c.
(2) Rsgn,X3+bX2+cX+d(X) = X2− (bc−d)X+(b3d−5bcd+c3 +7d2). In particular,

Rsgn,X3+cX+d(X) = X2 + dX + (c3 + 7d2).

Proposition 1.10.6. Let F be a field and P ∈ F [X] a separable polynomial. Then
Gal(K/F (D+(P ))) = GP ∩ An. In particular, GP < An if and only if Rsgn,P splits
in F [X].

Proof. It suffices to replace D(P ) by D+(P ) in the proof of Proposition 1.10.4.

Remark 1.10.7. Let P be a separable quadratic polynomial. If P splits, then
GP = 1. If P is irreducible, then GP = Σ2.

Remark 1.10.8. Let P be a separable cubic polynomial and let G = GP . If P
splits, then G = 1. If P = Q · (X−α3) with Q ∈ F [X] irreducible and α3 ∈ F , then
G = Σ2. If P is irreducible, then G = A3 or G = Σ3, which can be determined by
Propositions 1.10.4 and 1.10.6.

Example 1.10.9. P (X) = X3 − 3X − 1 ∈ Q[X]. Since P (X) is irreducible and
∆(P ) = −4(−3)3 − 27(−1)2 = 81 = 92, the Galois group is A3.

Example 1.10.10. P (X) = X3−3X−3 ∈ Q[X]. This is an Eisenstein polynomial
for 3 and hence irreducible. Since ∆(P ) = −4(−3)3 − 27(−3)2 = −5 × 27 is not a
square in Q, the Galois group of P (X) is Σ3.

Quartic polynomials
Let P (X) ∈ F [X] be a separable quartic polynomial and let G = GP . The decom-
position of P (X) has the following three possibilities:

(1) P = Q · (X − α4) in F [X]. Then G = GQ < Σ3 is in one of the four cases in
Remark 1.10.8.

(2) P = QR with Q and R irreducible of degree 2 in F [X]. We number the
roots so that Q = c(X − α1)(X − α3) and R = (X − α2)(X − α4). Then
G = {id, (13)(24)} < A4 or G = 〈(13), (24)〉 6< A4. This can be determined
for example by Propositions 1.10.4 and 1.10.6.

(3) P irreducible. Then G < Σ4 is transitive. There are five such subgroups up
to conjugacy:
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• Σ4
• A4
• C4 = 〈(1234)〉
• D4 = 〈(1234), (13)〉 (dihedral group)
• V = D4 ∩ A4 = {id, (12)(34), (13)(24), (14)(23)}.

We have V < A4, C4 6< A4, D4 6< A4. Proposition 1.10.6 is not enough to
determine G.
Note that 〈(13), (24)〉 and V are both isomorphic to the Klein 4-group, but
they are not conjugate as subgroups of Σ4.

Example 1.10.11. P (X) = (X2 − a)(X2 − b) with a, b ∈ F×\F×2 and a 6= b, for
F of characteristic 6= 2. We have

G =

G = 〈(13)(24)〉 ab ∈ F×2,

G = 〈(13), (24)〉 ab 6∈ F×2.

Here {α1, α3} = {±
√
a}, {α2, α4} = {±

√
b}.

Consider the set of partitions

T = {{{1, 2}, {3, 4}}, {{1, 3}, {2, 4}}, {{1, 4}, {2, 3}}}

of {1, 2, 3, 4}, equipped with the obvious action of Σ4. The homomorphism Σ4 → ΣT

is surjective of kernel V . Consider the elements of K

γ1 = α1α2 + α3α4, γ2 = α1α3 + α2α4, γ3 = α1α4 + α2α3.

They are pairwise distinct:
(1.10.1)
γ1−γ2 = (α1−α4)(α2−α3), γ1−γ3 = (α1−α3)(α2−α4), γ2−γ3 = (α1−α2)(α3−α4).

We thus have an obvious bijection between T and {γ1, γ2, γ3}, equivariant under G.
The polynomial

Q(X) = (X − γ1)(X − γ2)(X − γ3) ∈ F [X]

is called the cubic resolvent or Ferrari resolvent of P (X). By (1.10.1), we have
D(P ) = D(Q).

Proposition 1.10.12. KG∩V = F (γ1, γ2, γ3) is the splitting field of Q(X).

Proof. Indeed, Gal(K/F (γ1, γ2, γ3)) = ker(G→ ΣT ) = G ∩ V .

Corollary 1.10.13. Assume that P ∈ F [X] is irreducible of degree 4 and let E =
F (γ1, γ2, γ3). Then

(1) If [E : F ] = 1, then G = V ;
(2) If [E : F ] = 2, then G is conjugate to C4 or D4; moreover, G is conjugate to

C4 if and only if P (X) is reducible in E[X];
(3) If [E : F ] = 3, then G = A4;
(4) If [E : F ] = 6, then G = Σ4.
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Note that Q(X) splits in F [X] in case (1); Q(X) has a unique root in F in case
(2); Q(X) is irreducible in F [X] in cases (3) and (4).

Proof. Let us compute Gal(E/F ) ' G/G ∩ V for each possibility of G. We have
V/V = 1, C4/C4∩V ' {id, (γ1γ3)} ' D4/D4∩V , A4/A4∩V ' AT , Σ4/Σ4∩V ' ΣT .

Moreover, Gal(K/E) = G∩ V . For the last assertion of (2), note that C4 ∩ V =
{id, (13)(24)} does not act transitively on {1, 2, 3, 4}, while V acts transitively on
{1, 2, 3, 4}.

Proposition 1.10.14. Let P ∈ F [X] be a separable quartic polynomial without any
root in F such that the cubic resolvent Q is irreducible. Then P is irreducible.

Proof. Assume that P is reducible. Then P = P1P2 with P1 and P2 of degree 2,
so that G < 〈(12), (34)〉 under a suitable numbering of the roots. Then G fixes γ1,
contradicting the irreducibility of Q.

Remark 1.10.15. For P (X) = X4 + bX3 + cX2 + dX + e, its cubic resolvent
is Q(X) = X3 − cX2 + (bd − 4e)X − (b2e − 4ce + d2). In particular, for b = 0,
Q(X) = X3 − cX2 − 4eX + (4ce− d2).

In the notation of Example 1.1.3, we have (2βi)2 = b2 − 4c+ 4γi if char(F ) 6= 2.
This gives the following criterion for distinguishing C4 and D4.

Proposition 1.10.16. Assume that char(F ) 6= 2. Let P (X) = X4 + bX3 + cX2 +
dX+e ∈ F [X] be a separable irreducible polynomial such that the cubic resolvent has
a unique root γ. Then G = GP is conjugate to D4 if and only if ∆(P )(b2−4c+4γ) ∈
F×\F×2 or b2 − 4c+ 4γ = 0 and ∆(P )(γ2 − 4e) 6∈ F×2.

Proof. Up to reordering we may assume γ = γ2. Then G < D4 = 〈(1234), (13)〉.
Case β2 6= 0. Recall that 2β2 = (α1 +α3)− (α2 +α4). Note that for σ = (1234),

σD(P ) = −D(P ) and σβ2 = −β2. Thus if G = C4, then D(P )β2 ∈ F×, so that
∆(P )β2

2 ∈ F×2. If G = D4, then for σ = (13), σD(P ) = −D(P ) and σβ2 = β2, so
that D(P )β2 6∈ F×, so that ∆(P )β2

2 6∈ F×2.
Case β2 = 0. We have γ2

2 − 4e = (α1α3 − α2α4)2. Note that α1α3 6= α2α4.
Otherwise we would have {α1, α3} = {α2, α4}, contradicting the separability of P .
As before, if G = C4, then D(P )(α1α3−α2α4) ∈ F×, so that ∆(P )(γ2

2 − 4e) ∈ F×2.
If G = D4, then D(P )(α1α3 − α2α4) 6∈ F×, so that ∆(P )(γ2

2 − 4e) 6∈ F×2.

Corollary 1.10.17. Assume that char(F ) 6= 2. Let P (X) = X4 + cX2 + e ∈ F [X]
be a separable irreducible polynomial.

(1) If e is a square in F , then G = V .
(2) If e(c2 − 4e) is a square in F , then G is conjugate to C4.
(3) If neither e nor e(c2 − 4e) is a square in F , then G is conjugate to D4.

Proof. We have Q(X) = (X − c)(X2 − 4e),

∆(P ) = ∆(Q) = (4
√
e(c− 2

√
e)(c+ 2

√
e))2 = 16e(c2 − 4e)2.

Note that c2 − 4e is not a square by the irreducibility of P .
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Remark 1.10.18. Let us drop the assumption that P (X) is irreducible in Corollary
1.10.17. The roots of P (X) can be written down explicitly:

α1 = 1
2

√
−c+ 2

√
e+ 1

2

√
−c− 2

√
e, α3 = −α1,

α2 = 1
2

√
−c+ 2

√
e− 1

2

√
−c− 2

√
e, α4 = −α2.

Let K be the splitting field of P (X) over F . The intermediate fields of K/F are

K
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The corresponding subgroups of G are the intersections with G of the subgroups of
D4:
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If neither e nor c2−4e is a square in F , then G is not contained in V or 〈(13), (24)〉,
which implies that G is C4 or D4, depending on whether or not e(c2 − 4e) is a
square in F . Corollary 1.10.17 follows easily. This analysis also shows that P (X) is
irreducible if and only if it satisfies the following two conditions:

(1) X2 + cX + e is irreducible; and
(2) either e is not a square in F or both −c+ 2

√
e and −c− 2

√
e are nonsquares

in F .
We leave the details as an exercise.

Example 1.10.19. P (X) = X4 + 8X + 12 ∈ Q[X]. Its cubic resolvent is Q(X) =
X3− 48X− 64 = 64(Y 3− 3Y − 1), where X = 4Y . We have seen in Example 1.10.9
that the Galois group of Q is A3. Since P (X) has no root in Z, it has no root in Q.
Since Q(X) is irreducible, P (X) is irreducible by Proposition 1.10.14 and G = A4.
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Example 1.10.20. P (X) = X4−2X+2 ∈ Q[X]. This is an Eisenstein polynomial
for 2 and hence irreducible. Its cubic resolvent is Q(X) = X3 − 8X − 4, which is
irreducible in Q[X] by Corollary 1.9.17. We have ∆(Q) = −4(−8)3 − 27(−4)2 =
24 × 101, which is not a square in Q. Thus, [E : Q] = 6 and G = Σ4.

Example 1.10.21. Let P (X) = X4+X2+4 ∈ Q[X]. Since X2+X+4 is irreducible
and neither −c+ 2

√
e = 3 nor −c− 2

√
e = −5 is a square in F , P (X) is irreducible.

By Corollary 1.10.17, G = V .

Example 1.10.22. P (X) = X4+4X2+2 ∈ Q[X]. This is an Eisenstein polynomial
for 2 and hence irreducible. Since e(c2 − 4e) = 16 = 42, G ' C4. In fact, the cubic
resolvent is Q(X) = (X−4)(X2−8). Over E = Q(

√
2), P (X) = (X2+2−

√
2)(X2+

2 +
√

2).

Example 1.10.23. P (X) = X4+3X2+3 ∈ Q[X]. This is an Eisenstein polynomial
for 3 and hence irreducible. Neither e = 3 nor e(c2 − 4e) = −9 is a square in Q.
Thus G ' D4.

Resolvent polynomials
Let f ∈ L = F (X1, . . . , Xn). Recall that LΣn = F (T1, . . . , Tn), where Ti is the i-th
elementary symmetric polynomial in X1, . . . , Xn. We call

Rf (X) :=
∏

g∈Σnf

(X − g)

the resolvent polynomial for f . Here Σnf denotes the orbit of Σn containing f . Note
that Rf (X) is a separable irreducible polynomial in LΣn [X]. Let H = {σ ∈ Σn |
σ(f) = f} be the isotropy group. Then we have a bijection Σn/H

∼−→ Σnf carrying
σH to σf . In particular, deg(Rf ) = n!/#H.

Assume f ∈ F [X1, . . . , Xn] for simplicity. Then Rf (X) ∈ F [T1, . . . , Tn]. Let
P (X) ∈ F [X] be a polynomial of degree n. Then

Rf,P (X) :=
∏

g∈Σnf

(X − g(α1, . . . , αn)) ∈ F [X],

where α1, . . . , αn is an enumeration of the roots of P in a splitting field. Indeed,
Rf,P can be obtained by replacing Ti in Rf with Ti(α1, . . . , αn) ∈ F . Note that
Rf,P (X) does not depend on the enumeration of roots.

Example 1.10.24. For f(X1, X2, X3, X4) = X1X3 + X2X4, we have H = D4 and
Rf,P is the cubic resolvent of P .

Example 1.10.25. For f(X1, . . . , Xn) = ∏
i<j(Xi −Xj), we have

H =

An char(F ) 6= 2,
Σn char(F ) = 2

and f(α1, . . . , αn) = D(P ). For char(F ) 6= 2 (and n ≥ 2), Rf,P (X) = X2 −∆(P ).



1.10. GALOIS GROUPS OF POLYNOMIALS 33

Example 1.10.26. For f(X1, . . . , Xn) = ∑
σ∈An

σ(Xn−1
1 · · ·Xn−1), we haveH = An,

f(α1, . . . , αn) = D+(P ), and Rf,P = Rsgn,P .

Proposition 1.10.27. Let P (X) ∈ F [X] be a separable polynomial of degree n and
let G < Σn be its Galois group. Assume that Rf,P is separable, so that the set of
roots of Rf,P can be identified with T = Σn/H. Then the Galois group of Rf,P can
be identified with the image of the homomorphism G→ ΣT corresponding to action
of G on T by left multiplication.

Proof. Let K be the splitting field of P (X) over F and let E ⊆ K be the splitting
field of Rf,P . Then Gal(K/E) = ker(G → ΣT ). Thus Gal(E/F ) is the image of
G→ ΣT .

Remark 1.10.28. By the proposition, the sizes of the orbits of G acting on T are
given by the degrees of the irreducible factors of Rf,P in F [X]. For example, Rf,P

has a root in F if and only if G is contained in a conjugate of H.

Remark 1.10.29. Without assuming that Rf,P is separable, the Galois group of
the splitting field of Rf,P over F is the image of G→ ΣT → ΣT ′ . Here T ′ is the set
of roots of Rf,P in K, and ΣT → ΣT ′ is induced by the surjection T → T ′ carrying
σH to σf(α1, . . . , αn). In particular, if G is contained in a conjugate of H, then
Rf,P has a root in F . Conversely, if Rf,P has a simple root in F , then G is contained
in a conjugate of H.

Remark 1.10.30. Note that ker(Σn → ΣT ) is the intersection of the conjugates
of H. This is a normal subgroup of Σn, which in the case n ≥ 5 can only be Σn,
An, or trivial. In the last case, Σn → ΣT is injective, so that deg(Rf ) = #T ≥ n.

Quintic polynomials
Let P (X) ∈ F [X] be a separable quintic polynomial and let G = GP . The decom-
position of P (X) has the following three possibilities:

(1) P = Q · (X − α5) in F [X]. Then G = GQ < Σ4 is as in the quartic case.
(2) P = QR with Q and R irreducible of degrees 3 and 2 in F [X], respectively.

We number the roots so that Q = c(X −α1)(X −α2)(X −α3) and R = (X −
α4)(X − α5). If GQ = A3, then G = A3 × Σ{4,5} = 〈(123), (45)〉. If GQ = Σ3,
then G = 〈(123), (12)(45)〉 < A5 or G = Σ3×Σ{4,5} = 〈(123), (12), (45)〉 6< A5,
which can be determined by Proposition 1.10.6.

(3) P irreducible. Then G < Σ5 is transitive. There are five such subgroups up
to conjugacy:

• Σ5
• A5
• C5 = 〈(12345)〉
• D5 = 〈(12345), (14)(23)〉 (dihedral group)
• F5 = 〈(12345), (1243)〉 (which can be identified with the affine linear

group AGL1(F5) of transformations of F5 of the form x 7→ ax + b for
a ∈ F×

5 and b ∈ F5).
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We have C5 < D5 < A5 and F5 6< A5. In fact, D5 = F5 ∩ A5. We can
visualize σ ∈ D5 (resp. F5−D5) as transforming regular pentagons into regular
pentagons (resp. pentagrams).

1

2 3

4

5 5

1 7→ 2

4←[ 23 7→ 1

3←[ 4
(1243)

Let
f(X1, X2, X3, X4, X5) =

∑
σ∈C5

σ(X2
5 (X1X4 +X2X3)).

The isotropy group is F5. The resolvent Rf,P has degree 5!/20 = 6 and is called the
sextic resolvent of P .

Theorem 1.10.31. Let P ∈ F [X] be a separable irreducible quintic polynomial and
let G = GP .

(1) If G = A5 or G = Σ5, then Rf,P is irreducible in F [X].
(2) If G is contained in a conjugate of F5, then Rf,P has a root in F . More

precisely, in this case, one of the following holds:
(a) Rf,P (X) = (X − β)Q(X) for β ∈ F and Q irreducible of degree 5; or
(b) Rf,P (X) = (X − β)(X − β′)5 for β, β′ ∈ F , β 6= β′.

Proof. The first assertion of (2) follows immediately from Remark 1.10.29. Note
that

Σ5/F5 = {F5, (12)F5, (23)F5, (34)F5, (45)F5, (51)F5}.

〈(12345)〉 acts transitively on the last five elements. It follows that A5 acts transi-
tively on Σ5/F5. We claim that Rf,P is not purely inseparable. The theorem then
follows from Remark 1.10.29.

Assume that Rf,P is purely inseparable. By Lemma 1.10.32 below, char(F ) = 5
and the roots of P in a splitting field K of F are of the form αi = α+ iδ, 1 ≤ i ≤ 5.
The roots of Rf,P are β = f(α1, . . . , α5) and βi = (i i + 1)β for 1 ≤ i ≤ 5, where
(56) = (51) by convention.

By a direct computation,

(12)f − f = (X1 −X2)(X3 −X5)(X4(X1 +X2 −X3 −X5)−X1X2 +X3X5).

Since β1 = β by assumption, the above polynomial vanishes at Xi = αi. By the
separability of P , we get

0 = α4(α1 + α2 − α3 − α5)− α1α2 + α3α5 = −2δ2.

This implies δ = 0, which contradicts the separability of P .
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Lemma 1.10.32. Let P ∈ F [X] be a separable irreducible quintic polynomial. Then
Rf,P is inseparable if and only if char(F ) = 5 and the roots of P are of the form
α + iδ, 1 ≤ i ≤ 5, for α and δ in a splitting field of P .4

Proof. Assume first that Rf,P is inseparable. Since P is irreducible, G contains a
conjugate of 〈(12345)〉. We enumerate the roots αi of P so that (12345) ∈ G. As
above the roots of Rf,P are β = f(α1, . . . , α5) and βi = (i i+ 1)β for 1 ≤ i ≤ 5. We
have β = βi or βi = βj for i 6= j. Either way, by the transitivity of the action of A5,
we see that all βi’s are equal.

By a direct computation,

g := (12)f − (23)f
= (X3 −X4)(X5 −X1)(X2(X3 +X4 −X1 −X5)−X3X4 +X1X5),

(1.10.2)

(13)g = (123)f − (321)f
= (X1 −X4)(X5 −X3)(X2(X1 +X4 −X3 −X5)−X1X4 +X3X5),

(X1 −X4)(X5 −X3)g + (X3 −X4)(X5 −X1)(13)g
= (X1 −X4)(X5 −X3)(X3 −X4)(X5 −X1)(X4 −X5)(2X2 −X1 −X3).

(1.10.3)

Since g(α1, . . . , α5) = β1 − β2 = 0 and ((13)g)(α1, . . . , α5) = β3 − β5 = 0, (1.10.3)
vanishes at Xi = αi. By the separability of P , we get 2α2 − α1 − α3 = 0, or
equivalently, α2 − α1 = α3 − α2. Applying 〈(12345)〉, we get αi+1 − αi = δ is
independent of i. Here α6 = α1 by convention. Then 5δ = ∑5

i=1(αi+1 − αi) = 0.
Since δ 6= 0 by the separability of P , we have char(F ) = 5. Moreover, αi = α5 + iδ
for all 1 ≤ i ≤ 5.

Conversely, if char(F ) = 5 and the roots of P are αi = α5 + iδ for 1 ≤ i ≤ 5,
then β1 − β2 = g(α1, . . . , α5) = 0 by (1.10.2).

Combining the theorem with Proposition 1.10.6, we can distinguish the following
cases:

G (up to conjugacy) G < A5? Rf,P has a root in F?
Σ5 No No
A5 Yes No
F5 No Yes

C5, D5 Yes Yes

The cases of C5 and D5 can be distinguished using other resolvents.
The formulas for the discriminant of a quintic polynomial and the sextic resolvent

span several lines (see [Du] for the latter). Some special cases are

∆(X5 + cX2 + dX + e) = 108c5e− 27c4d2 + 2250c2de2 − 1600cd3e+ 256d5 + 3125e4,

Rf,X5+dX+e(X) = X6 + 8dX5 + 40d2X4 + 160d3X3 + 400d4X2

+ (512d5 − 3125e4)X + (256d5 − 9375e4)d.
4This lemma and its proof is adapted from https://math.stackexchange.com/questions/

2677622/can-sextic-resolvent-of-an-irreducible-quintic-have-repeated-root.

https://math.stackexchange.com/questions/2677622/can-sextic-resolvent-of-an-irreducible-quintic-have-repeated-root
https://math.stackexchange.com/questions/2677622/can-sextic-resolvent-of-an-irreducible-quintic-have-repeated-root
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Further comments
All transitive subgroups of Σn have been determined for n ≤ 48.5 The number Nn

of transitive subgroups of Σn up to conjugacy for n ≤ 16 is shown below:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Nn 1 1 2 5 5 16 7 50 34 45 8 301 9 63 104 1954

The strategy for computing the Galois group using resolvents extends beyond the
quintic.

Here is another useful result for determining the Galois group.

Proposition 1.10.33. Let F be a subfield of R. Let P ∈ F [X] be a separable
polynomial of degree n with exactly s pairs of imaginary roots in C. Then the Galois
group GP < Σn contains the product of s commuting transpositions.

Proof. Let S be the set of roots of P in C and let K = F (S). Complex conjugation
induces an element σ ∈ GP = Gal(K/F ), whose image in ΣS is a product of s
disjoint transposition.

Corollary 1.10.34. Let F be a subfield of R. Let P ∈ F [X] be an irreducible
polynomial of prime degree p with exactly one pair of imaginary roots in C. Then
the Galois group G of P equals Σp.

Proof. This follows from the proposition and Lemmas 1.10.35 and 1.10.36 below.

Lemma 1.10.35. Let p be a prime number and G < Σp a transitive subgroup. Then
G contains a p-cycle.

Proof. Since G acts transitively on {1, . . . , p}, we have p | #G. By a theorem of
Cauchy, it follows that G admits an element of order p, which is necessarily a p-cycle
in Σp.

Lemma 1.10.36. Let p be a prime number and G < Σp a subgroup containing a
p-cycle and a transposition. Then G = Σp.

Example 1.10.37. P (X) = X5−4X+2 ∈ Q[X]. This is an Eisenstein polynomial
for 2 and hence irreducible. The stationary points are ± 4

√
4
5 , with P ( 4

√
4
5) < 0 and

P (− 4
√

4
5) > 0. Thus P has exactly three real roots. By Corollary 1.10.34, G = Σ5.

Given a field F and a finite group G, the inverse Galois problem asks whether
there exists a finite Galois extension K/F with an isomorphism G ' Gal(K/F ). In
the case F = Q, this remains an open problem in general, but is known for many
finite groups: Σn, An (Hilbert), finite solvable groups (Shafarevich), all subgroups of
Σ16, and many others. We will construct finite Galois extensions K/Q with Galois
groups Σn in Section 1.12.

5See the Transitive Groups Library, available at https://www.gap-system.org/Packages/
transgrp.html.

https://www.gap-system.org/Packages/transgrp.html
https://www.gap-system.org/Packages/transgrp.html
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1.11 Finite fields
Every finite field F has characteristic p > 1. Moreover, F is a finite extension of Fp,
so that #F = p[F :Fp].

Theorem 1.11.1. Let p be a prime number and n ≥ 1 an integer. Let q = pn.
There exists a finite field F with #F = q, unique up to isomorphism, denoted by Fq.
It is a splitting field of the separable polynomial Xq −X over Fp.

Note that in a field F with #F = q, xq = x for all x ∈ F . Indeed, for x ∈ F×,
xq−1 = 1.

Proof. Let Fq be a splitting field of P (X) = Xq − X over Fp. Since P ′ = −1 and
(P, P ′) = (1), P is separable and has exactly q roots. Let S be the set of roots of P
in Fq. Then S contains Fp and is stable under addition, multiplication, and taking
inverses (of nonzero elements). Thus Fq = S and #Fq = q.

Let F be a field with #F = q. Then, since xq = x for all x ∈ F , there exists an
embedding F ↪→ Fq, which must be an isomorphism.

Corollary 1.11.2. Let E/F and K/F be extensions of finite fields with #F = q,
#E = qm, #K = qn. Then there exists an F -embedding E → K if and only if
m | n.

Proof. If such an F -embedding exists, then (qm)[K:E] = qm, so that n = m[K : E].
Conversely, assume m | n. Note that E is the splitting field of P (X) = Xqm − X
over F and K is the splitting field of Q(X) = Xqn −X. Moreover, every root of P
is clearly a root of Q. It follows that P divides Q and splits in K. Thus there exists
an F -embedding E → K.

Theorem 1.11.3. Let K/F be an extension of finite fields with #F = q. Then K/F
is a Galois extension and Gal(K/F ) is a cyclic group generated by Frq : x 7→ xq.

Proof. We have seen that K/F is the splitting field of a separable polynomial and
hence is a Galois extension. Let n = [K : F ] = #Gal(K/F ). Then the order d of
Frq divides n. Every x ∈ K satisfies xqd = x. Since Xqd −X has (at most) qd roots,
#K = qn ≤ qd. Thus d = n and Gal(K/F ) = 〈Frq〉.

1.12 Galois groups and reduction
Proposition 1.12.1 (Dedekind). Let A be a commutative domain with fraction field
F and let P ∈ A[X] be a monic polynomial of degree d. Let m be a maximal ideal
of A, k := A/m, and let P̄ ∈ k[X] be the reduction of P modulo m.

(1) If P is a separable polynomial, then there exists a subgroup D of the Galois
group G = GP of P over F , equipped with a surjective homomorphism D →
GP̄ . Here GP̄ denotes the group of k-automorphisms of the splitting field of
P̄ .
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(2) If P̄ is a separable polynomial, then P is separable and the Galois group GP̄

of P̄ over k is isomorphic to a subgroup of G = GP . If, moreover, k is a finite
field and we write P̄ = Q1 · · ·Qs with Qi ∈ k[X] irreducible, then G < Σd

contains an element of the form σ1 · · ·σs, where σi is a deg(Qi)-cycle and the
σi’s are disjoint.

Note that P̄ is a separable polynomial if and only if ∆(P ) 6∈ m. In this case, we
say P has good reduction modulo m.

Proof. Write P (X) = ∏d
i=1(X − αi) with αi in a splitting field K of P over F and

let B = A[α1, . . . , αd]. Note that B is finitely generated as A-algebra. Our first goal
is to show that mB ⊊ B. In the case where A is a PID, this follows from the fact
that the finitely-generated torsionfree A-module B is free. The general case follows
from Lemma 1.12.3 below (applied to the A-module B), which is an easy fact in
commutative algebra. (We warn the reader familiar with commutative algebra that
B is not the integral closure of A in K in general.)

Let n be a maximal ideal of B containing mB. Then n∩A = m and kn := B/n =
k[ᾱ1, . . . , ᾱd], where ᾱi is the image of αi in kn. We have P̄ (X) = ∏d

i=1(X − ᾱi) and
kn is a splitting field of P̄ over k. Now it becomes clear that if P̄ is separable, so is
P . Thus P is separable in both (1) and (2).

Let Dn := {σ ∈ G | σn = n}. This is a subgroup of G, called the decomposition
group of n. The map r : Dn → Aut(kn/k) carrying σ to its reduction σ̄ modulo n is
a group homomorphism, whose kernel In is called the inertia group of n.

(1) In order to show the surjectivity of r, it suffices to show k
r(Dn)
n = k

Aut(kn/k)
n .

Let b̄ ∈ kr(Dn)
n . By the Chinese remainder theorem, there exists b ∈ B such that b̄

is the image of b modulo n and b ≡ 0 (mod σn) for all σ ∈ G−Dn. Then R(X) =∏
σ∈G(X−σb) ∈ A[X] and R̄(X) = X t∏

σ∈Dn
(X− σ̄b̄) ∈ k[X], where t = #G−#Dn

and σ̄ = r(σ). By assumption, σb̄ = b̄ for all σ ∈ Dn. Thus (X − b̄)#Dn ∈ k[X], so
that b̄ is purely inseparable over k. It follows that b̄ ∈ kAut(kn/k)

n .
(2) In this case, r is injective, since σ is determined by the permutation it induces

on the αi’s, which corresponds to the permutation that σ̄ induces on the ᾱi’s. Thus
r : Dn → Gal(kn/k) is an isomorphism. Assume now that k is finite. Let σ ∈ Dn

such that σ̄ ∈ GP̄ is a generator (such as the Frobenius). The permutation induced
by σ̄ clearly has the desired cycle decomposition.

Remark 1.12.2. It follows from the proof that in the last assertion of Proposition
1.12.1 (2), one can replace the finiteness of k by the assumption that every finite
Galois extension of k is cyclic.

Lemma 1.12.3. [AM, Corollary 2.5] Let R be a commutative ring and M a finitely-
generated R-module. Let I be an ideal of R satisfying IM = M . Then there exists
a ∈ I such that (1 + a)M = 0.

Proof. Let x1, . . . , xn ∈ M such that M = ∑n
i=1 Axi. Since each xi ∈ IM , there

exists aij ∈ I such that xi = ∑n
j=1 aijxj. In other words,

n∑
j=1

(δij − aij)xj = 0,
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where δij is Kronecker delta. By multiplying on the left by the adjoint of the matrix
In −A = (δij − aij), we see that det(In −A)xj = 0 for all j. Thus it suffices to take
a = det(In − A)− 1 ∈ I.

Example 1.12.4. P (X) = X5 + 3X + 3 ∈ Q[X]. This is an Eisenstein polynomial
for 3, hence irreducible. Modulo 2, P̄ (X) = (X2 + X + 1)(X3 + X2 + 1). Thus
GP < Σ5 contains σ = (12)(345) for a suitable enumeration of the roots. Note that
σ3 = (12). Thus, GP = Σ5 by Lemma 1.10.36. (Note that P (X) has only one real
root and Corollary 1.10.34 does not apply.)

Example 1.12.5. P (X) = X5 − X2 − 2X − 3 ∈ Q[X]. This is irreducible, since
it is irreducible modulo 2. Modulo 3, P̄ (X) = X(X + 1)(X3 − X2 + X + 1) with
X3 −X2 + X + 1 irreducible in F3[X]. Thus G < Σ5 contains a 3-cycle. It follows
that A5 < G. Since ∆(P ) = (17 · 29)2, we have G = A5.

Corollary 1.12.6. Let A be a commutative domain with fraction field F . Let P ∈
A[X] be a separable monic polynomial of degree d whose Galois group G does not
contain any element of order d. Then P is reducible modulo every maximal ideal m
for which A/m is a finite field.

Proof. Assume that the reduction P̄ of P modulo p is irreducible. Then P̄ is sep-
arable. Thus, by Proposition 1.12.1, G contains a d-cycle, which is an element of
degree d.

Example 1.12.7. The irreducible polynomial P (X) = X4 + X2 + 4 ∈ Z[X] is
reducible modulo p for every prime p, since the Galois group is V (Example 1.10.21).

Remark 1.12.8. Let P ∈ Z[X] be a monic irreducible polynomial. By Proposition
1.12.1, if a cycle type occurs in GP̄p

for a prime p not dividing ∆(P ), then it occurs
in GP . Here P̄p denotes P modulo p. The Chebotarev density theorem gives a
converse: if a cycle type occurs in GP , then it occurs in GP̄p

for infinitely many
primes p not dividing ∆(P ). An effective version of the theorem gives an upper
bound for the least such p. Thus, in principle, we can determine all cycle types
occurring in GP by decomposing P̄p for finitely many primes p.

The cycle types occurring in a transitive subgroup G < Σd determine G up to
conjugacy for d ≤ 7. We refer to [BM] for a complete list of transitive subgroups of
Σd up to conjugacy for d ≤ 11 and the cycle types occurring in each subgroup.

Theorem 1.12.9. For every integer d ≥ 1 there exists a monic irreducible polyno-
mial P in Z[X] of degree d and Galois group Σd. The splitting field of P is a finite
Galois extension of Q of Galois group Σd.

Proof. We may assume d ≥ 3. Let r = 2 if d is odd and let r = 3 if d is even.
Choose monic polynomials P0, P1, Pr, Q in Z[X] of degrees d, d−1, d−r, 2, irreducible
modulo 2, 3, 5, 5, respectively. For d even, let P2 = XP3. In the case d = 4, we take
P3 = X − 1 so that P2 remains separable modulo 5. Let

P = −15P0 + 10XP1 + 6P2Q.

Since P ≡ P0 (mod 2), P is irreducible. We apply Proposition 1.12.1. Since P ≡
XP1 (mod 3), GP < Σd contains a (d − 1)-cycle. Since P ≡ P2Q (mod 5), GP
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contains an element conjugate to (12 · · · d− r)(d− 1 d), whose (d− r)-th power is a
transposition. We conclude by the lemma below, which we leave as an exercise.

Lemma 1.12.10. Let G < Σd be a transitive subgroup containing a (d − 1)-cycle
and a transposition. Then G = Σd.

Remark 1.12.11. One can give a more explicit family of polynomials in Q[X] with
Σd as Galois group: the Galois group of Xd − X − 1 ∈ Q[X] is Σd for every d
[S3, page 42]. The proof exploits the inertia groups at primes with bad reduction.

Remark 1.12.12. Hilbert’s original proof of Theorem 1.12.9 relies on the Hilbert’s
Irreducibility Theorem, which says that for every irreducible polynomial P (T1, . . . , Td, X) ∈
Q[T1, . . . , Td, X], there exists (a1, . . . , ad) ∈ Qd such that P (a1, . . . , ad, X) ∈ Q[X]
is separable and irreducible. Note that P (a1, . . . , ad, X) is the reduction of P mod-
ulo the maximal ideal (T1 − a1, . . . , Td − ad) of Q[T1, . . . , Td]. This implies that if
Q(T1, . . . , Td) has a finite Galois extension with Galois group G, then so does Q.
Indeed, it suffices to apply Hilbert’s Irreducibility Theorem to the minimal polyno-
mial of a primitive element of the Galois extension over Q(T1, . . . , Td) with group G.
Since Q(T1, . . . , Td) admits a finite Galois extension with Galois group Σd (Proposi-
tion 1.8.15), we conclude that there exists a finite Galois extension of Q with Galois
group Σd.

1.13 Cyclotomic fields
Let F be a field.

Definition 1.13.1. For an integer n ≥ 1, we say that ζ ∈ F is an n-th root of unity
if ζn = 1. We let µn(F ) ⊆ F× denote the group of n-th roots of unity in F . We say
ζ ∈ F× is a primitive n-th root of unity if it has order n.

Lemma 1.13.2. µn(F ) is a cyclic group of order dividing n. Moreover, if n = pam
for a,m ∈ Z≥1, where p denotes the characteristic exponent of F , then µn(F ) =
µm(F ).

Proof. There are at most n roots of Xn− 1. Thus µn(F ) ⊆ F× is a finite subgroup.
By Lemma 1.7.2, µn(F ) is cyclic. Then #µn(F ) is the order of a generator, which
must divide n. The last assertion is clear, as xpa = 1 if and only if x = 1.

It follows that if ζ is a primitive n-th roots of unity of F , then char(F ) ∤ n.

Proposition 1.13.3. Let F (ζn)/F be a field extension where ζn is a primitive
n-th roots of unity. Then F (ζn)/F is the splitting field of the separable polyno-
mial P (X) = Xn − 1 over F and we have an injective group homomorphism
G = Gal(F (ζn)/F ) → (Z/nZ)× carrying σ to a ∈ (Z/nZ)× satisfying σ(ζn) = ζan.
In particular, F (ζn) is a finite abelian extension of F .

F (ζn) is called the n-th cyclotomic extension of F , and is sometimes denoted
F (µn).
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Proof. Since ζn generates µn(F ), F (ζn) is the splitting field of P (X) = Xn − 1.
Clearly P is separable: the roots are ζ in, 0 ≤ i ≤ n − 1. For every σ ∈ G, σ(ζn) is
also a generator of µn(F ), so that σ(ζn) = ζan for some a ∈ (Z/nZ)×. The injectivity
of the group homomorphism is clear.

Example 1.13.4. For F = Fq, the image of Gal(Fq(ζn)/Fq) → (Z/nZ)× is 〈q̄〉,
where q̄ denotes the image of q in Z/nZ. Indeed, the image of Frq is q̄.

Remark 1.13.5. Given a field extension F/F0, the restriction map induces an
isomorphism Gal(F (ζn)/F ) ∼−→ Gal(F0(ζn)/F0(ζn) ∩ F ) by Proposition 1.8.12.

Let F be a field with char(F ) ∤ n. Let Φn(X) = ∏
ζ(X−ζ), where ζ runs through

the n-th primitive n-th roots of unity in a separable closure of F .

Lemma 1.13.6. Φn belongs to F [X] and has degree ϕ(n), where ϕ(n) = #(Z/nZ)×

is Euler’s totient function. Moreover, Xn − 1 = ∏
d|n Φd(X).

Proof. Let K be the splitting field of Xn − 1 over F . For every σ ∈ Gal(K/F ),
σ permutes the primitive n-th roots of unity, which are in bijection with (Z/nZ)×.
Finally, Xn − 1 = ∏

ζ∈µn(K)(X − ζ) = ∏
d|n Φd(X).

We now restrict to the case F = Q.

Theorem 1.13.7. For F = Q, Φn(X) belongs to Z[X] and is irreducible. Moreover,
the group homomorphism in Proposition 1.13.3 is an isomorphism Gal(Q(ζn)/Q) ∼−→
(Z/nZ)×.

Proof of Theorem 1.13.7. Since Φn(X) | Xn− 1 in Q[X], Φn(X) ∈ Z[X]. It suffices
to show that Φn(X) is irreducible. Indeed, this implies [Q(ζn) : Q] = deg(Φn) =
#(Z/nZ)×, so that the homomorphism in Proposition 1.13.3 must be an isomor-
phism.

Assume that Φn = PQ with P,Q ∈ Z[X] monic of degree ≥ 1. Every root of Φn

has the form ζan with (a, n) = 1. Thus there exists a prime number p ∤ n and a root
ζ of P such that ζp is a root of Q. Indeed, otherwise the roots of P would be stable
under raising to the a-th power for all (a, n) = 1, which is impossible. Then P (X)
and Q(Xp) are not coprime in Q[X]. It follows that there exists R(X) ∈ Z[X] monic
of degree ≥ 1 and dividing P (X) and Q(Xp). Consider the reductions P̄ , Q̄ ∈ Fp[X]
of P,Q modulo p. Then Q̄(Xp) = Q̄(X)p is not prime to P̄ . It follows that P̄
and Q̄ are not coprime. However P̄ Q̄ | Xn − 1 and Xn − 1 is separable in Fp[X].
Contradiction.

Example 1.13.8. For n = pa, Φpa(X) = (Xpa − 1)/(Xpa−1 − 1) = ∑p−1
i=0 X

pa−1i. For
F = Q, Φpa(X + 1) is an Eisenstein polynomial for p, which gives another proof of
the irreducibility of Φpa .

Remark 1.13.9. More generally, Φn is given by the Möbius inversion formula

Φn =
∏
d|n

(Xd − 1)µ(n/d),
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where µ is the Möbius function

µ(p1 . . . pm) =

(−1)m if p1, . . . , pm are distinct primes
0 otherwise.

Indeed, ∏d|n(Xd − 1)µ(n/d) = ∏
c|d|n Φc(X)µ(n/d), where the multiplicity of Φc(X) is

∑
c|d|n

µ(n/d) =

1 c = n

0 otherwise

by the elementary identity

∑
d|n
µ(d) =

1 n = 1
0 n > 1.

Example 1.13.10. Φ12(X) = (X12 − 1)(X6 − 1)−1(X4 − 1)−1(X2 − 1) = X6+1
X2+1 =

X4 −X2 + 1.

Every subfield of Q(ζn) is an abelian extension of Q. Conversely, we have the
following important theorem in number theory, whose proof is beyond the scope of
these lectures.

Theorem 1.13.11 (Kronecker–Weber). Every finite abelian extension of Q can be
embedded into Q(ζn) for some n.

A finite extension of Q is called a number field. The problem of explicit construc-
tion of abelian extensions of number fields is known as Kronecker’s Jugendtraum or
Hilbert’s 12th problem. The theory of complex multiplication (CM) solves this for
CM fields, but the problem for more general number fields remains open.

1.14 Trace and norm
Let E/F be a finite field extension.

Definition 1.14.1. For α ∈ E, we let trE/F (α) = tr(mα) ∈ F and NE/F (α) =
det(mα) ∈ F , where mα : E → E is the F -linear map defined by mα(β) = αβ.

It follows from standard facts about the trace and determinant of linear operators
that trE/F : E → F is an F -linear map satisfying trE/F (a) = [E : F ]a and

NE/F (αβ) = NE/F (α)NE/F (β), NE/F (a) = a[E:F ],

for all α, β ∈ E and a ∈ F . Moreover, NE/F (α) = 0 if and only if α = 0. In
particular, NE/F induces a homomorphism E× → F×.
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Example 1.14.2. Let E = F (α) and let P (X) = Xn + an−1X
n−1 + · · ·+ a0 be the

minimal polynomial of α. Then trE/F (α) = −an−1 and NE/F (α) = (−1)na0. Indeed,
in the basis {1, α, . . . , αn−1}, mα is represented by the matrix

0 0 · · · 0 −a0
1 0 · · · 0 −a1
... ... . . . ... ...
0 0 · · · 1 −an−1

 .

(In fact, P is the characteristic polynomial of mα.)

Lemma 1.14.3. Let K/E/F be finite extensions. For every α ∈ E,

trK/F (α) = [K : E]trE/F (α), NK/F (α) = NE/F (α)[K:E].

Proof. Let (vi)1≤i≤m be a basis of K/E, where m = [K : E] and let (wj) be a basis
of E/F . Let A be the matrix of α under (wj). Then the matrix of α under the basis
(viwj) of K/F is diag(A, . . . , A) (A repeated m times).

Proposition 1.14.4. Let K/F be a normal extension containing E. Then, for any
α ∈ E,

trE/F (α) = [E : F ]insep
∑
ι

ι(α), NE/F (α) =
∏
ι

ι(α)[E:F ]insep ,

where ι runs through F -embeddings E → K.

Proof. The minimal polynomial P (X) ∈ F [X] of α satisfies

P (X) =
∏
λ

(X − λ(α))[F (α):F ]insep ,

where λ runs through F -embeddings F (α)→ K. Thus for E = F (α), the assertion
follows from Example 1.14.2. The general case follows then from Lemma 1.14.3 and
the fact that each fiber of the restriction map HomF (E,K)→ HomF (F (α), K) has
cardinality [E : F (α)]sep.

The following generalizes Lemma 1.14.3.

Proposition 1.14.5. Let K/E/F be finite extensions. For every α ∈ K,

trK/F (α) = trE/F (trK/E(α)), NK/F (α) = NE/F (NK/E(α)).

Proof. We prove the assertion for traces. The assertion for norms can be proved
similarly. Let L/F be a normal extension containing K. We have

trE/F (trK/E(α)) = [E : F ]insep
∑
λ

λ([K : E]insep
∑
ι

ι(α)) = [K : F ]insep
∑
λ,ι

λ̃ι(α),

where ι ∈ HomE(K,L), λ ∈ HomF (E,L). For each λ, λ̃ : L → L is a chosen
extension of λ. The fiber of the restriction map HomF (K,L) → HomF (E,L) at λ
is {λ̃ι | ι ∈ HomE(K,L)}. Thus

trE/F (trK/E(α)) = [K : F ]insep
∑

µ∈HomF (K,L)
µ(α) = trK/F (α).
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More generally, for any E-linear map φ : V → V , where V is a finite-dimensional
E-vector space V , we have

trF (φ) = trE/F (trE(φ)), det
F

(φ) = NE/F (det
E

(φ)).

We refer to [L5,定理 7.8.5] for a generalization over a commutative ring and a direct
proof.

Proposition 1.14.6. (1) If E/F is separable, then trE/F : E → F is surjective.
(2) If E/F is inseparable, then trE/F is zero.

Proof. (2) follows from Proposition 1.14.4. For (1), it suffices to show that trE/F
is nonzero. Let α be a primitive element for E/F . Then 1, α, . . . , αn−1 is a basis
of E/F , where n = [E : F ]. Let K/F be a normal extension containing E and
let σ1, . . . σn : E → K be the F -embeddings. The elements σ1(α), . . . , σn(α) are
distinct, so that the Vandermonde matrix A = (σj(αi−1)) is invertible. It follows

that


trE/F (1)

...
trE/F (αn−1)

 = A


1
...
1

 is nonzero.

The image of NE/F is more interesting and plays a key role in class field theory.

1.15 Cyclic extensions and related examples
A finite Galois extension with cyclic Galois group is called a cyclic extension.

Extracting n-th roots
Let F be a field, n ≥ 1 an integer and a ∈ F×. The polynomial Xn− a is separable
if and only if char(F ) ∤ n. In this case, if α = n

√
a denotes a root in a splitting

field K,then the roots are of the form ζ inα, where ζn is a primitive n-th root of unity
in K.

We first look at the case where F contains a primitive n-th root of unity. In this
case, F ( n

√
a)/F is a Galois extension.

Proposition 1.15.1. Let n ≥ 1 be an integer and let F be a field containing a
primitive n-th root of unity. Let a ∈ F× and let m be the greatest divisor of n such
that a ∈ F×m. Then we have a canonical group isomorphism Gal(F ( n

√
a)/F ) →

µn/m(F ) carrying σ to σ n
√
a/ n
√
a.

The canonicity means that σ n
√
a/ n
√
a does not depend on the choice of n

√
a, which

follows from our assumption that F contains ζn.

Proof. Let α = n
√
a and G = Gal(F (α)/F ). Write a = bm, b ∈ F× and let β be

a root of Xn/m − b. Then α = βζ in for some i. Thus σα/α = σβ/β = µn/m. The
homomorphism G → µn/m is clearly injective. Assume that the image is not µn/m.
Then the image is µd for d | (n/m), d < n/m. Then (σα/α)d = 1 for all σ ∈ G.
It follows that αd ∈ F×, and so a = αn ∈ F×n/d, which contradicts the definition
of m.
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Corollary 1.15.2. Let n ≥ 1 be an integer and let F be a field containing a primitive
n-th root of unity. Let a ∈ F× such that a is not a p-th power in F for any prime
p dividing n. Then Xn − a is irreducible in F [X].

Proof. Indeed, Gal(F ( n
√
a)/F ) ' µn(F ) acts transitively on the roots.

Conversely, every cyclic extension of F of degree n is obtained in this way.

Proposition 1.15.3. Let n ≥ 1 be an integer and let F be a field containing a
primitive n-th root of unity. Let E/F be a cyclic extension of degree n. Then there
exists a ∈ F× such that E = F ( n

√
a).

To prove the proposition, consider the Lagrange resolvent

(ζ, α) =
∑

i∈Z/nZ
ζ iσi(α),

where ζ ∈ µn(F ), α ∈ E and σ ∈ G = Gal(E/F ) is a generator. We have σ(ζ, α) =
ζ−1(ζ, α). It follows that σ(ζ, α)n = (ζ, α)n and (ζ, α)n ∈ F . (More generally,
(ζ, α)m ∈ F if ζm = 1.)

Lemma 1.15.4. For every ζ ∈ µn(F ), there exists α ∈ E such that (ζ, α) 6= 0.

This can be proved easily using the primitive element theorem and a Vander-
monde matrix. We prove a more general result.

Lemma 1.15.5 (Dedekind–Artin). Let Γ be a monoid and let R be a commuta-
tive domain. Then Hom(Γ, (R,×)) is R-linearly independent. In other words, if
χ1, . . . , χn : Γ → (R,×) are distinct homomorphisms and r1, . . . , rn ∈ R are such
that ∑n

i=1 riχi(g) = 0 for all g ∈ Γ, then r1 = · · · = rn = 0.

Note that in the lemma we may replace R by its fraction field without loss of
generality.

Proof. We proceed by induction on n. For n = 1, it suffices to take g = 1. For
n ≥ 2, it suffices to show rn = 0. Choose h ∈ Γ such that χ1(h) 6= χn(h). Then

n∑
i=2

ri(χi(h)− χ1(h))χi(g) =
n∑
i=1

riχi(hg)− χ1(h)
n∑
i=1

riχi(g) = 0.

By induction hypothesis, rn(χn(h)− χ1(h)) = 0, which implies that rn = 0.

Proof of Proposition 1.15.3. Let ζ be a primitive n-th root of unity. By the lemma,
there exists α ∈ E such that (ζ, α) 6= 0. Then Gal(E/F ((ζ, α))) = {σi | ζ i = 1} = 1.
It follows that E = F ((ζ, α)).

For E/F as in the Proposition 1.15.3, one can express every α ∈ E as an F -linear
combination of the Lagrange resolvents:

(1.15.1) σi(α) = 1
n

∑
ζ∈µn(F )

ζ−i(ζ, α).
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Remark 1.15.6. Assume n = `m, where ` is a prime. Then, for every primitive
element β of E/F , there exists a primitive n-th root of unity ζ such that E =
F ((ζ, β)). To see this, note that for every nonprimitive n-th root of unity ξ, we have
(ξ, β) ∈ EH , where H = 〈σ`m−1〉. If (ζ, β) = 0 for every primitive n-th root of unity
ζ, then β ∈ EH by (1.15.1), which contradicts the assumption that E = F (β).

Example 1.15.7. Let F be a field of characteristic 6= 2, 3. Let P (X) = X3 +
cX + d ∈ F [X] be an irreducible polynomial and let K be its splitting field over F .
Let E = F (

√
∆), where ∆ = −4c3 − 27d2 is the discriminant. Write P (X) =

(X−α1)(X−α2)(X−α3). We have seen that K/E is a cyclic extension with Galois
group A3 = 〈σ〉, where σ = (123). Let K(ω) be the fraction field of X3 − 1 over
K, where ω = 1

2(−1 +
√
−3) is a primitive cube root of unity. Then K(ω)/E(ω) is

cyclic of group A3. The Lagrange resolvents

(1, α1) = α1 + α2 + α3 = 0,
β1 = (ω, α1) = α1 + ωα2 + ω2α3,

β2 = (ω2, α1) = α1 + ω2α2 + ωα3

can be used to solve the cubic equation by radicals, as we have seen in Example
1.1.2. Note that, in the formulas given there, γ3

i = −d±
√

−∆/27
2 ∈ E(ω).

Now we drop the assumption that F contains a primitive n-th root of unity.
We need some notation for the description of the Galois group. Let R be a ring.
The affine linear group AGL1(R) is the group of transformations of R of the form
x 7→ ax+b for (a, b) ∈ R××R. The group law is given by (a, b)(a′, b′) = (aa′, b+ab′).
We have an injective group homomorphism AGL1(R) → GL2(R) carrying (a, b) to(
a b
0 1

)
. We can also regard AGL1(R) as a semidirect product. Recall that given a

group H acting on a group N by automorphisms, the semidirect product N ⋊H is
defined to be the setN×H equipped with the group law (n, h)(n′, h′) = (n(hn′), hh′).
AGL1(R) can be identified with the semidirect product R ⋊ R×, where R× acts on
R by left multiplication.

Proposition 1.15.8. Let n ≥ 1 be an integer and F a field such that char(F ) ∤ n.
Let a ∈ F× and let K be the splitting field of Xn − a over F . Let α ∈ K be an n-th
root of a and let ζ ∈ K be a primitive n-th root of unity. Then we have an injective
group homomorphism

Gal(K/F )→ AGL1(Z/nZ)

carrying σ to (i, j) such that σ(ζ) = ζ i and σ(α) = ζjα.

Proof. It is straightforward to check that the map is a homomorphism. It is an
injection since K = F (α, ζ).

The inverse image of the normal subgroup (Z/nZ) / AGL1(Z/nZ) corresponds
to the Galois extension F (ζ)/F .

Remark 1.15.9. The homomorphism in Proposition 1.15.8 depends on the choices
of α and ζ. Replacing j by σ(α)/α, we get an injective group homomorphism
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Gal(K/F ) → µn(K) ⋊ (Z/nZ)× depending only on the choice of α. We can give a
canonical homomorphism as follows.

An affine space is a pair (A,M), where M is a module and A is a set equipped
with a simply transitive action of the additive group of M . We write the action
additively. An affine transformation (A,M) → (A′,M ′) is a pair (f,D), where
D : M → M ′ is a homomorphism of modules and f : A → A′ is a map such that
f(x+m) = f(x)+D(m) for x ∈ A and m ∈M . The affine linear group AGL(A,M)
of (A,M) is the group of invertible affine transformations (A,M)→ (A,M). For a
ring R, AGL1(R) can be identified with AGL(R,R), where the second R is regarded
as a right R-module by right multiplication and the second R acts on the first R by
addition.

Consider the affine space (S, µn), where S is the set of roots of Xn − a and
µn = µn(K) acts on S by multiplication. The abelian group µn is in fact a Z/nZ-
module. We have a canonical group homomorphism Gal(K/F )→ AGL(S, µn) given
by restriction.
Corollary 1.15.10. Assume that in the situation of Proposition 1.15.8, a is not
a p-th power in F (µn) for any p | n, where µn = µn(K). Then Gal(K/F ) '
µn ⋊ Gal(F (µn)/F ).
Proof. By Proposition 1.15.3, the image of Gal(K/F )→ µn⋊ (Z/nZ)× contains µn.
We conclude by the following lemma, whose proof is straightforward.
Lemma 1.15.11. Let H be a group acting on a group N and let p : N ⋊ H → H
be the projection. Then every subgroup K of N ⋊H containing N can be identified
with N ⋊ p(K).
Proposition 1.15.12. Let p be a prime and F a field with char(F ) 6= p. Let a ∈ F×

and let K be a splitting field of Xp − a over F . Assume that a is not a p-th power
in F . Then Xp−a is irreducible in F (µp)[X] and Gal(K/F ) ' µp⋊Gal(F (µp)/F ).
Here µp = µp(K).
Proof. It suffices to prove that a is not a p-th power in F (µp). The assertions then
follow from Corollaries 1.15.2 and 1.15.10. Assume that a = αp for α ∈ F (µp).
Then ad = NF (µp)/F (a) = NF (µp)/F (α)p ∈ F×p, where d = [F (µp) : F ] | p − 1. Note
that F×/F×p is an Fp-vector space. It follows that a ∈ F×p, which contradicts the
assumption on a.
Example 1.15.13. For primes p and ` (possible equal), the Galois group of Xp− `
over Q is AGL1(Fp).

Note that Proposition 1.15.12 does not hold with p replaced by a general n. For
example, X4 + 4 = (X2 + 2X + 2)(X2 − 2X + 2) has no root in Q but splits over
Q(µ4) = Q(i). We refer the reader to [L3, Section VI.9] for partial generalizations.

Artin–Schreier polynomials and a generalization
Let F be a field of characteristic p > 0. A polynomial of the form Xp − X − b,
b ∈ F is called an Artin–Schreier polynomial. If β is a root of the polynomial in an
extension E of F , then the polynomial splits in E with roots β + c, c ∈ Fp. Indeed,
(β + c)p − (β + c) = βp − β.
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Proposition 1.15.14. Let F be a field of characteristic p > 0. Let P (X) = Xp −
X − b, b ∈ F be an Artin-Schreier polynomial with no root in F . Let E be the
splitting field of P (X) over F . Then P (X) is irreducible in F [X] and we have a
canonical group isomorphism Gal(E/F )→ Fp carrying σ to σβ−β, where β denotes
a root of P (X) in K.

The canonicity means that σβ − β does not depend on the choice of β, which is
clear.

Proof. Since E = F (β), the homomorphism is clearly injective. Since P (X) has no
root in F , G = Gal(E/F ) is nontrivial. It follows that the homomorphism is an
isomorphism. The Galois group acts transitively on the roots of P (X), and so P (X)
is irreducible in F [X].

Example 1.15.15. For any b ∈ F×
p , Xp −X − b is irreducible in Fp[X].

Example 1.15.16. It follows from the previous example that the polynomial P (X) =
X5−6X+1 is irreducible in Q[X]. As in Example 1.10.37, P has exactly two imag-
inary roots and it follows that the Galois group of P over Q is Σ5.

Conversely, every cyclic extension of F of degree p is the splitting field of an
Artin–Schreier polynomial.

Proposition 1.15.17. Let F be a field of characteristic p > 0 and let E/F be a
cyclic extension of degree p. Then there exists b ∈ F such that E is the splitting
field of Xp −X − b over F .

Remark 1.15.18. Let σ be a generator of G = Gal(E/F ). For α ∈ E, consider

β =
p−1∑
i=0

iσi(α).

We have σβ = β − trE/F (α). Since trE/F : E → F is surjective, for any c ∈ F , there
exists β ∈ E such that σβ = β + c.

Proof of Proposition 1.15.17. By the remark, there exists β ∈ E such that σβ =
β + 1. Let b = βp − β. The roots of Xp −X − b are β + c, c ∈ Fp. It follows that
Xp −X − b ∈ EG[X] = F [X].

Next we look at a generalization of the Artin–Schreier polynomial: Xp−aX− b,
with a, b ∈ F , a 6= 0. Let β be a root of the polynomial in an algebraic closure of
F , then the roots are β + cα, c ∈ Fp, where α = p−1

√
a. Indeed,

(β + cα)p − a(β + cα) = βp − aβ.

Note that F contains a primitive (p − 1)-th root of unity. Indeed, µp−1(F ) =
µp−1(Fp) = F×

p .

Proposition 1.15.19. Let F be a field of characteristic p > 0, a, b ∈ F with a 6= 0.
Let K be a splitting field of P (X) = Xp − aX − b over F . Let β ∈ K be a root
of P (X) and α ∈ K a (p − 1)-th root of a. Assume that P (X) has no root in F .
Then P (X) is irreducible in F (α)[X] and we have an injective group homomorphism
φ : Gal(K/F ) → AGL1(Fp) carrying σ to (σα/α, (σβ − β)/α), whose image can be
identified with Fp ⋊ µ(p−1)/m, where µ(p−1)/m = µ(p−1)/m(Fp).
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Proof. It is straightforward to check that the map φ is a group homomorphism. It
is an injection since K = F (α, β). Assume that P (X) has a root β′ ∈ F (α). Then
db = trF (α)/F (b) = trF (α)/F (β′p − aβ′) = trF (α)/F (β′)p − atrF (α)/F , where d = [F (α) :
F ] | p− 1. Thus trF (α)/F (β′)/d is a root of P (X), which contradicts the assumption
that P (X) has no root in F . Therefore, P (X) has no root in F (α).

Note that α−dP (αY ) = Y d − Y − α−db is an Artin–Schreier polynomial over
F (α). Thus P (X) is irreducible in F (α)[X] and φ(Gal(K/Fα)) = Fp by Proposition
1.15.17. Moreover, φ is compatible with the isomorphism Gal(F (α)/F ) ' µ(p−1)/m
in Proposition 1.15.1. We conclude by Lemma 1.15.11.

Remark 1.15.20. The homomorphism φ in Proposition 1.15.19 depends on the
choice of β. As in Remark 1.15.9, We can give a canonical homomorphism by
considering the affine space (S,M), where S is the set of roots of P (X) and M is
the set of roots of Xp − aX, which acts on S by addition. In fact, M is an Fp-
module by multiplication. We have a canonical group homomorphism Gal(K/F )→
AGL(S,M) given by restriction.

Example 1.15.21. Let F = k(T ) with char(k) = p > 0 and let P (X) = Xp −
TX − T ∈ F [X]. This is an Eisenstein polynomial for T ∈ k[T ], hence irreducible.
Since T is not an m-th power in F for any m ≥ 2, the Galois group of P (X) over F
is isomorphic to AGL1(Fp).

1.16 Hilbert’s Theorem 90
Let E/F be a finite Galois extension and let G = Gal(E/F ). For any β ∈ E and
σ ∈ G,

trE/F (σβ − β) =
∑
τ∈G

τσβ −
∑
τ∈G

τβ = 0.

Similarly, for any β ∈ E×, NE/F (σβ/β) = 1.
A finite Galois extension with cyclic Galois group is called a cyclic extension.

For such extensions, the kernels of the trace and norm maps can be determined as
follows.

Theorem 1.16.1. Let E/F be a finite cyclic extension and let σ ∈ Gal(E/F ) be a
generator.

(1) If α ∈ E satisfies trE/F (α) = 0, then α = σ(β)− β for some β ∈ E.
(2) (Hilbert 90) If α ∈ E× satisfies NE/F (α) = 1, then α = σ(β)/β for some

β ∈ E×.

Hilbert’s original statement [H1, §54, Satz 90] has some extra assumptions (F is
a number field and [E : F ] is a prime number).

We have already proved Theorem 1.16.1 in some special cases:
(1) α ∈ F and [E : F ] = char(F ) (Remark 1.15.18).
(2) α ∈ µn(F ), where n = [E : F ] (Lemma 1.15.4).

Proof of Theorem 1.16.1 (1). Let n = [E : F ]. Consider the F -linear map f : E →
E given by f(β) = σ(β) − β. Since ker(f) = F , dimF (im(f)) = n − 1. Moreover,
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im(f) ⊆ ker(trE/F ). Since trE/F is surjective, dimF (ker(trE/F )) = n − 1. It follows
that im(f) = ker(trE/F ). (We have an exact sequence

0→ F → E
f−→ E

trE/F−−−→ F → 0

in the sense of Definition 1.17.1.)

We will prove a more general form of Theorem 1.16.1 involving group cohomol-
ogy. Let G be a group. An abelian group equipped with a G-action by automor-
phisms of abelian groups is called a G-module.

Definition 1.16.2. Let M be a G-module. A crossed homomorphism is a map
f : G → M such that f(στ) = f(σ) + σf(τ) for all σ, τ ∈ G. For m ∈ M , let
d0(m) : G → M be the σ 7→ σm − m, which is clearly a crossed homomorphism.
Indeed, στm − m = (σm − m) + σ(τm − m). A crossed homomorphism of the
form d0(m) for some m ∈ M is called a principal crossed homomorphism. We let
Z1(G,M) and B1(G,M) denote the abelian groups of crossed homomorphisms and
principal crossed homomorphisms, respectively. We define the first cohomology of
G with coefficients in M to be

H1(G,M) = Z1(G,M)/B1(G,M).

Example 1.16.3. If the action of G on M is trivial, then B1(G,M) = 0 and
H1(G,M) = Z1(G,M) = Hom(G,M) ' Hom(Gab,M), where Gab = G/[G,G]
denotes the abelianization of G.

Example 1.16.4. Let G = 〈σ〉 be a cyclic group of order n. Then we have an
isomorphism Z1(G,M) ∼−→ ker(N) carrying f to f(σ), where N : M →M is defined
by N(m) = ∑

τ∈G τm. The inverse carries m to f : G → M defined by f(σi) =∑i−1
j=0 σ

jm for i ≥ 0. Under this bijection, the image of B1(G,M) is im(σ − id) =
{σm − m | m ∈ M}. Thus the bijection induces an isomorphism H1(G,M) '
ker(N)/im(σ − id).

For M = E, where E/F is a cyclic extension with group G, we have N = trE/F .
For M = E×, we have N = NE/F .

In view of the example, Theorem 1.16.1 follows from the cyclic case of the fol-
lowing theorem.

Theorem 1.16.5. Let E/F be a finite Galois extension and let G = Gal(E/F ).
Then H1(G,E) = 0 and H1(G,E×) = 1.

The triviality of H1(G,E×) was proved by Speiser.

Proof. Let f : G→ E× be a crossed homomorphism. Note that this means f(στ) =
f(σ)σ(f(τ)) for all σ, τ ∈ G. By the independence of characters (Lemma 1.15.5)
applied to Γ = E×, ∑τ∈G f(τ)τ : E× → E is not the zero map. There exists x ∈ E×

such that y := ∑
τ∈G f(τ)τ(x) 6= 0. Then, for every σ ∈ G,

σ(y) =
∑
τ∈G

σ(f(τ))στ(x) =
∑
τ∈G

f(σ)−1f(στ)στ(x) = f(σ)−1y.
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In other words, f(σ) = σ(y−1)/y−1.
Let f : G → E be a crossed homomorphism. Let x ∈ E such that trE/F (x) 6= 0

and let y = ∑
τ∈G f(τ)τ(x). Then, for every σ ∈ G,

σ(y) =
∑
τ∈G

σ(f(τ))στ(x) =
∑
τ∈G

(f(στ)− f(σ))στ(x) = y − f(σ)trE/F (x).

In other words, f(σ) = σ(z)− z, where z = −y/trE/F (x).

Remark 1.16.6. Given a finite Galois extension E/F with Galois group G, the
independence of characters implies that for every nonzero function f : G→ F , there
exists α ∈ E such that ∑ f(σ)σ(α) 6= 0. The Normal Basis Theorem asserts that α
can be chosen independently of f . In other words, there exists an F -linear basis of
E consisting of a G-orbit. Such a basis is called a normal basis for E/F . We refer
to [L5, 定理 9.5.6] and [M, Theorem 5.18] for proofs of the Normal Basis Theorem.

An element α ∈ E such that (σ(α))σ∈G is a normal basis for E/F is nec-
essarily a primitive element for E/F . Moreover, for every subgroup H < G,
trE/EH (α) = ∑

σ∈H σ(α) is a primitive element for EH/F . In fact, if H is a nor-
mal subgroup, then the orbit of trE/EH (α) is normal basis for EH/F . The Nor-
mal Basis Theorem also implies the following generalization of Theorem 1.16.1 (1):
ker(trE/F ) = ∑

σ∈G im(σ − id). We leave the proof as an exercise.
Another equivalent statement of the Normal Basis Theorem is that E ' F [G]

as F [G]-modules (see Definition 4.1.3 for the definition of the group algebra F [G]),
which implies Hn(G,E) = 0 for all n ≥ 1. On the other hand, H2(G,E×) is in
general nontrivial (see Definition 3.8.5 and Theorem 3.8.6).

1.17 Kummer and Artin–Schreier theories
We will deduce Kummer and Artin–Schreier theories from long exact sequences for
group cohomology.

Definition 1.17.1. We say that a sequence of groups A f−→ B
g−→ C is exact at B if

im(f) = ker(g). We say that a sequence of groups A0 → A1 → · · · → An is exact if
it is exact at each Ai, 1 ≤ i ≤ n− 1.

We restrict our attention to exact sequences of abelian groups.

Example 1.17.2. (1) A sequence 0→ A→ 0 is exact if and only if A = 0.
(2) A sequence 0→ A

f−→ B is exact if and only if f is injective.
(3) A sequence A f−→ B → 0 is exact if and only if f is surjective.
(4) A sequence 0→ A

f−→ B → 0 is exact if and only if f is an isomorphism.
(5) A sequence 0→ A

f−→ B
g−→ C is exact if and only if f induces A ∼−→ ker(g).

(6) A sequence A f−→ B
g−→ C → 0 is exact if and only if g induces coker(f) ∼−→ C,

where coker(f) := B/im(f) is the cokernel of f .

An exact sequence of the form 0 → A
f−→ B

g−→ C → 0 is called a short exact
sequence. In this case, f induces A ∼−→ im(f) and g induces B/im(f) ∼−→ C.
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Lemma 1.17.3 (Snake lemma). Consider a commutative diagram of abelian groups
with exact rows

(1.17.1) X ′ //

u′

��

X //

u
��

X ′′ //

u′′

��

0

0 // Y ′ // Y // Y ′′.

Then we have an exact sequence

(1.17.2) ker(u′)→ ker(u)→ ker(u′′) δ−→ coker(u′)→ coker(u)→ coker(u′′),

where the unmarked arrows are induced by the horizontal arrows in (1.17.1) and for
each b ∈ X of image a ∈ ker(u′′), δ(a) is the class of c ∈ Y ′ whose image in Y is
u(b).

The construction of δ is shown by the diagram

a_

��
b � //
_

��

a_

��
c � //
_

��

u(b) � // 0

δ(a)

Proof. It is clear that δ(a) does not depend on the choice of b. It follows that δ is a
homomorphism. One checks the exactness by diagram chasing.

Let G be a group, M a G-module. Consider the sequence of abelian groups

0→M
d0
−→ Map(G,M) d1

−→ Map(G2,M),

where d1(f) : (σ, τ) 7→ f(σ) + σf(τ) − f(στ). We have ker(d1) = Z1(G,M) and
im(d0) = B1(G,M), so that ker(d1)/im(d0) = H1(G,M). Moreover, ker(d0) = MG,
where

MG = {m ∈M | σm = m for all σ ∈ G}.

A homomorphism of G-modules is a G-equivariant homomorphism of abelian
groups.

Proposition 1.17.4. Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence of
G-modules. Then we have a long exact sequence

0→M ′G →MG →M ′′G δ−→ H1(G,M ′)→ H1(G,M)→ H1(G,M ′′),

where, for each x ∈ M of image y ∈ M ′′G, δ(y) is the class of σ 7→ σ(x) − x (with
σ(x)− x regarded as an element of M ′).
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Proof. Applying the snake lemma to the commutative diagram with exact rows

0 // Map(G,M ′) //

d1

��

Map(G,M) //

d1

��

Map(G,M ′′) //

d1

��

0

0 // Map(G2,M ′) // Map(G2,M) // Map(G2,M ′′) // 0,

we obtain an exact sequence 0 → Z1(G,M ′) → Z1(G,M) → Z1(G,M ′′). We have
seen d1d0 = 0. Thus we have a commutative diagram with exact rows

0 //M ′ //

d0

��

M //

d0

� �

M ′′ //

d0

��

0

0 // Z1(G,M ′) // Z1(G,M) // Z1(G,M ′′).

We conclude by applying the snake lemma to the above diagram.

Kummer theory
Let F be a field and let E be a finite Galois extension of F of group G. Let n ≥ 1.
We have a short exact sequence of G-modules

1→ µn(E)→ E× (−)n

−−→ E×n → 1,

which induces the long exact sequence

1→ µn(F )→ F× (−)n

−−→ E×n ∩ F× → H1(G,µn(E))→ H1(G,E×) = 1.

We get an isomorphism E×n ∩ F×/F×n ∼−→ H1(G,µn(E)) carrying the class of xn,
x ∈ E× to the class of σ 7→ σ(x)/x. In particular, E×n ∩F×/F×n is a finite abelian
group. Assume now that µn(E) = µn(F ). Then G acts trivially on µn(E), so that
H1(G,µn(E)) = Hom(G,µn(F )).

Let us recall the duality for finite abelian groups. Recall that the exponent of a
group A is the least common multiple of the orders of g ∈ A. Let C be a cyclic group
of order n. For an abelian group A of exponent dividing n, let A∨ := Hom(A,C).
For A finite, #A = #(A∨) and the canonical map A→ A∨∨ is an isomorphism. Let
A and B be abelian groups of exponent dividing n. A bilinear pairing A× B → C
corresponds to homomorphisms L : A→ B∨ and R : B → A∨.

Lemma 1.17.5. If A and B are finite, then the following conditions are equivalent:
(1) L and R are injections.
(2) L is an isomorphism.
(3) R is an isomorphism.

We say that the pairing is perfect if it satisfies the equivalent conditions in the
lemma.

Proof. (1) implies #A ≤ #B ≤ #A, so that #A = #B. Thus (1) implies (2) and
(3). For (2) =⇒ (1), it suffices to note that R is the composition B ∼−→ B∨∨ L∨

−→ A∨.
Similarly for (3) =⇒ (1).
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The exponent of a Galois extension is defined to be the exponent of its Galois
group.

Theorem 1.17.6. Let n ≥ 1 be an integer and let F be a field containing a primitive
n-th root of unity. Let F sep be a separable closure of F . Then we have a bijection

{F sep/E/F : E/F finite abelian of exp. | n} ↔ {F×n < ∆ < F× : (∆/F×n) <∞}
E 7→ E×n ∩ F×

F ( n
√

∆)← [ ∆.
Here F ( n

√
∆) ⊆ F sep denotes the splitting field over F of {Xn − a | a ∈ ∆}.

Moreover, for E ↭ ∆ under the above bijection, the pairing Gal(E/F )×∆/F×n →
µn(F ) carrying (σ, a) to σ n

√
a/ n
√
a is perfect and [E : F ] = (∆ : F×n). Here a ∈ ∆,

ā denotes its class in ∆/F×n, and n
√
a ∈ E denotes an n-th root of a.

Note that Xn − a = ∏
ζ∈µn(F )(X − ζ n

√
a).

Proof. Let E/F be a finite abelian extensions of exponent dividing n contained in
F sep and let ∆E = E×n∩F×. We have seen that the map ∆E/F

×n → Hom(Gal(E/F ), µn(F ))
induced by the pairing is an isomorphism. In particular, (∆E : F×) = [E : F ].

Let F×n < ∆ < F× such that [∆ : F×n] < ∞. Then E∆ = F ( n
√

∆) is a finite
Galois extension of F . The homomorphism Gal(E∆/F ) → Hom(∆/F×n, µn(F ))
induced by the pairing is clearly injective. It follows that E∆/F is an abelian
extension of F of exponent dividing n and [E∆ : F ] ≤ (∆ : F×n). We have ∆E∆ =
E×n

∆ ∩ F× ⊇ ∆ and (∆E∆ : F×n) = [E∆ : F ] ≤ (∆ : F×n), which implies that
∆E∆ = ∆ and [E∆ : F ] = (∆ : F×n).

Finally, for E as at the beginning of the proof, we have E∆E
= F ( n

√
∆E) ⊆ E

and [E∆E
: F ] = (∆E : F×n) = [E : F ], which implies that E∆E

= E.

Remark 1.17.7. If E ↭ ∆ and E ′ ↭ ∆′ under the bijection above, then E ∩
E ′ ↭ ∆ ∩ ∆′ and EE ′ ↭ ∆∆′. In fact, by construction, E ∩ E ′ 7→ ∆ ∩ ∆′ and
EE ′ ←[ ∆∆′.

Example 1.17.8. A basis of the F2-vector space Q×/Q×2 is given by the im-
ages of −1 and the prime numbers. Thus for distinct prime numbers p1, . . . , pr,
Gal(Q(

√
−1,√p1, . . . ,

√
pr)/Q) ' (Z/2Z)r+1. Moreover, every finite abelian exten-

sion of Q of exponent 2 is contained in an extension of the form Q(
√
−1,√p1, . . . ,

√
pr).

Artin–Schreier theory
Let F be a field of characteristic p > 1. Let E/F be a finite Galois extension with
Galois group G. Let P(X) = Xp−X. Note that P : E → E is a homomorphism of
G-modules. We have a short exact sequence of G-modules

0→ Fp → E
P−→ P(E)→ 0,

which induces the long exact sequence

0→ Fp → F
P−→ P(E) ∩ F → H1(G,Fp)→ H1(G,E) = 0.
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This induces an isomorphism P(E) ∩ F/P(F ) ∼−→ Hom(G,Fp) carrying the class of
P(β), β ∈ E to σ 7→ σβ − β. The proof of the following theorem is parallel to the
proof of Theorem 1.17.6.

Theorem 1.17.9. Let F be a field of characteristic p > 1 and let F sep be a separable
closure of F . Then we have a bijection

{F sep/E/F : E/F finite abelian of exp. | p} ↔ {P(F ) < ∆ < F : (∆ : P(F )) <∞}
E 7→ P(E) ∩ F

F (P−1(∆))←[ ∆,
where F (P−1(∆)) ⊆ F sep denotes the splitting field over F of {Xp−X− b | b ∈ ∆}.
Moreover, for E ↭ ∆ under the above bijection, the pairing Gal(E/F )×∆/P(F )→
Fp carrying (σ,P(β)) to σβ − β is perfect and [E : F ] = (∆ : P(F )). Here β ∈ E
and P(β) denotes the class of P(β) in ∆/P(F ).

Note that for β ∈ E as in the theorem, Xp − X − P(β) = ∏
c∈Fp

(X − β − c).
Abelian groups of exponent dividing p are called elementary abelian p-groups and
are precisely Fp-vector spaces.

Witt extended Artin–Schreier theory to cover abelian extensions of exponent a
power of p. The additive group of F is replaced by the additive of Wn(F ), the ring
of Witt vectors of F . We have Wn(Fp) = Z/pnZ.

1.18 The Fundamental Theorem of Algebra
There are many proofs of the Fundamental Theorem of Algebra. Here we give a
short proof, due to E. Artin, based on Galois theory. Arguments of a similar flavor
will be used in the next two sections.

Theorem 1.18.1 (Fundamental Theorem of Algebra). The field C of complex num-
bers is algebraically closed.

Proof. We use the following inputs from analysis:
(1) Every polynomial P (X) of odd degree in R[X] has a root in R.
(2) Every α ∈ C has a square root in C.

(1) follows from the Intermediate Value Theorem, since limx→+∞ P (x) and limx→−∞ P (x)
have different signs. (2) follows from the existence of square roots in R (which is a
special case of (1)) and de Moivre’s formula.

By Lemma 1.5.2, it suffices to show that every polynomial P (X) in R[X] of
degree ≥ 1 splits in C[X]. Let K be the splitting field of P (X) over R and let
G = Gal(K/R). Let H < G be a 2-Sylow subgroup and let E = KH . For any α ∈ E,
the minimal polynomialQ(X) of α over R has degree [R(α) : R] | [E : R] = #(G/H),
which is odd. By (1), Q(X) splits in R[X] and α ∈ R. It follows that E = R and
H = G is a 2-group.

If G is trivial then we are done. Otherwise, by the First Sylow Theorem, there
exists a subgroup G1 < G of index 2. Then E1 = KG1 is a quadratic extension
of R, and hence of the form R(

√
a) for a < 0. Thus E1 ' C. It suffices to show
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that G1 is trivial, which implies K = E1 ' C. Suppose to the contrary that G1 is
nontrivial. Then again there exists a subgroup G2 < G1 of index 2 and E2 = KG2

is a quadratic extension of E1 ' C. This is impossible, since C has no quadratic
extension by (2).

1.19 Solvability by radicals
Definition 1.19.1. Let E/F be a finite separable extension.

(1) We say that E/F is a radical extension if there exists a tower of extensions
F = E0 ⊆ E1 ⊆ · · · ⊆ Em = E such that for each 1 ≤ i ≤ m, Ei = Ei−1(αi),
where one of the following holds
(a) αi is a root of Xn − ai, ai ∈ E×

i−1 and char(F ) ∤ n;
(b) αi is a root of Xp −X − ai, ai ∈ Ei−1 and p = char(F ) > 0.

(2) We say that E/F is a solvable extension if Gal(K/F ) is a solvable group,
where K/F is the Galois closure of E/F .

Our definition of radical extensions is adapted from [L5, 定义 9.7.2]. In many
other sources, roots of Artin–Schreier polynomials are not allowed in the definition.
The inclusion of such roots ensures that results of this section hold in all character-
istics.

Recall that a group G is said to be solvable if there exists a composition series
G = G0 > G1 > · · · > Gm = {1} such that for every 1 ≤ i ≤ m, Gi / Gi−1 has
abelian quotient. Any subquotient of a solvable group is solvable. It follows that
E/F is solvable if and only there exists a finite Galois extension K/F containing E
with solvable Galois group.

Theorem 1.19.2. A finite separable extension E/F is solvable if and only if it is
contained in a radical extension K/F .

The theorem is due to Galois, at least in characteristic 0.

Proof. The “if” part. Let F = E0 ⊆ E1 ⊆ · · · ⊆ Em = K and Ei = Ei−1(αi)
be as in the definition of radical extensions. Let N be the least common multiple
of the numbers n appearing in part (a) of the definition. Let ζ be a primitive N -
th root of unity in a separable closure of Em and let L/F be the Galois closure of
Em(ζ)/F . Let Gal(L/F ) = {σ1, . . . , σd}. Then L is obtained from F by successively
adjoining ζ, σ1(α1), . . . , σd(α1), . . . , σ1(αm), . . . , σd(αm). We have seen that L1 =
F (ζ)/F is abelian. Moreover, if αi is of type (a) (resp. (b)), then σj(αi) is of the
same type and Lk+1 = Lk(σj(αi))/Lk is an abelian extension by Proposition 1.15.1
(resp. Proposition 1.15.17). Thus L/F is solvable.

The “only if” part. We may assume that E/F is a solvable Galois extension. In
this case, we prove the following more precise result.

Proposition 1.19.3. Let E/F be a solvable Galois extension of group G. Let N be
the product of the prime factors of #G different from char(F ). Then E(ζN)/F is a
radical extension, where ζN is a primitive N-th root of unity.
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Proof. There exists a composition series G = G0 > G1 > · · · > Gm = {1} such that
Gi/Gi+1 is cyclic of prime order `i. Consider the corresponding tower of extensions
F = E0 ⊆ E1 ⊆ · · · ⊆ Em = E, where Ei = EGi . Let E ′

i = Ei(ζN). We have
F ⊆ F (ζ) = E ′

0 ⊆ · · · ⊆ E ′
m = E(ζN). Each E ′

i+1/E
′
i is Galois with Gal(E ′

i+1/E
′
i) a

subgroup of Gi+1/Gi and hence is either trivial or cyclic of order `i. For `i 6= char(F ),
the extension is of type (a) by Kummer theory. For `i = char(F ), the extension is
of type (b) by Artin–Schreier theory. Thus E(ζN)/F is radical.

We say that a separable polynomial P (X) ∈ F [X] is solvable by radicals over
F if its splitting field over F is contained in a radical extension of F . Using this
notion, we can reformulate the theorem as follows.

Corollary 1.19.4. A separable polynomial P (X) ∈ F [X] is solvable by radicals if
and only if its Galois group is solvable.

If P (X) ∈ F [X] is irreducible and separable and has one root α contained in a
radical extension of F , then P (X) is solvable by radicals by the following lemma.

Lemma 1.19.5. Let E/F be a radical extension. Then its Galois closure K/F is
radical.

Proof. This is similar to the proof of the “if” part of Theorem 1.19.2. If E is obtained
from F by adjoining αi, 1 ≤ i ≤ m of types (a) and (b), then K is obtained by
adjoining σ(αi), 1 ≤ i ≤ m, σ ∈ Gal(K/F ), with σ(αi) of the same type as αi.

Example 1.19.6. (1) For deg(P (X)) ≤ 4, since every subgroup of Σ4 is solvable,
P (X) is solvable by radicals.

(2) Let P (X) = Xn +T1X
n−1 + · · ·+Tn ∈ F (T1, . . . , Tn)[X] be the generic monic

polynomial of degree n. The Galois group of P (X) is Σn by Example 1.10.2.
For n ≥ 5, Σn is not solvable and thus P (X) is not solvable by radicals. This
is known as the Abel–Ruffini Theorem.

(3) The Galois group of P (X) = X5−X2−2X−3 ∈ Q[X] is A5 (Example 1.12.5).
For n ≥ 5, An is not solvable. Thus P (X) is not solvable by radicals.

Next we give a necessary condition for a solvable extension to be radical.

Proposition 1.19.7. Let K/E/F be a tower of field extensions such that E/F is
solvable Galois of group G and K/F is radical. Let p = char(F ) and let ` 6= p be
a prime divisor of #G. Then K contains either a primitive `-th root of unity or a
primitive `′-th root of unity for some prime `′ ≡ 1 (mod `).

Proof. By Cauchy’s theorem, there exists σ ∈ G of order `. Note that K/E〈σ〉 is
radical. Up to replacing F by E〈σ〉, we may assume that G = 〈σ〉 has order `.
Let F = E0 ⊆ E1 ⊆ · · · ⊆ Em = K and Ei = Ei−1(αi) be as in the definition of
radical extensions. We may assume that in case (a), αi is a root of X`i − ai with `i
prime. There exists i such that Ei−1 ∩ E ⊊ Ei ∩ E. Since E/F is of prime degree
`, E ∩ Ei−1 = F and E ⊆ Ei. Then ` = [E : F ] = [E · Ei−1 : Ei−1] | [Ei : Ei−1]. It
follows that αi is in case (a). There are two cases:

(1) X`i − ai has no root in Ei−1. Then it is irreducible over Ei−1 by Proposition
1.15.12. Thus [Ei : Ei−1] = `i, and so `i = ` and Ei = E · Ei−1 is a Galois
extension of Ei−1. It follows that Ei contains a primitive `-th root of unity.
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(2) X`i − ai has a root α in Ei−1. Then ζ = αi/α ∈ Ei is a primitive `i-th root of
unity and Ei = Ei−1(ζ). We have ` | [Ei : Ei−1] | `i − 1.

The proposition can be generalized as follows.

Corollary 1.19.8. Let K/E/F be a tower of field extensions with K/F radical. Let
L/F be the Galois closure of E/F and let G = Gal(L/F ). Let p = char(F ) and let
` 6= p be a prime divisor of #G. Then K · L contains either a primitive `-th root of
unity or a primitive `′-th root of unity for some prime `′ ≡ 1 (mod `).

The corollary applies to the case where L/F is the splitting field of an irreducible
polynomial P (X) ∈ F [X] and E = F (α) for one root α of P (X) contained in a
radical extension K/F .

Proof. Let H = Gal(L/E). Since L/F is the Galois closure of E/F , the conjugates
of H has trivial intersection. Let σ ∈ G be an element of order `. Up to replacing σ
by a conjugate, we may assume that σ 6∈ H. Then 〈σ〉 ∩H = 1, since 〈σ〉 has prime
order. It follows that E ·L〈σ〉 = L, and so K ·L〈σ〉 = K ·L. It follows that K ·L/L〈σ〉

is radical. We conclude by Proposition 1.19.7 applied to the tower K · L/L/L〈σ〉.
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Corollary 1.19.9. Let F ⊆ R be a subfield and let P (X) ∈ F [X] be an irreducible
polynomial that splits in R[X]. Assume that a root α of P (X) is contained in a
radical extension E of F satisfying E ⊆ R. Then the Galois group G of P (X) over
F is a 2-group.

Proof. Since R contains no primitive n-th root of unity for n ≥ 3, G must be a
2-group by Corollary 1.19.8.

Let P (X) ∈ R[X] be a cubic polynomial. If P (X) has only one real root, the
formula for the real root in Example 1.1.2 contains only real radicals. By contrast,
if P (X) has three distinct real roots, the formula for each root contains imaginary
radicals (since the discriminant is positive in this case). This situation cannot be
improved. Indeed, Corollary 1.19.9 implies that no root of a real polynomial of
degree 3 (or any degree that is not a power of 2), irreducible over a subfield F ⊆ R,
whose roots are all real can be expressed using only real radicals. This fact is known
as casus irreducibilis (Latin for “the irreducible case”).
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Remark 1.19.10. Every finite p-group is solvable. This follows for example from
the fact that the center of a finite p-group is nontrivial. Although we do not need it,
let us mention the fact that every group of odd order is solvable, which is a theorem
of Feit and Thompson.

A semidirect product N⋊H with N and H abelian is solvable. In particular, for
commutative ring R, AGL1(R) ' R ⋊ R× is solvable. We can regard AGL1(Z/nZ)
as a subgroup of Σn, by identifying 1, . . . , n with their congruence classes modulo n.
Galois showed that for p prime, a transitive subgroup G of Σp is solvable if and
only if it is contained in a conjugate of AGL1(Fp). This fact implies the following
interesting criterion.

Theorem 1.19.11 (Galois). Let P (X) ∈ F [X] be a separable irreducible polynomial
of prime degree p. Let K be the splitting field of P (X) over F . The following
conditions are equivalent:

(1) P (X) is solvable by radicals.
(2) For every pair of roots α, β ∈ K of P (X) with α 6= β, we have K = F (α, β).
(3) There exists a pair of roots α, β ∈ K of P (X) such that K = F (α, β).

We refer to [C, Chapter 14] for more on solvable permutation groups.

1.20 Straightedge and compass construction
Let S be a subset of the Euclidean plane. The set Cons(S) of points constructible
from S using straightedge and compass can be defined as follows. Consider the
following objects:

(1) lines passing through two distinct points of S;
(2) circles with one point of S as the center and radius equal to the distance of

two points of S.
Let I(S) = S ∪ ∪C 6=C′ C ∩ C ′, where C runs through the above objects and so does
C ′. We define In(S) recursively by I0(S) = S and In(S) = I(In−1(S)) for n ≥ 1.
Finally, we define Cons(S) = ∪∞

n=0 I
n(S).

Our goal is to describe Cons(S). This is trivial if #S ≤ 1: we have Cons(S) = S
in this case. In the sequel we will assume that #S ≥ 2. We identify the Euclidean
plane with the complex plane via the choices of 0, 1 ∈ S and an orientation.

Theorem 1.20.1. Let {0, 1} ⊆ S ⊆ C. Then α ∈ C belongs to Cons(S) if and only
if α is algebraic over F = Q(S ∪ S̄) and the Galois group of the Galois closure of
F (α)/F is a 2-group, where S̄ = {β̄ | β ∈ S}. In other words, Cons(S) = ∪

E E,
where E ⊆ C runs through finite Galois extensions of F of such that Gal(E/F ) is a
2-group.

Remark 1.20.2. In the theorem and the lemma below, one cannot replace S ∪ S̄
by S. For example, if x, y ∈ R are algebraically independent over Q (see Section
1.24) and S = {0, 1, x+ iy}, then tr. deg(Cons(S)/Q) = 2 and tr. deg(∪E E/Q) = 1,
where E ⊆ C runs through finite Galois extensions of Q(S) such that Gal(E/Q(S))
is a 2-group.
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Lemma 1.20.3. Cons(S) ⊆ C is a subfield. Moreover, α ∈ C belongs to Cons(S) if
and only if there exists a tower of extensions Q(S ∪ S̄) = E0 ⊆ E1 ⊆ · · · ⊆ En ⊆ C
with α ∈ En and [Ei : Ei−1] = 2 for each 1 ≤ i ≤ n.

For a subfield F ⊆ C, let U(F ) denote the union of towers of quadratic extensions
F = E0 ⊆ E1 ⊆ · · · ⊆ En in C. Recall that Ei = Ei−1(

√
αi) for some αi ∈ Ei−1.

Thus U(F ) ⊆ C is the smallest subfield containing F and stable under square roots.
Indeed, if α ∈ En, then

√
α ∈ En(

√
α). We have U(F ) = U(F̄ ).

The lemma says that Cons(S) = U(Q(S∪ S̄)), where U(Q(S∪ S̄)) is the smallest
subfield of C containing S that is stable under complex conjugation and square roots.

Proof. Let us first show that Cons(S) is a subfield. Cons(S) is stable under addition
in C, which can be constructed using parallelograms. Clearly −1 ∈ Cons(S). It is
easy to see that α ∈ Cons(S) if and only if |α|, α/|α| ∈ Cons(S). Thus to construct
αβ and α/β (β 6= 0), we may assume that either (a) α and β both lie on the unit
circle; or (b) α, β ∈ R>0. Case (a) is clear. In case (b), it suffices to apply the
intercept theorem.

Next we show that α ∈ Cons(S) implies {±
√
α} ⊆ Cons(S). Again the case

where α lies on the unit circle is clear and we may assume α ∈ R>0. Then
√
α can

be constructed by taking the intersection of the circle x2 + y2 = (α+1
2 )2 and the line

x = α−1
2 .

It is clear that Cons(S) is stable under complex conjugation. Thus Cons(S) ⊇
U(Q(S ∪ S̄)).

For the inclusion Cons(S) ⊆ U(Q(S ∪ S̄)), it suffices to show Im(S) ⊆ U(Q(S ∪
S̄)) for all m ≥ 1. We proceed by induction on m. In the case m = 1, take
α ∈ I(S). Then α ∈ C∩C ′, where C admits an equation of the form ax+by+c = 0
((a, b) 6= (0, 0)) or (x− a)2 + (y− b)2 = c2, with a, b, c ∈ Q(S, S̄, i), and similarly for
C ′. Here we have written α = x+ iy. There are three cases:

(1) C and C ′ are lines. In this case the equations are linear and it follows that
α = x+ iy ∈ Q(S, S̄, i) ⊆ U(Q(S ∪ S̄)).

(2) Exactly one of C and C ′ is a circle. By symmetry we may assume that C is
a circle and C ′ is a line. In this case α = x + iy with x, y roots of quadratic
equations over Q(S, S̄, i). Thus α ∈ U(Q(S ∪ S̄)).

(3) C and C ′ are circles. In this case the difference between the two equations
defines a line C ′′ with coefficients in Q(S, S̄, i) and C ∩ C ′ = C ∩ C ′′. We are
thus reduced to the preceding case.

Therefore, I(S) ⊆ U(Q(S ∪ S̄)). For m ≥ 2, Im(S) = I(Im−1(S)) ⊆ I(U(Q((S ∪
S̄))) ⊆ U(U(Q(S ∪ S̄))) = U(Q(S ∪ S̄)).

Theorem 1.20.1 then follows from the following characterization of U(F ).

Lemma 1.20.4. Let E/F be a finite separable extension. Show that the following
conditions are equivalent.

(1) There exists a tower of separable quadratic extensions F = E0 ⊆ · · · ⊆ En
such that E ⊆ En;

(2) Gal(K/F ) is a 2-group, where K/F denotes a Galois closure of E/F .
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The lemma follows easily from parts of the proof of Theorem 1.19.2. We leave
the details as an exercise.

We now apply the theorem to some classical problems of geometric constructions.

Example 1.20.5. (1) (Squaring the circle)
√
π 6∈ Cons({0, 1}), since π is tran-

scendental over Q.
(2) (Doubling the cube, also known as the Delian problem) 3

√
2 6∈ Cons({0, 1}),

since [Q( 3
√

2) : Q] = 3 is odd.

Next we discuss the constructibility of regular polygons. The regular n-gon is
constructible by straightedge and compass if and only if ζn = e2πi/n ∈ Cons({0, 1}).

Definition 1.20.6. A Fermat prime is a prime number of the form 2m + 1 for a
positive integer m.

If d is an odd divisor of m, then 2m/d + 1 | 2m + 1. Thus a Fermat prime has the
form pa = 22a + 1, where a ≥ 0 is an integer. The first Fermat primes are p0 = 3,
p1 = 5, p2 = 17, p3 = 257, p4 = 65537. It is not known whether these are the only
Fermat primes.

Corollary 1.20.7. Let n ≥ 1 be an integer. Then ζn belongs to Cons({0, 1}) if and
only if n = 2ep1 · · · pr, where e ≥ 0 is an integer and p1, . . . , pr are distinct Fermat
primes.

The “if” part of the corollary is due to Gauss.

Proof. By Theorem 1.20.1, ζn belongs to Cons({0, 1}) if and only if Gal(Q(ζn)/Q) is
a 2-group. Let n = ∏

i p
ei
i . Then Gal(Q(ζn)/Q) ' (Z/nZ)× has order ∏i(pi−1)pei−1

i .
The latter is a power of 2 if and only if for every i such that pi is odd, pi is a Fermat
prime and ei = 1.

Example 1.20.8. Gauss proved that the regular heptadecagon (17-gon) is con-
structible in 1796 at the age of 19. The construction can be given explicitly as
follows.

Let ζ = ζ17 = e2πi/17. The intermediate fields of the extension Q(ζ)/Q are
Q ⊆ Q(ζ)〈σ2〉 ⊆ Q(ζ)〈σ4〉 ⊆ Q(ζ)〈σ8〉 ⊆ Q(ζ), where σ is a generator of Gal(Q(ζ)/Q).
(Take for example σ(ζ) = ζ6.) The primitive 17-th roots of unity are Q-linearly
independent and form a normal basis for Q(ζ)/Q. Thus

Q(ζ)〈σ2〉 = Q(z), Q(ζ)〈σ4〉 = Q(y), Q(ζ)〈σ8〉 = Q(x),

where

x = σ0(ζ) + σ8(ζ) = ζ + ζ−1,

y = σ0(ζ) + σ4(ζ) + σ8(ζ) + σ12(ζ) = ζ + ζ4 + ζ−1 + ζ−4,

z = σ0(ζ) + σ2(ζ) + σ4(ζ) + · · ·+ σ14(ζ) = ζ + ζ2 + ζ4 + ζ8 + ζ−1 + ζ−2 + ζ−4 + ζ−8.

We have z + σz = −1. The product z · σz is a sum of 64 terms, each of which is
a primitive 17-th root of unity. Since σ(z · σz) = z · σz, we have z · σz = −4. Thus
z2 + z − 4 = 0, and so z and σz are given by −1±

√
17

2 . It is easy to see that z > 0
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(which follows for example from ζ + ζ−1 > ζ2 + ζ−2 > 1). Thus z = −1+
√

17
2 and

σz = −1−
√

17
2 .

We have y + σ2y = z. By an easy computation (which can be made easier by
the observation σ2(y · σ2y) = y · σ2y), y · σ2y = −1. Thus y2 − zy − 1 = 0. Since
y > 0, we have y = z+

√
z2+4
2 . We will also need to find σ3y = ζ−5 + ζ3 + ζ5 + ζ−3.

We have (σ3y)2 − (σz)(σ3y)− 1 = 0. Since σ3y > 0, we have σ3y = σz+
√

(σz)2+4
2 .

We have x+σ4x = y. Since σ4x = ζ4+ζ−4, we have x·σ4x = ζ−5+ζ3+ζ5+ζ−3 =
σ3y. Thus x2 − yx+ σ3y = 0. Since x > σ4x, we have x = y+

√
y2−4σ3y

2 .

More generally, the primitive n-th roots of unity are Q-linearly independent if
and only if n is square-free. We leave the details as an exercise.

Example 1.20.9 (Trisecting the angle). ζ3 ∈ Cons({0, 1}), but ζ9 6∈ Cons({0, 1}).
Thus, trisecting the angle is not possible in general using only straightedge and
compass.

Some angles are trisectable but not constructible. In fact, for any n satisfying
3 ∤ n, we have ζ3n ∈ Cons({0, 1, ζn}). In particular, ζ21 ∈ Cons({0, 1, ζ7}), but
ζ7 6∈ Cons({0, 1}).

1.21 Infinite Galois theory

Our goal in this section is to generalize the Galois correspondence (Theorem 1.8.7)
between Galois extensions and automorphism groups of fields to the infinite case.
One direction is easy.

Proposition 1.21.1. Let K/E be a Galois extension. Then KGal(K/E) = E.

Proof. Clearly KGal(K/E) ⊇ E. Conversely, for x ∈ KGal(K/E), let L be the Galois
closure of E(x)/E in K, which is a finite extension of E. By the normality of
K/E, Gal(K/E)→ Gal(L/E) is a surjection by Proposition 1.5.12. It follows that
x ∈ LGal(L/E) = E.

The other direction is more problematic. Let G < Aut(K). The first problem is
that K/KG is not algebraic in general. For example, for K = k(X) with k a field,
we can take of characteristic 0 and σ ∈ Aut(K) given by σ(X) = X + 1, we have
K〈σ〉 = k. An example that holds in all characteristics is K = k(Xi)i∈Z with G = Z
acting by translation on the indices, for which KG = k.

Assume that K/KG is Galois. Then G < Gal(K/KG). The second problem is
that this is not an isomorphism in general. However, if we denote Gal(K/KG) by G,
then G = G. This suggests that Gal(K/KG) is some sort of closure of G. We will
equip Aut(K) with a topology such that Gal(K/KG) is the closure of G in Aut(K).
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Topological groups
Definition 1.21.2. A topological group is a group G equipped with a topology such
that the maps

G×G→ G (x, y) 7→ xy (multiplication)
G→ G x 7→ x−1 (inversion)

are continuous. Between two topological groups, a group isomorphism that is a
homeomorphism is called an isomorphism of topological groups.

Remark 1.21.3. (1) The continuity of the multiplication and inversion maps is
equivalent to the continuity of the map G×G→ G given by (x, y) 7→ x−1y.

(2) For x ∈ G, the map lx : G → G given by y 7→ xy, called left translation by
x, is continuous. Moreover, lx has a continuous inverse lx−1 , so lx is a homeo-
morphism. Similarly, the map rx : G→ G given by y 7→ yx (right translation
by x) is a homeomorphism. It follows that G is a homogeneous space, in the
sense that given x, y ∈ G, there exists a homeomorphism G→ G sending x to
y (for example, lyx−1 or rx−1y or ryl−1

x ). Thus G looks topologically the same
at all points. We can use translations to transfer topological properties from
one point to another.

Let H be subgroup of a topological group G. Then H, equipped with the sub-
space topology, is a topological group.

Lemma 1.21.4. (1) Every subgroup H of G containing an open set U of G is
open.

(2) Every open subgroup H of G is closed. Every closed subgroup H of G of finite
index is open.

(3) Every open subgroup H of a compact topological group G has finite index.

Proof. (1) We have H = ∪
h∈H hU .

(2) H = G − ∪gH 6=H gH and every left coset gH is open (resp. closed) for H
open (resp. closed).

(3) G = ∪
g∈H gH is an open cover of G and thus admits a finite subcover.

Given a set K, we equip K with the discrete topology and the group ΣK of
bijections K → K with the coarsest topology such that the action ΣK ×K → K is
continuous. The topology is generated by U(x, y) = {σ ∈ ΣK | σ(x) = y}, x, y ∈ K.
In other words, a base of the topology is given by finite intersections of subsets of
the form U(x, y). This is a special case of the compact-open topology.

For a subset S ⊆ K, let Fix(S) := Ker(ΣK
r−→ ΣS). A fundamental system of

neighborhoods of the identity id ∈ ΣK is given by the open subgroups Fix(S), S
running through finite subsets of K. For general S ⊆ K, Fix(S) = ∩

x∈S Fix({x}) is
a closed subgroup.

Given σ, τ ∈ ΣK with σ 6= τ , there exists x ∈ K such that σ(x) 6= τ(x). In other
words, σFix({x}) 6= τFix({x}). Since the two cosets are both open and closed, x
and y are not in the same connected components. Thus ΣK is Hausdorff and totally
disconnected. Recall that a topological space is said to be totally disconnected if
every point is a connected component.
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The Galois correspondence
Let K be a field. Then Aut(K) < ΣK is a closed6 subgroup, which is a Hausdorff and
totally disconnected topological group. Given a Galois extension K/F , Gal(K/F ) is
a closed subgroup of Aut(K), and is also a Hausdorff and totally disconnected topo-
logical group. A fundamental system of neighborhoods of id ∈ Gal(K/F ) is given
by the open subgroups Gal(K/E), where E runs through finite Galois subextensions
of K/F .

The finite Galois correspondence (Theorem 1.8.7) extends to general Galois ex-
tensions as follows.

Theorem 1.21.5 (Galois correspondence). Let K be a field. Then we have a bijec-
tion

{subfields E ⊆ K such that K/E is Galois} ↔ {compact subgroups H < Aut(K)}
E 7→ Gal(K/E)

KH ←[ H
satisfying the following properties:

(1) (order-reversal) For E ↭ H and E ′ ↭ H ′, E ⊆ E ′ if and only if H ⊇ H ′.
In particular, EE ′ ↭ H ∩H ′.

(2) (equivariance) For E ↭ H and σ ∈ Aut(K), σE ↭ σHσ−1.

The theorem will be proved later in this section.

Remark 1.21.6. For E ↭ H and E ′ ↭ H ′ under the above bijection, K is Galois
over E ∩ E ′ if and only if 〈HH ′〉 is compact. In this case, E ∩ E ′ ↭ 〈HH ′〉. Here
〈HH ′〉 denotes the closure of the subgroup of Aut(K) generated by H and H ′.

Corollary 1.21.7. Let K/F be a Galois extension and let G = Gal(K/F ). Then
we have a bijection

{intermediate fields E of K/F} ↔ {closed subgroups H < G}
E 7→ Gal(K/E)

KH ←[ H
satisfying the following properties:

(1) (order-reversal) For E ↭ H and E ′ ↭ H ′, E ⊆ E ′ if and only if H ⊇ H ′.
In particular, E ∩ E ′ ↭ 〈HH ′〉 and EE ′ ↭ H ∩H ′.

(2) (G-equivariance) For E ↭ H and σ ∈ G, σE ↭ σHσ−1. In particular,
E/F is normal if and only if H is a normal subgroup of G.

We first prove the corollary without assuming the theorem. In view of Propo-
sition 1.21.1, it suffices to prove the following lemma. Properties (1) and (2) are
clear.

6Although we do not need the closeness, let us sketch a proof. We have Aut(K) =
∩

x,y∈K(Ax,y∩
Mx,y), where Ax,y = {σ ∈ ΣK | σ(x+y) = σ(x)+ σ(y)} and Mx,y = {σ ∈ ΣK | σ(xy) = σ(x)σ(y)}
are closed subsets of ΣK .
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Lemma 1.21.8. Let H < Aut(K) be a subgroup such that K/KH is a Galois
extension. Then Gal(K/KH) = H is the closure of H in Aut(K).

Proof. Gal(K/KH) is a closed subgroup containing H, hence contains H. Let σ ∈
Gal(K/KH). It suffices to show that for every intermediate field E of K/KH with
E/KH finite Galois, σGal(K/E) ∩ H 6= ∅. Let r : Gal(K/KH) → Gal(E/KH) be
the restriction map. Since Er(H) = KH ∩ E = KH , we have r(H) = Gal(E/KH).
In particular r(σ) ∈ r(H). Thus σGal(K/E) ∩H 6= ∅.

Next we prove the compactness of Galois groups. We recall the notion of limits
of groups.

Definition 1.21.9. Let I be a partially ordered set. A system of sets (resp. groups)
(Gi)i∈I indexed by I consists of sets (resp. groups) Gi for all i ∈ I and transition
maps (resp. homomorphisms) αij : Gi → Gj for all i ≤ j such that for i ≤ j ≤ k,
αjkαij = αik and αii = id. The limit (also called projective limit or inverse limit)
lim←−i∈I Gi of the system is the subset (resp. subgroup) of ∏i∈I Gi consisting of (gi ∈
Gi) satisfying αij(gi) = gj for all i ≤ j.

A system of topological spaces (resp. groups) (Gi)i∈I indexed by I consists of
topological spaces (resp. groups) Gi for all i ∈ I and continuous transition maps
(resp. homomorphisms). We equip lim←−i∈I Gi with the subspace topology of the
product topology on ∏

i∈I Gi and lim←−i∈I Gi is a topological space (resp. topological
group).

The i-th projection induces a map φi : lim←−i∈I Gi → Gi, satisfying αijφi = φj for
i ≤ j.

Let K/F be a Galois extension. We let I denote the set of intermediate fields E
such that E/F is a finite Galois extension. We order I by inverse inclusion.

Proposition 1.21.10. Let K/F be a Galois extension. Then the map

Gal(K/F )→ lim←−
E∈I

Gal(E/F )(1.21.1)

σ 7→ (σ|E)E∈I ,

where the transition maps are given by restriction, is an isomorphism of topological
groups.

Proof. The map is clearly a continuous group homomorphism. For every α ∈ K,
the Galois closure of F (α)/F belongs to I. Thus ∪E∈I E = K. Given an element
(σE)E∈I ∈ lim←−E∈I Gal(E/F ), we define σ ∈ Gal(E/F ) by σ|E = σE. This pro-
vides an inverse map φ of (1.21.1). Since Gal(K/E) form a fundamental system of
neighborhoods of Gal(K/F ), φ is continuous.

Definition 1.21.11. A topological group isomorphic to lim←−i∈GGi, where (Gi)i∈I is
a system of discrete finite groups is called a profinite group.

By Proposition 1.21.10, for every Galois extensionK/F , the Galois group Gal(K/F )
is profinite.
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Proposition 1.21.12. A profinite group is compact, Hausdorff, and totally discon-
nected.

Proof. Each Gi is compact, Hausdorff, and totally disconnected. Thus so is ∏i∈I Gi

(for the compactness we use Tychonoff’s theorem) and its closed subset lim←−i∈GGi.
Here for the closeness we used the assumption that the Gi’s are Hausdorff.

Remark 1.21.13. (1) One can show that conversely every compact, Hausdorff,
and totally disconnected topological group G is a profinite group. In fact, G is
isomorphic to lim←−H∈I G/H, where I is the set of open normal subgroups of G,
indexed by inclusion [LF, 命题 1.9.3]. The partially ordered set I is cofiltered
(see below). Indeed, if H and H ′ are open normal subgroups of G, then so is
H ∩ H ′. Thus every profinite group is isomorphic to a filtered limit of finite
groups.

(2) If G = lim←−i∈I Gi is a limit of discrete finite groups with I cofiltered (see below),
then the open subgroups Hi = Ker(G→ Gi), i ∈ I form a fundamental system
of neighborhoods of e ∈ G. In fact, Hk < Hi ∩Hj for k ≤ i and k ≤ j.

Definition 1.21.14. We say that a partially ordered set J is filtered if for all i, j ∈ J ,
there exists k ∈ J with i ≤ k and j ≤ k. We say that I is cofiltered if Iop is filtered.

To finish the proof of the Galois correspondence, it remains to prove the following
generalization of the Fixed Field Theorem.

Theorem 1.21.15. Let K be a field and let G < Aut(K) be a group of automor-
phisms. Then

(1) For each x ∈ K, the following conditions are equivalent:
(a) The orbit Gx is finite;
(b) x is separable over KG;
(c) x is algebraic over KG.

If these conditions are satisfied, then KG(Gx)/KG is normal.
(2) The following conditions are equivalent:

(a) The closure G of G is compact；
(b) K/KG is a Galois extension;
(c) K/KG is an algebraic extension.

If these conditions are satisfied, then G = Gal(K/KG).

Proof. The proof is similar to that of Theorem 1.8.4. Let O = Gx ⊆ K.
(1a) =⇒ (1b). x is a root of the separable polynomial P (X) = ∏

y∈O(X − y) ∈
KG[X] and hence separable over KG.

(1b) =⇒ (1c). Trivial.
(1c) =⇒ (1a). Every y ∈ O is a root of the minimal polynomial of x over KG,

which implies that O is finite.
If the conditions in (1) are satisfied, then KG(O) is the splitting field of P (X)

over KG.
(2a) =⇒ (2c). The orbits of G are compact and discrete, hence finite. It then

suffices to apply (1).
(2c) =⇒ (2b). This follows from the last assertion of (1).



1.21. INFINITE GALOIS THEORY 67

(2b) =⇒ (2a). In this case, G = Gal(K/KG) by Lemma 1.21.8. Thus G is
compact.

The last statement of (2) was already proved in Lemma 1.21.8.

Proposition 1.21.16. For E and E ′ be intermediate fields of a Galois extension
K/F . Let G = Gal(K/F ), H = Gal(K/E), H ′ = Gal(K/E ′).

(1) We have a bijection

φ : G/H ∼−→ HomF (E,K)
σH 7→ σ|E.

For E/F normal, this bijection is an isomorphism of topological groups G/H ∼−→
Gal(E/F ), where G/H is equipped with the quotient topology.

(2) φ induces a bijection

{σ ∈ G | σHσ−1 ⊇ H ′}/H ∼−→ HomF (E,E ′).

(Here {σ ∈ G | σHσ−1 ⊇ H ′} is a union of left cosets of H.) For E ′ = E,
this is an isomorphism of topological groups

NG(H)/H ∼−→ Aut(E/F ).

(3) E/F is finite if and only if H is an open subgroup of G.

Proof. (1) φ is a surjection by Proposition 1.5.12. Moreover, φ is an injection,
because for σ, σ′ ∈ G, σ|E = σ′|E if and only if σ−1σ′|E = idE. For E/F normal, φ is
clearly a continuous group homomorphism. Moreover, any continuous bijection from
a compact space onto a Hausdorff space is closed, and hence is a homeomorphism.

(2) The bijectivity is clear and the last assertion follows again from the fact
that any continuous bijection from a compact space onto a Hausdorff space is a
homeomorphism.

(3) If E/F is finite, then by (1) H < G is closed of finite index, and hence is
open. Conversely, if H < G is open, then H < G has finite index, and by (1)
[E0 : F ] ≤ (G : H) for any intermediate field E0 of E/F with E0/F finite. We
conclude by Lemma 1.8.5.

Warning 1.21.17. A subgroup of finite index of Gal(K/F ) is not necessarily closed.
For example, Gal(Q(

√
Q×)/Q) ' FN

2 (see Example 1.21.24 below), which has sub-
groups of index 2 that are not closed (exercise). Here Q(

√
Q×) denotes the extension

of Q obtained by adjoining
√
r for all r ∈ Q×.

Proposition 1.8.12 generalizes as follows.

Proposition 1.21.18. Let E and K be intermediate fields of an extension L/F .
Assume that K/F is Galois. Then we have an isomorphism of groups

Gal(EK/E) ∼−→ Gal(K/E ∩K)
σ 7→ σ|K .
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Proof. The proof of the bijectivity is identical to that of Proposition 1.8.12. The
continuous homomorphism is clearly injective. Let H be its image. Then KH ⊆
(EK)Gal(EK/E) = E. Thus KH = E ∩K. It follows that H = Gal(K/E ∩K). We
conclude again by the fact that any continuous bijection from a compact space onto
a Hausdorff space is a homeomorphism.

For any field F with separable closure F sep, the profinite groupGF := Gal(F sep/F )
is called the absolute Galois group of F . Up to isomorphism GF does not depend
on the choice of F sep. The Galois correspondence provides a bijection between in-
termediate fields of F sep/F and closed subgroups of GF . This is in analogy with
the theory of covering spaces, with the separable closure F sep and the absolute Ga-
lois group GF playing the roles of the universal cover and the fundamental group,
respectively.

If F alg denotes an algebraic closure of F containing F sep, the restriction map
induces a group isomorphism Aut(F alg/F ) ∼−→ GF . The profinite group GQ plays a
crucial role in number theory.

Examples and complements
Example 1.21.19. Let Fq be a finite field and let Fsep

q be a separable closure.
For each n ≥ 1, we let Fqn ⊆ Fsep

q denote the unique subfield of cardinality qn.
Then Fsep

q = ∪
n≥1 Fqn . We have an isomorphism Gal(Fqn/Fq)

∼−→ Z/nZ sending
Frq to the class of 1. Taking limit, we get an isomorphism of topological groups
GFq ' Ẑ := lim←−n Z/nZ sending Frq to 1, where the transition maps are given by the
projection Z/nZ→ Z/mZ for m | n. Here Ẑ is called the profinite completion of Z.
We have Ẑ ' ∏Zp, where Zp := lim←−i Z/p

iZ is the ring of p-adic integers. Here the
transition maps are again given by projections.

Example 1.21.20. Let Qsep be a separable closure of Q and let K = ∪
nQ(ζn).

For each n, we have an isomorphism Gal(Q(ζn)/Q) ' (Z/nZ)×. Taking limit, we
get an isomorphism of topological groups Gal(K/Q) ' Ẑ× := lim←−n(Z/nZ)×, where
the transition maps are given by the projection (Z/nZ)× → (Z/mZ)× for m | n.
By the Kronecker–Weber theorem, Gal(K/Q) can be identified with the maximal
abelian quotient Gab = G/[G,G] (by a closed subgroup) of the absolute Galois group
G = Gal(Qsep/Q).

Remark 1.21.21. In fact, Ẑ is a topological ring, namely a ring with continuous
substraction and multiplication, and Ẑ× is the group of units of Ẑ, equipped with
the subspace topology. (In general, for a topological ring R, R× equipped with the
subspace topology for the inclusion R× ⊆ R is not a topological group. By contrast,
R× equipped with the topology induced by the embedding R× ↪→ R×R carrying r
to (r, r−1) is a topological group. In the case R = Ẑ, the two topologies coincide.)

Example 1.21.22. Let C be a field of characteristic 0 containing all roots of unity
in an algebraic closure of C. Let

F = C((T )) = Frac(C[[T ]]) = {
∞∑

i=−∞
aiT

i | ai ∈ C ∀i, ai = 0 ∀i� 0}
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be the field of formal Laurent series over C. Let Fn = F (T 1/n) = C((T 1/n)). Then
Fn/F is a Galois extension of Galois group µn = µn(C). Let F∞ = ∪

n≥1 C((T 1/n)).
Then Gal(F∞/F ) ' lim←−n µn =: Ẑ(1). This is called the Tate twist of Z by 1. Here
the transition map µn → µm for m | n are given by raising to the n

m
-th power. The

choice of a system of primitive roots of unity (ζn)n≥1 satisfying ζn = ζmmn provides
a noncanonical isomorphism Ẑ ∼−→ Ẑ(1). If C is algebraically closed, then F∞ is
algebraically closed by Hensel’s Lemma and GF ' Ẑ(1) in this case.

More generally, Kummer theory extends to infinite extensions as follows. Given
topological abelian groups A and B, Homcont(A,B) denotes the set of continuous
homomorphisms A→ B.

Theorem 1.21.23. Let n ≥ 1 be an integer and let F be a field containing a
primitive n-th root of unity. Let F sep be a separable closure of F . Then we have a
bijection

{F sep/E/F : E/F abelian of exponent | n} ↔ {F×n < ∆ < F×}
E 7→ E×n ∩ F×

F ( n
√

∆)←[ ∆.
Here F ( n

√
∆) ⊆ F sep denotes the splitting field over F of {Xn − a | a ∈ ∆}.

Moreover, for E ↭ ∆ under the above bijection, the pairing

Gal(E/F )×∆/F×n → µn(F )
(σ, a) 7→ σ n

√
a/ n
√
a

induces an isomorphism of topological groups Gal(E/F ) ∼−→ Hom(∆/F×n, µn(F ))
and an isomorphism of groups ∆/F×n ∼−→ Homcont(Gal(E/F ), µn(F )). Here y ∈ ∆,
ā denotes its class in ∆/F×n, n

√
a ∈ E denotes an n-th root of a, µn(F ) is equipped

with the discrete topology, and the topology on Hom(∆/F×n, µn(F )) is induced from
the product topology on Map(∆/F×n, µn(F )) = ∏

ā∈∆/F×n µn(F ).

Proof. For E and ∆ as in the theorem, we have E = ∪
E0 and ∆ = ∪∆0, where E0

runs through finite subextensions of E/F and ∆0 runs through subgroups satisfying
F×n < ∆0 < ∆ and (∆0 : F×n) < ∞. The assertions then follow from the finite
case (Theorem 1.17.6).

Example 1.21.24. We have Q× ' {±1}⊕⊕p∈P Z and Q×/Q×2 ' {±1}⊕⊕p∈P Z/2Z,
where P denotes the set of prime numbers. Thus

Gal(Q(
√
Q×)/Q) ' Hom(Q×/Q×2, {±1}) '

∏
p∈P∪{−1}

{±1}.

The isomorphism carries σ to (σ√p/√p)p∈P∪{−1}. The underlying topological space
is homeomorphic to the Cantor set.

Corollary 1.21.25. Let F be a field of characteristic 0 containing all roots of unity
in an algebraic closure F alg of F . Then the maximal abelian subextension of F alg/F
is F ab = ∪

n≥1 F ( n
√
F×). Moreover,

(GF )ab ' Gal(F ab/F ) ' lim←−
n

Hom(F×/F×n, µn(F )),
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where the transition map for m | n is induced by the map µn(F )→ µm(F ) given by
raising to the n

m
-th power.

Example 1.21.26. Let C be an algebraically closed field of characteristic 0 and let
F = C(T ). Then F× ' C×⊕⊕a∈C Z, with a basis of F×/C× given by T −a, a ∈ C.
Thus F ab is generated by n

√
T − a, a ∈ C, n ≥ 1 and (GF )ab '

∏
a∈C Ẑ(1).

Similarly, Artin–Schreier theory extends to infinite extensions as follows.

Theorem 1.21.27. Let F be a field of characteristic p > 1 and let F sep be a separable
closure of F . Then we have a bijection

{F sep/E/F : E/F abelian of exponent | p} ↔ {P(F ) < ∆ < F}
E 7→ P(E) ∩ F

F (P−1(∆))←[ ∆,
where, P(x) = xp − x, F (P−1(∆)) ⊆ F sep denotes the splitting field over F of
{Xp − X − b | b ∈ ∆}. Moreover, for E ↭ ∆ under the above bijection, the
pairing Gal(E/F )×∆/P(F )→ Fp carrying (σ,P(x)) to σx−x induces an isomor-
phism of topological groups Gal(E/F ) ∼−→ Hom(∆/P(F ),Fp) and an isomorphism
of groups ∆/P(F ) ∼−→ Homcont(Gal(E/F ),Fp). Here x ∈ E, P(x) denotes the class
of P(x) in ∆/P(F ), Fp is equipped with the discrete topology, and the topology
on Hom(∆/P(F ),Fp) is induced from the product topology on Map(∆/P(F ),Fp) =∏
b̄∈∆/P(F ) Fp.

Remark 1.21.28. Similarly to Remark 1.8.16, one can show that for any profinite
group G and any field F , there exists an extension E/F and a Galois extension K/E
such that G ' Gal(K/E) (exercise, observed by Waterhouse). On the other hand,
Theorem 1.21.30 below shows that not every profinite group is an absolute Galois
group.

Definition 1.21.29. We say that a field is real closed if −1 is not a sum of squares
in F (which implies that char(F ) = 0) and F (

√
−1) is algebraically closed.

A real closed field F satisfies #GF = 2. The standard example of a real closed
field is the field of real numbers R.

Theorem 1.21.30 (Artin–Schreier). Let F be a field such that GF is finite. Then
#GF is 1 or 2. More precisely, F is either separably closed or real closed.

For a proof, see [J, §11.7] (combined with the easy fact that GF ' GFperf ).

Corollary 1.21.31. Let K be a separably closed field. Then every finite subgroup
H < Aut(K) has order 1 or 2. In particular, every torsion element σ ∈ Aut(K) has
order 1 or 2.

Proof. This follows from the theorem applied to KH .

It is an open problem to characterize profinite groups isomorphic to an absolute
Galois group.
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Remark 1.21.32. Some aspects of the Galois correspondence extend to arbitrary
field extensions.

(1) Let K/F be a field extension and let G = Aut(K/F ). Then Aut(K/KG) = G.
Indeed, G < Aut(K/KG) < G.

(2) Let G < Aut(K) be a subgroup. Then KAut(K/KG) = KG. Indeed, KG ⊆
KAut(K/KG) ⊆ KG.

Corollary 1.21.33. Let K/F be an algebraic extension and let G = Aut(K/F ).
Then K/KG is a Galois extension with Galois group G. Moreover, KG = F if and
only if K/F is a Galois extension.

Proof. Since KG ⊇ F , K/KG is algebraic, hence Galois. We have Gal(K/KG) = G
by the remark above. This also proves the “only if” part of the last assertion. The
“if” part of the last assertion is Proposition 1.21.1.

We end this section with the following result on the structure of normal exten-
sions.

Proposition 1.21.34. Let K/F be a normal extension and let Ksep (resp. Kinsep)
be the subfield of separable (resp. purely inseparable) elements over F . Then K =
KsepKinsep, Kinsep = KAut(K/F ), and K/Kinsep is a Galois extension.

Proof. For x ∈ K, the restriction map Aut(K/F ) → HomF (F (x), K) is surjective
by Proposition 1.5.12, so that x ∈ KAut(K/F ) if and only if [F (x) : F ]sep = 1. In
other words, Kinsep = KAut(K/F ). Thus, by Corollary 1.21.33, K/Kinsep is a Galois
extension. The extension K/KsepKinsep is separable and purely inseparable, and
hence trivial. In other words, K = KsepKinsep.

1.22 Galois categories

Categories
Definition 1.22.1. A category C consists of a set of objects Ob(C), a set of mor-
phisms Hom(X,Y ) for every pair of objects (X,Y ) of C, and a composition law,
namely a map

Hom(X,Y )× Hom(Y, Z)→ Hom(X,Z),

denoted by (f, g) 7→ gf (or g ◦ f), for every triple of objects (X,Y, Z) of C. These
data are subject to the following axioms:

• (associativity) Given morphisms X f−→ Y
g−→ Z

h−→W , we have h(gf) = (hg)f .
• (unit law) For every object X of C, there exists an identity morphism idX ∈

End(X) := Hom(X,X) such that f idX = f , idXg = g for all f ∈ Hom(X,Y ),
g ∈ Hom(Y,X).

The morphism idX is clearly unique.

Remark 1.22.2. For convenience we usually assume that the Hom sets are disjoint.
In other words, every morphism f ∈ Hom(X,Y ) has a unique source X and a unique
target Y .
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Remark 1.22.3. Russell’s paradox shows that not every collection is a set. Indeed,
the collection R of sets S such that S 6∈ S cannot be a set, for otherwise R ∈ R if and
only if R 6∈ R. To avoid the paradox, the conventional ZFC (Zermelo–Fraenkel +
axiom of choice) set theory does not allow the existence of a set containing all sets or
unrestricted comprehension. In category theory, however, it is convenient to intro-
duce a collection of all sets in some sense. In NBG (von Neumann–Bernays–Gödel)
set theory, which is an extension of ZFC set theory, one distinguishes between sets
and proper classes. Another approach, which we adopt, is to assume the existence of
an uncountable Grothendieck universe U .7 A set in bijection with an element of U is
called a small set. The following table loosely summarizes the basic terminological
differences of the two approaches.

NBG class set proper class
ZFC + U set small set large set

We will mostly be interested in categories whose Hom sets are small, which are
sometimes called locally small categories. A category C is called small if it is locally
small and Ob(C) is small.

Example 1.22.4. (1) Let F be a field and G a group.
category objects (in U) morphisms
Set sets maps
Top topological spaces continuous maps
Grp groups homomorphisms of groups
Ab abelian groups homomorphisms of groups
VectF F -vector spaces F -linear maps
Field/F field extensions of F F -embeddings
G-Set G-sets G-equivariant maps

(namely, sets equipped with a G-action)
In all of the above examples, composition is given by composition of maps.

(2) The opposite category Cop of a category C is defined by Ob(Cop) = Ob(C) and
HomCop(X,Y ) = HomC(Y,X).

Definition 1.22.5. A morphism f : X → Y in C is called an isomorphism if there
exists a morphism g : Y → X such that gf = idX and fg = idY . The morphism g
is unique and is called the inverse of f , denoted by f−1.

Remark 1.22.6. The identity map idX is an isomorphism. Isomorphisms are stable
under composition. In particular, Aut(X) is a group.

Example 1.22.7. An isomorphism in Set is a bijection. An isomorphism in Top
is a homeomorphism.

7A Grothendieck universe U is a set satisfying the following conditions: y ∈ x ∈ U implies
y ∈ U ; x, y ∈ U implies {x, y} ∈ U ; x ∈ U implies P (x) ∈ U where P (x) is the power set of
x; xi ∈ U , i ∈ I ∈ U implies

∪
i∈I xi ∈ U . TG (Tarski–Grothendieck) set theory is obtained

from ZFC by adding Tarski’s axiom, which states that for every set x, there exists a Grothendieck
universe U 3 x.
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Functors and natural transformations
Definition 1.22.8. Let C and D be categories. A functor F : C → D consists
of a map Ob(C) → Ob(D) and, for every pair of objects (X,Y ) of C, a map
HomC(X,Y )→ HomD(FX,FY ), compatible with composition and identity: F (idX) =
idFX for all X ∈ Ob(C) and F (gf) = F (g)F (f) for all morphisms X f−→ Y

g−→ Z.

Example 1.22.9. (1) We have forgetful functors Top→ Set and

Field/F → VectF → Ab→ Grp→ Set.

(2) We have a functor D : Vectop
F → VectF carrying V to V ∨ = Hom(V, F ).

Remark 1.22.10. Given functors F : C → D and G : D → E , we have the composite
functor GF : C → E . For any category C, we have the identity functor idC. We can
thus organize small categories and functors into a category Cat.

Definition 1.22.11. Let F,G : C → D be functors. A natural transformation
α : F → G consists of morphisms αX : FX → GX in D for all objects X of C,
such that for every morphism f : X → Y of C, the following diagram commutes

FX
Ff //

αX

��

FY

αY

��
GX

Gf // GY.

Example 1.22.12. We have a natural transformation ev : idVectF
→ DDop with

evV : V → V ∨∨ carrying v to f 7→ f(v). Here we have identified (Vectop
F )op with

VectF .

Remark 1.22.13. Given functors F,G,H : C → D and natural transformations
α : F → G and β : G → H, we have the (vertically) composite natural transforma-
tion βα : F → H. Functors C → D and natural transformations form a category
Fun(C,D). Isomorphisms in this category are called natural isomorphisms8. A nat-
ural transformation α is a natural isomorphism if and only if αX is an isomorphism
for every object X of C.

There is also a horizontal composition of natural transformations: Given a nat-
ural transformation α : F → G between functors C → D and a natural transfor-
mation α′ : F ′ → G′ between functors D → E , we have α′α : F ′F → G′G between
functors C → E . This composition satisfies various compatibilities. Small cate-
gories, functors, and natural transformations, together with horizontal and vertical
compositions, form a “2-category”.

There is an obvious notion of isomorphism of categories. A more useful notion
is the following.

Definition 1.22.14. An equivalence of categories is a functor F : C → D such
that there exists a functor G : D → C and natural isomorphisms idC ' GF and
FG ' idD.9 The functors F and G are then called quasi-inverses of each other.

8Some authors call them natural equivalences.
9Some authors write ' for equivalences and ∼= for isomorphisms. We will write ' for isomor-

phisms and state equivalences verbally.
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Quasi-inverses of a functor F are unique up to natural isomorphisms.

Remark 1.22.15. Given a composable pair of functors C F−→ D G−→ E , if two of F ,
G, and GF are equivalences of categories, then so is the third one. If F → F ′ is a
natural isomorphism of functors, then F is an equivalence of categories if and only
if F ′ is.

Faithful functors, full functors
Definition 1.22.16. A functor F : C → D is faithful (resp. full, resp. fully faithful)
if the map HomC(X,Y ) → HomD(FX,FY ) is an injection (resp. surjection, resp.
bijection) for all X,Y ∈ Ob(C).

Lemma 1.22.17. Let F : C → D is fully faithful functor.
(1) Let f : X → Y be a morphism of C such that Ff is an isomorphism. Then f

is an isomorphism.
(2) Let X and Y be objects of C such that FX ' FY . Then X ' Y .

Proof. (1) Let g′ be an inverse of Ff and let g : Y → X be such that Fg = g′. Then
g is an inverse of f .

(2) Let f ′ : FX → FY be an isomorphism and let f : X → Y be such that
Ff = f ′. By (1), f is an isomorphism.

Remark 1.22.18. There is an obvious notion of subcategory. For a subcategory of
a category, the inclusion functor is faithful. A full subcategory is a subcategory such
that the inclusion functor is fully faithful.

Example 1.22.19. The category Ab is a full subcategory of Grp. The forgetful
functor Grp→ Set is faithful, but not fully faithful.

Definition 1.22.20. A functor F : C → D is essentially surjective if for every object
Y of D, there exists an object X of C and an isomorphism FX ' Y .

Proposition 1.22.21. A functor F : C → D is an equivalence of categories if and
only if it is fully faithful and essentially surjective.

Corollary 1.22.22. Let F : C → D be a fully faithful functor. Then F induces an
equivalence of categories C → D0, where D0 is the full subcategory of D spanned by
the image of F .

Lemma 1.22.23. For any category C, there exists a full subcategory C0 such that
the inclusion functor C0 → C is an equivalence of categories and isomorphic objects
in C0 are equal.

Proof. By the axiom of choice, we can pick a representative in each isomorphism
class of objects C. For every object X, pick an isomorphism αX : X ∼−→ RX , where
RX is the representative of the class of X. Let C0 be the full subcategory of C
spanned by the representatives. Consider the functor F : C → C0 carrying X to RX

and f : X → Y to αY fα
−1
X : RX → RY . Let i : C0 → C be the inclusion functor.

Then αX defines natural isomorphisms idC0
∼−→ Fi and idC

∼−→ iF .
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Proof of Proposition 1.22.21. Let F be an equivalence of categories and let G be
a quasi-inverse. Since FG ' id, F is essentially surjective. Since GF ' id, G is
essentially surjective. For objects X,X ′ of C, since the composition

(GF )X,X′ : HomC(X,X ′)
FX,X′
−−−→ HomD(FX,FX ′)

GF X,F X′
−−−−−→ HomC(GFX,GFX ′)

is an isomorphism, FX,X′ is an injection. Similarly, for objects Y, Y ′ of D, FGY,GY ′

is a surjection. Since G is essentially surjective, it follows that FX,X′ is a surjection.
Now let F be a fully faithful and essentially surjective functor. We apply the

lemma to C and to D. Let i : C0 → C be the inclusion functor and choose a quasi-
inverse j′ of the inclusion functor i′ : D0 → D. Then j′Fi : C0 → D0 is fully faithful
and essentially surjective, thus a surjection on objects. By Lemma 1.22.17 (2), j′Fi is
also an injection an objects. Thus j′Fi is an isomorphism of categories. Since j′ and
i are equivalences of categories, it follows that F is an equivalence of categories.

Galois categories
Let F be a field. We let Fieldfin.sep

/F denote the category of separable field extensions
of F . The objects are separable field extensions of F and the morphisms are F -
embedding.

Let G be a profinite group. We let G-Setfin denote the category of finite G-
sets. The objects are finite G-sets (namely, discrete sets equipped with a continuous
action of G) and the morphisms are G-equivariant maps.

Given a finite separable extensionE/F and a separable closure F sep/F , HomF (E,F sep)
is equipped with an action of GF = Gal(F sep/F ) by composition. The action is con-
tinuous. In fact, it factors through the quotient Gal(K/F ), where K is a Galois
closure of E in F sep.

Theorem 1.22.24. The functor

(Fieldfin.sep
/F )op → GF -Setfin

E 7→ HomF (E,F sep)

is fully faithful. Moreover, a finite GF -set S is isomorphic to an object in the image
of the functor if and only if the action of GF on S is transitive.

Proof. Let E be a finite separable extension of F and let ι, ι′ : E → F sep be F -
embedding. Then ι and ι′ extend to σ and σ′ in GF , respectively. Then ι′ = (σ′σ−1)ι.
Thus the action of GF on SF = HomF (E,F sep) is transitive. For a transitive finite
GF -set S, we have GF/H ' S carrying σ to σs, where H is the stabilizer of s ∈ S
and is an open subgroup of GF . Thus GF/H ' S(F sep)H .

It remains to show the full faithfulness. This follows from Proposition 1.21.16.
Here we give a direct proof. For finite separable extensions E/F and K/F , we
construct an inverse of the map α : HomF (E,K)→ HomGF

(SK , SE) as follows. For
ι ∈ SK , ι(K) = (F sep)Gι , where Gι is the stabilizer of ι. Let f : SK → SE be a
G-equivariant map. Then Gι < Gf(ι). Thus ι(K) ⊇ f(ι)(E). It follows that there
exists a unique embedding φ : E → K such that ιφ = f(ι). Since G acts transitively
on SK , φ does not depend on the choice of ι. It is easy to check that f 7→ φ is an
inverse of α.



76 CHAPTER 1. FIELDS AND GALOIS THEORY

Definition 1.22.25. A finite product of finite separable field extensions of F is
called a finite étale commutative F -algebra.

We let CAlgfin.ét
F denote the category of finite étale commutative F -algebra. The

objects are finite étale commutative F -algebras and the morphisms are homomor-
phisms of F -algebras (namely, ring homomorphisms that are F -linear). For a finite
étale commutative F -algebra A = ∏n

i=1 Ei and any field extension K/F , we have⨿n
i=1 HomF (Ei, K) ' HomF (A,K). Indeed, A → K factors through the projection

A → Ei for a unique i. In particular, HomF (A,F sep) ' ⨿n
i=1 HomF (Ei, F sep) is a

finite GF -set.
Corollary 1.22.26. The functor

(CAlgfin.ét
F )op → GF -Setfin

A 7→ HomF (A,F sep)
is an equivalence of categories.
Proof. Again we write SA for HomF (A,F sep). Every finite GF -set disjoint union of
GF -orbits. The essential surjectivity of the functor then follows the theorem.

For B = ∏m
j=1 Kj, HomF (A,B) ' ∏m

j=1 HomF (A,Kj) and HomG(SB, SA) '∏m
i=j HomG(SKj

, SA). Thus, to show the full faithfulness, we may assume that
B = K is a field. Then, for A = ∏n

i=1 Ei, HomF (A,K) ' ⨿n
i=1 HomF (Ei, K)

and HomG(SK , SA) ' ⨿n
i=1 HomG(SK , SEi

), so that we are reduced to the known
case where A = E is also a field.

Given finite étale commutative F -algebras A,B,C,D and homomorphisms of
F -algebras A → B → D, A → C → D, the tensor product B ⊗A C and the fiber
product B ×D C are again finite étale commutative F -algebras (see Lemma 4.2.13
for the case of B ⊗A C), and we have

SB⊗AC ' SB ×SA
SC , SB×DC ' SB qSD

SC .

Remark 1.22.27.
(1) Given a group G, one can recover G from the category G-Set and the forgetful

functor Φ: G-Set → Set. More precisely, the map φ : G → Aut(Φ) with
φ(g)S : S → S given by the action of g is an isomorphism of groups, with
inverse given by ψ(α) = αG(e), where e ∈ G denotes the identity element. In
fact, it is clear that ψφ = id. Let us check φψ = id. Let α ∈ Aut(Φ). For
every G-set S and every m ∈ M , consider the map f : G → S carrying g to
gs. Then αS(s) = αS(f(e)) = αG(e)s = φψ(α)S(s).

(2) Similarly, given a profinite group G, one can recover G from the category
G-Setfin and the forgetful functor Φ: G-Setfin → Setfin. In fact, one can show
that the map φ : G → Aut(Φ) with φ(g)S : S → S given by the action of g is
a group isomorphism. Moreover, {g ∈ G | φ(g)S = idS} for varying S form a
fundamental system of neighborhoods of e ∈ G.

A Galois category is a category equivalent to G-Setfin for some profinite group G.
Grothendieck gave a characterization of Galois categories [SGA1, §V.4] and used it
to extend Corollary 1.22.26 to the case where F is a commutative ring with 0 and 1
as the only idempotents [SGA1, §V.7]. The corresponding profinite group is called
the étale fundamental group of the spectrum Spec(F ) of F .



1.23. DERIVATIONS AND THE JACOBSON CORRESPONDENCE 77

1.23 Derivations and the Jacobson correspondence
Definition 1.23.1. Let A be a ring. A derivation of A is a homomorphism of
abelian groups D : A→ A satisfying the Leibnitz rule

D(ab) = D(a)b+ aD(b)

for all a, b ∈ A.

We let Der(A) denote the abelian group of derivations of A. It is equipped with
the following additional structures:

(1) Lie bracket: [D,D′] := DD′−D′D ∈ Der(A) for D,D′ ∈ Der(A). This follows
from

(DD′)(ab) = (DD′)(a) + (DD′)(b) +D(a)D′(b) +D′(a)D(b).

Der(A) is thus a Lie algebra over Z.
(2) If A has prime characteristic p, then Dp ∈ Der(A) for D ∈ Der(A). Indeed,

Dp(ab) =
p∑
i=0

(
p

i

)
Di(a)Dp−i(b) = Dp(a)b+ aDp(b).

Equipped with (1) and (2), Der(A) is a restricted Lie algebra over Fp, a notion
introduced by Jacobson.

(3) If A is commutative, then Der(A) is an A-module: (cD)(a) = cD(a). (Note
that even for commutative A, the Lie bracket in Der(A) is not A-bilinear in
general.)

Definition 1.23.2. Let R be a commutative ring and let A be an R-algebra (Def-
inition 3.1.1). An R-derivation of A is a derivation of A that vanishes on R (or,
equivalently, that is R-linear).

We let DerR(A) ⊆ Der(A) denote the abelian subgroup of R-derivations of A. It
is stable under Lie brackets (making it a Lie algebra over R) and D 7→ Dp (if A has
prime characteristic p). It is an A-submodule if A is commutative.

We have DerZ(A) = Der(A).

Lemma 1.23.3. (1) Let A be a commutative ring of prime characteristic p. Then
DerAp(A) = Der(A). Here Ap denotes {ap | a ∈ A}.

(2) Let K/E/F be a tower of field extensions with E/F separable. Then DerE(K) =
DerF (K). In particular, DerF (E) = 0.

Proof. (1) For D ∈ Der(A), D(ap) = pap−1D(a) = 0.
(2) Let D ∈ DerF (K) and α ∈ E. Let P (X) be the minimal polynomial of α

over F . Then 0 = D(P (α)) = P ′(α)D(α). Since P is separable, P ′(α) 6= 0. It
follows that D(α) = 0.
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Theorem 1.23.4 (Jacobson). Let E be a field of characteristic p > 0. We have an
order-reversing bijection

{E/F/Ep | [E : F ] <∞} ↔ {E-linear subspace h ⊆ Der(E)
stable under [ , ] and D 7→ Dp | dimE h <∞}

F 7→ DerF (E)
{α ∈ E | D(α) = 0, ∀D ∈ h} ← [ h

Moreover, for F ↭ h, [E : F ] = pdimE h.

See [B2, §V.3, Théorème 3] for a proof.
A field extension E/F satisfying F ⊇ Ep is said to be purely inseparable of

height (or exponent) ≤ 1.

1.24 Transcendental extensions
Let E/F be a field extension. The following definition extends the notion of algebraic
elements.

Definition 1.24.1. Let A ⊆ E be a subset. We say that A is algebraically in-
dependent over F if the homomorphism F [Xa]a∈A → E carrying Xa to a is injec-
tive. (Here F [Xa]a∈A denotes the polynomial ring over F in the indeterminates Xa,
a ∈ A.) Otherwise we say that A is algebraically dependent over F .

Remark 1.24.2. (1) {a} is algebraically independent over F if and only if a is
transcendental over F .

(2) A is algebraically dependent over F if there exist distinct elements a1, . . . , an ∈
A and a polynomial P (X1, . . . , Xn) ∈ F [X1, . . . , Xn] such that F (a1, . . . , an) =
0. Thus A is algebraically independent over F if and only if every finite subset
of A is.

(3) A is algebraically independent over F if and only if the homomorphism in Defi-
nition 1.24.1 extends to an isomorphism F (Xa)a∈A

∼−→ F (A), where F (Xa)a∈A =
Frac(F [Xa]a∈A) is the field of rational functions over F in the indeterminates
Xa, a ∈ A.

Example 1.24.3. Nesterenko proved that {π, eπ} ⊆ R is algebraically independent
over Q. It is conjectured that the same holds for {π, e}, which is a special case of
Schanuel’s conjecture.

Definition 1.24.4. A field extension E/F generated by a subset A ⊆ E alge-
braically independent over F is said to be purely transcendental.

Example 1.24.5. Let F be a field of characteristic 6= 2. Then

E = F (X)[Y ]/(X2 + Y 2 − 1) = Frac(F [X,Y ]/(X2 + Y 2 − 1))

is purely transcendental over F . Indeed, we have E = F (T ), where

T = Y − 1
X

, X = −2T
1 + T 2 , Y = 1− T 2

1 + T 2 .
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This parametrization is obtained by intersecting the circle X2 + Y 2 = 1 with the
family of lines Y = 1+TX passing through the point (0, 1). (One deduces that every
Pythagorean triple, namely (a, b, c) ∈ Z3

≥1 satisfying a2 + b2 = c2, is proportional to
(2mn,m2 − n2,m2 + n2) for integers m > n > 0.)

Similarly, for n ≥ 1, E = Frac(F [X0, . . . , Xn]/(X2
0 + · · · + X2

n − 1)) is purely
transcendental over F . Indeed, we have E = F (T1, . . . , Tn), where Ti = Xi

X0
for

1 ≤ i ≤ n− 1, Tn = Xn−1
X0

, and X0 = −2Tn

1+T 2
1 +···+T 2

n
.

Example 1.24.6. Let F be a field of characteristic 6= 3. Then

E = Frac(F [X,Y, Z]/(X3 + Y 3 + Z3 − 1))

is purely transcendental over F . Indeed, E = F (S, T ), where

(1.24.1) X = T + SZ, Y = S + (S − T )Z, Z = 1− S3 − T 3

(S − T )3 + S3 + 1
.

This is obtained by considering the pair of skew lines Li(W ) = (W,−ωiW,ωi),
i = 1, 2 on the cubic surface X3 + Y 3 + Z3 = 1 defined over F (ω), where ω is a
primitive cube root of unity, and intersecting the line passing through the points

Li(T + ωiS) = (T, S, 0) + ωi(S, S − T, 1), i = 1, 2

with the cube surface. (It turns out that the 27 lines on the cubic surface over F (ω)
given up to permutation of the coordinates by (W,−ωiW,ωj), 0 ≤ i, j ≤ 2, are the
only ones. Rational points of the cubic surface correspond to integral solutions of
the equation a3 + b3 + c3 = d3. For example, taking S = 2 and T = 1 in (1.24.1),
we get 33 + 43 + 53 = 63. Taking S = 1, T = −1, we get 13 + 123 = 93 + 103.10)

Similarly, for n ≥ 1, E = Frac(F [X0, . . . , X2n]/(X3
0 + · · · + X3

2n − 1)) is purely
transcendental. This can be seen by considering the pair of affine linear subspaces
of dimension n

Li(W1, . . . ,Wn) = (W1,−ωiW1, . . . ,Wn,−ωiWn, ω
i), i = 1, 2

on the cubic hypersurface X3
0 + · · · + X3

2n = 1 defined over F (ω) and intersecting
the line passing through the points Li(T1 + ωiS1, . . . , Tn + ωiSn), i = 1, 2 with the
cubic hypersurface.

We refer to [KSC] for more examples.

Lemma 1.24.7. Let E/F be a field extension. A subset AqB ⊆ E is algebraically
independent over F if and only if A is algebraically independent over F and B is
algebraically independent over F (A).

Proof. If Aq B is algebraically independent over F , then clearly A is algebraically
independent over F and, by Remark 1.24.2 (3), B is algebraically independent over

101729 = 13 + 123 = 93 + 103 is the smallest number expressible as the sum of two cubes (of
positive integers) in two different ways and is known as the Hardy–Ramanujan number.
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F (A). Conversely, if A algebraically independent over F and B is algebraically
independent over F (A), then we have injections

F [Xc]c∈AqB
Xa 7→a−−−→ F (A)[Xb]b∈B

Xb 7→b−−−→
φ

E,

so that AqB is algebraically independent over F .

Proposition 1.24.8. Let E/F be a field extension and let A ⊆ C ⊆ E be subsets
such that A is algebraically independent over F . Then there exists a maximal B ⊆ C
containing A such that B is algebraically independent over F .

By the lemma, the maximality is equivalent to the condition that every c ∈ C is
algebraic over F (B).

Proof. This follows immediately from Zorn’s lemma. Every chain (Bi)i∈I admits an
upper bound ∪i∈I Bi.

Definition 1.24.9. Let E/F be a field extension. A maximal subset B ⊆ E that
is algebraically independent over F is called a transcendence basis of E/F .

In other words, a transcendence basis of E/F is a subset B ⊆ E algebraically
independent over F such that E/F (B) is algebraic. By the proposition applied to
A = ∅ and C = E, a transcendence basis exists.

Remark 1.24.10. (1) Thus any extension E/F can be factorized as a purely
transcendental extension F (B)/F and an algebraic extension E/F (B). Such
factorizations are not unique. For example, F (X)/F (X2) is an algebraic ex-
tension and F (X2)/F is a purely transcendental extension. In general there
does not exist a maximal purely transcendental subextension F (B)/F of E/F .
For example, any purely transcendental subextension of E = ∪

n≥1 F (X1/n)/F
is a simple extension of F , by Theorem 1.24.12 below, and hence contained in
some F (X1/n).

(2) Given a tower of extensions K/E/F . If K/E and E/F are purely transcenden-
tal, then K/F is purely transcendental. However, the above example shows
that K/F purely transcendental does not imply K/E purely transcendental.

Warning 1.24.11. Let E/F be a field extension and let Ealg ⊆ E be the algebraic
closure of F in E. Then E/Ealg is usually not purely transcendental. For exam-
ple, it follows from Theorem 1.24.12 below that E = ∪

n≥1 F (X1/n) is not purely
transcendental over F and one can show Ealg = F (see Corollary 1.24.21 below or
take F to be algebraically closed). There are many finitely generated examples as
well, such as K = Frac(F [X,Y ]/(Xn + Y n − 1)) with char(F ) ∤ n and n ≥ 3. It
follows from the theory of algebraic curves that K is not purely transcendental over
Kalg = F .

Theorem 1.24.12. Let B and B′ be transcendence bases of a field extension E/F .
Then card(B) = card(B′).

Lemma 1.24.13 (Exchange property). Let B and B′ be transcendence bases of
E/F . Then, for every b ∈ B\B′, there exists b′ ∈ B′\B such that (B\{b}) ∪ {b′} is
a transcendence basis.
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Proof. Write A = B\{b}. If A q {b′} is algebraically dependent over F for all
b′ ∈ B′\B, then E/F (A) is algebraic and A is a transcendence basis, contradicting
the assumption that B is a transcendence basis. Thus there exists b′ ∈ B′\B such
that Aq{b′} is algebraically independent over F . Since B is a transcendence basis,
A q {b, b′} is algebraically dependent over F . It follows that b is algebraic over
F (Aq {b′}) and E/F (Aq {b′}) is algebraic.

Proof of Theorem 1.24.12. Case where B is finite. By the exchange property applied
successively to elements of B\B′, there exists a subset B′′ ⊆ B′ such that #B = #B′′

and that B′′ is a transcendence basis for E/F . Thus B′ = B′′ and consequently
#B = #B′.

Case where B is infinite. By symmetry, it suffices to show that card(B′) ≥
card(B). For each b ∈ B′, there exists a finite subset Ab ⊆ B such that b is algebraic
over F (Ab). Let B′′ = ∪

b∈B′ Ab ⊆ B. Then E is algebraic over B′′, so that B′′ = B.
Thus B′ is infinite and card(B) = card(B′′) ≤ card(B′) · ℵ0 = card(B′).

Definition 1.24.14. The transcendence degree of a field extension E/F , denoted
by tr. deg(E/F ), is the cardinality of a transcendence basis of E/F .

Proposition 1.24.15. Let K/E/F be field extensions. Let B be a transcendence
basis of E/F and let B′ be a transcendence basis of K/E. Then B q B′ is a tran-
scendence basis of K/F . In particular,

tr. deg(K/F ) = tr. deg(K/E) + tr. deg(E/F ).

Proof. We have B ∩ B′ ⊆ B′ ∩ E = ∅. We have a tower of algebraic extensions
K/E(B′)/F (B q B′). Moreover, B′ is algebraically independent over E and hence
over F (B). Thus B qB′ is algebraically independent over F .

Proposition 1.24.16. Let F be a field and let E and E ′ be algebraically closed
extensions of F with tr. deg(E/F ) = tr. deg(E ′/F ). Then there exists a (noncanon-
ical) F -isomorphism E

∼−→ E ′.

Proof. Let B and B′ be transcendence bases of E/F and E ′/F , respectively. By
the assumption on transcendence degree, there exists a bijection B

∼−→ B′, which
extends uniquely to an F -isomorphism φ : F (B) ∼−→ F (B′). Since E is an algebraic
closure of F (B) and E ′ is an algebraic closure of F (B′), φ extends to E ∼−→ E ′.

Proposition 1.24.17. Let E/F be a field extension. Then

max(card(F ), [E : F ],ℵ0) = max(card(E),ℵ0) = max(card(F ), tr. deg(E/F ),ℵ0).

Proof. The first equality is a case of Lemma 1.3.5 (1).
For the second equality, we may assume that F or tr. deg(E/F ) is infinite. Let

B be a transcendence basis of E/F . By Lemma 1.3.5, card(F (B)) = card(F [B]) =
max(card(F ), card(B)). It remains to show that for an algebraic extension E/E0
with E0 infinite, we have card(E) = card(E0). The map φ : E → E0[X] carry-
ing x to its minimal polynomial has finite fibers. Thus card(E) = card(im(φ)) ≤
card(E0[X]) = card(E0).
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We have the following generalization of Remark 1.3.4.

Corollary 1.24.18. Let E/F be a transcendental extension. Then

[E : F ] = card(E) = max(card(F ), tr. deg(E/F ),ℵ0).

Proof. Let α ∈ E be a transcendental element over F . Then card(E) ≥ card(F (α)) ≥
ℵ0. Moreover, by Remark 1.3.4, [E : F ] ≥ [F (α) : F ] = max(card(F ), α0). It then
suffices to apply Proposition 1.24.17.

Example 1.24.19. (1) tr.deg(C/Q) = card(C) is the continuum.
(2) Let p be a prime number. We let Qp = Frac(Zp) denote the field of p-adic

numbers, where Zp = lim←−n Z/p
nZ as in Example 1.21.19. Let Qalg

p be an
algebraic closure of Qp. Then

tr. deg(Qalg
p /Q) = tr. deg(Qp/Q) = card(Qp) = card(Zp)

is the continuum.
It follows then from Proposition 1.24.16 that there exists a (noncanonical) field

isomorphism Qalg
p ' C. Both fields are equipped with natural topologies, but the

two topological spaces are very different.

Proposition 1.24.20. Let K/E/F be a tower of field extensions with E/F alge-
braic. Let A ⊆ K be algebraically independent over F . Then A is algebraically
independent over E. Moreover, if S ⊆ E is F -linearly independent, then S is F (A)-
linearly independent.

Proof. Since E(A)/F (A) is algebraic, A is a transcendence basis for E(A)/F . There
exists B ⊆ A such that B is a transcendence basis for E(A)/E. Then B is a
transcendence basis for E(A)/F . It follows that B = A.

Assume there exists a nontrivial linear relation ∑
s∈S css = 0 with cs ∈ F (A).

We may assume cs ∈ F [A] for all s ∈ S, so that the linear relation is an identity in
E[A]. Since A is algebraically independent over E, taking coefficients in E produces
a nontrivial F -linear relation of S.

Corollary 1.24.21. Let E and E ′ be a two intermediate fields of a field extension
K/F with E/F algebraic and E ′/F purely transcendental. Then E ·E ′/E is purely
transcendental and E ∩ E ′ = F .

Proof. The first assertion follows immediately from Proposition 1.24.20. Let S be
a linear basis of E ∩ E ′/F . By the proposition, S is E ′-linearly independent. Thus
#S = 1.

We state the following generalized Lüroth’s theorem. Case (1) is due to Gor-
don in characteristic 0 and to Igusa in positive characteristics. Case (2) is due to
Castelnuovo in characteristic 0 and to Zariski in positive characteristics.

Theorem 1.24.22. Let K/E/F be a tower of extensions with K/F purely tran-
scendental. Assume that either

(1) tr. deg(K/F ) <∞ and tr. deg(E/F ) = 1; or
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(2) tr. deg(K/F ) = tr. deg(E/F ) = 2, F is algebraically closed, and K/E is sep-
arable.

Then E/F is purely transcendental.

For every n ≥ 3 and every algebraically closed field F of characteristic 0, there
are examples of towers of extensions K/E/F with K/F purely transcendental,
tr. deg(K/F ) = tr. deg(E/F ) = n, and E/F not purely transcendental. For n = 3
and F = C, one such example is

E = Frac(C[X,Y, Z,W ]/(X3 + Y 3 + Z3 +W 3 − 1)).

That E/C is not purely transcendental in this case is a special case of a deep
theorem in algebraic geometry, proven by Clemens and Griffiths. We refer to [B1]
for references.

We end this section with a few results whose statements could have been given
earlier but whose proofs rely on transcendence bases.

Proposition 1.24.23. Let K/E/F be a tower of field extensions. Then K/F is a
finitely generated field extension if and only if K/E and E/F are finitely generated
field extensions.

Proof. The only nontrivial part is that ifK/F finitely generated, then E/F is finitely
generated. We have tr. deg(K/F ) < ∞. Let B be a transcendence basis of E/F .
Then B is finite. Up to replacing F by F (B), we may assume that E/F is algebraic.
Let B′ be a transcendence basis of K/E. Then B′ is also a transcendence basis of
K/F . By Proposition 1.24.20, [E : F ] ≤ [E(B′) : F (B′)] ≤ [K : F (B′)] <∞.

Proposition 1.24.24. Let E/F be a field extension with E algebraically closed.
Then

(1) x ∈ E is transcendental over F if and only if the orbit of x under the action
of Aut(E/F ) is infinite. In this case, the orbit consists of all transcendental
elements of E over F .

(2) EAut(E/F ) = Einsep is the subfield of E consisting of elements purely inseparable
over F . In particular, EAut(E/F ) = F if and only if F is perfect.

Proof. (1) Let O be the orbit of x. If x is algebraic over F , then every element of
O is a root of the minimal polynomial of x. If x is transcendental over F , then O
is the set of transcendental elements of E over F by the Lemma 1.24.25 below. In
particular, O contains xn for all n ≥ 1 and is infinite.

(2) We have EAut(E/F ) ⊇ Einsep. By (1), EAut(E/F ) is contained in Ealg, the alge-
braic closure of F in E. By Proposition 1.24.16, the homomorphism Aut(E/F ) →
Aut(Ealg/F ) given by restriction is surjective. Thus EAut(E/F ) ⊆ E

Aut(Ealg/F )
alg =

Einsep by Proposition 1.21.34.

Lemma 1.24.25. Let E/F be a field extension with E algebraically closed. Let
x ∈ E and x′ ∈ E be transcendental over F . Then there exists an F -automorphism
of E carrying x to x′.
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Proof. This follows from Proposition 1.24.16 and the equality tr. deg(E/F (x)) =
tr. deg(E/F (x′)). Here we give a direct construction. We extend {x} into a transcen-
dence basis B of K/F and {x′} into a transcendence basis B′ of K/F . There exists
a bijection B

∼−→ B′ carrying x to x′, which extends uniquely to an F -isomorphism
F (B) ' F (B′). The latter extends in turn to an F -automorphism of E.

Remark 1.24.26. Let E be an algebraically closed field and G < Aut(E) be a
subgroup. Then G < Aut(E/EG) is not an equality in general, even for G closed.

For example, for k an algebraically closed field, E = k(T )alg, σ ∈ Aut(E) an
automorphism carrying T to T 2, 〈σ〉 is a discrete subgroup of the Hausdorff topo-
logical group Aut(E) and thus is closed. We have E〈σ〉 = k, but 〈σ〉 < Aut(E/k) is
far from being an equality. Indeed, Aut(E/k) acts transitively on E − k.

Proposition 1.24.27. Let K/E/F be a tower of field extensions with K alge-
braically closed and K/E nontrivial. Then E/F is normal if and only if for every
F -automorphism φ : K ∼−→ K, we have φ(E) ⊆ E.

Proof. The “only if” part follows from the definition of normality. Let us show
the “if” part. We will first show that E/F is algebraic. Assume the contrary,
namely the existence of b ∈ E transcendental over F . Let x ∈ K with x 6∈ E. If x is
transcendental over F , let b′ = x. Otherwise let b′ = x+b. Then b′ is transcendental
over F and b′ 6∈ E. By the lemma, there exists an F -automorphism φ : K ∼−→ K
satisfying φ(b) = b′, contradicting the assumption φ(E) ⊆ E.

Let F alg be the algebraic closure of F in K. Every F -endomorphism ι : F alg →
F alg is an F -automorphism by Proposition 1.4.3, and thus extends to an F -automorphism
K

∼−→ K by Proposition 1.24.16. Therefore, ι(E) ⊆ E.



Chapter 2

Modules

2.1 Modules and homomorphisms
Let R be a ring.

Definition 2.1.1. A left R-module is an abelian group (M,+) equipped with a map

R×M →M

(r,m) 7→ rm,

called scalar multiplication, satisfying
(1) r(m+ n) = rm+ rn,
(2) r(sm) = (rs)m,
(3) (r + s)m = rm+ sm,
(4) 1 ·m = m

for all r, s ∈ R and m,n ∈M .

In other words, a left R-module is an abelian group (M,+) equipped with a ring
homomorphism R→ End(M,+).

Remark 2.1.2. Dually, we have an obvious notion of a right R-module, which is
the same as a left Rop-module. We sometimes write MR for a left R-module M and
MR for a right R-module M . For R commutative, there is no difference between
left R-modules and right R-modules.

A left R-submodule of a left R-module M is an abelian subgroup N stable under
scalar multiplication by R.

Example 2.1.3. (1) The ring R itself is a left R-module, called the left regular
module. The submodules are called left ideals of R.

(2) For R = Z, a Z-module is an abelian group.
(3) For R = F a field, an F -module is an F -vector space.
(4) For S = Mn(R) the ring of n× n matrices in R, Rn, viewed as the collection

of column vectors, is a left S-module by matrix multiplication.

Definition 2.1.4. Let M and N be left R-modules. A homomorphism of left R-
modules is a homomorphism of abelian groups φ : M → N satisfying φ(rm) = rφ(m)
for all r ∈ R and m ∈M .

85
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Example 2.1.5. An R[X]-module M is an R-module M equipped with an endo-
morphism of R-modules X· : M →M .

Example 2.1.6. An R[X,X−1]-module M is an R-module M equipped with an
isomorphism of R-modules X· : M ∼−→M .

Given a submodule N of a left R-module M , M/N is a left R-module and the
projection mapM →M/N is a homomorphism of R-modules. We have the following
usual properties of homomorphisms, which can be deduced from the corresponding
properties of homomorphisms of abelian groups.

Proposition 2.1.7. (1) Let φ : M → N be a homomorphism of left R-modules.
Then ker(φ) and im(φ) are left R-modules and φ induces an isomorphism of
left R-modules M/ ker(φ) ∼−→ im(φ). In particular, for φ surjective, we have
M/ ker(φ) ' N .

(2) Let M1 and M2 be submodules of a left R-module M . Then the inclusion
induces an isomorphism of R-modules

M1/(M1 ∩M2)
∼−→ (M1 +M2)/M2.

(3) Let φ : M → N be a surjective homomorphism of left R-modules. Then there
is a bijection

{submodules of M containing ker(φ)} ↔ {submodules of N}
M ′ 7→ φ(M ′)

φ−1(N ′)←[ N ′.

For M ′ and N ′ under this bijection, φ induces an isomorphism of R-modules
M/M ′ ' N/N ′.

Given a homomorphism φ : M → N of left R-modules, coker(φ) = N/im(φ) is a
left R-module. The snake lemma holds for R-modules.

We let HomR(M,N) denote the abelian group of homomorphisms of left R-
modules. The abelian group structure is defined by (φ + ψ)(m) = φm + ψm. It is
in fact a Z(R)-module with (rφ)(m) = rφ(m) for r ∈ Z(R). Here

Z(R) = {r ∈ R | rs = sr ∀s ∈ S}

denotes the center of R, which is a subring of R. Composition of homomorphisms
is bi-additive:

φ(ψ1 + ψ2) = φψ1 + φψ2, (φ1 + φ2)ψ = φ1ψ + φ2ψ.

In particular, EndR(M) := HomR(M,M) is a ring. M is equipped with an ob-
vious left EndR(M)-module structure. Composition equips HomR(M,N) with the
structures of a right EndR(M)-module and a left EndR(N)-module. It is in fact an
(EndR(N),EndR(M))-bimodule (Example 2.8.7).
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2.2 Products and direct sums
Let (Mi)i∈I be a family of left R-modules. Then the product ∏i∈IMi is a left R-
module: r(mi)i∈I = (rmi)i∈I . The left R-submodule ⊕i∈IMi consisting of (mi)i∈I
such that mi = 0 for all but finitely many i is called the direct sum (or coproduct).
For I finite, we have ⊕i∈IMi = ∏

i∈IMi.
For each i, we have a projection pi :

∏
i∈IMi → Mi. Up to isomorphism, the

product is characterized by the following universal property: for every left R-module
N and every family of morphisms (fi : N →Mi)i∈I , there exists a unique morphism
f = (fi)i∈I : N → ∏

i∈IMi such that pif = fi. This provides an isomorphism of
abelian groups

HomR(N,
∏
i∈I
Mi) '

∏
i∈I

HomR(N,Mi).

Similarly, the direct sum is characterized by the following universal property: for
every left R-module N and every family of morphisms (fi : Mi → N)i∈I , there
exists a unique morphism f = (fi)i∈I : ⊕i∈IMi → N such that fιi = fi, where
ιi : Mi ↪→

⊕
i∈IMi is the inclusion. This provides an isomorphism of abelian groups

HomR(
⊕
i∈I

Mi, N) '
∏
i∈I

HomR(Mi, N).

Lemma 2.2.1. Let p : M → N and s : N →M be morphisms of modules such that
ps is an isomorphism. Then M = ker(p)⊕ im(s).

In the case where ps = idN , we say that s is a section of p and p is a retraction
of s.

Proof. Let sn ∈ ker(p)∩ im(s) with n ∈ N . Then psn = 0, which implies n = 0 and
sn = 0. Thus ker(p)∩ im(s) = 0. For every m ∈M , m− s(ps)−1pm ∈ ker(p). Thus
M = ker(p)⊕ im(s).

Free modules
Some of the following notions and results are similar to those for transcendental
bases (Section 1.24).

Definition 2.2.2. Let M be a left R-module and let A ⊆ M . We say that A is
linearly independent (resp. generating, resp. a basis) if the homomorphism

R⊕A →M

(ra)a∈A 7→
∑
a∈A

raa

is injective (resp. surjective, resp. bijective). We say that M is free if it admits a
basis (or equivalently, if it is isomorphic to a direct sum R⊕I of copies of R).

We let ∑a∈ARa denote the submodule generated by A. We say that A is linearly
dependent if it is not linearly independent.
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Remark 2.2.3. (1) Every leftR-moduleM is a quotient of a free module. Indeed,
for any generating subset A ⊆ M (for example, M), the map R⊕A → M is a
surjection.

(2) {a} is linear dependent if and only if a is a torsion element (namely, there
exists nonzero r ∈ R such that ra = 0). We say that M is torsion if every
m ∈ M is torsion. We say M is torsionfree if there is no nonzero torsion
elements.

(3) A is linearly independent if and only if every finite subset of A is.
(4) AqB ⊆M is linearly independent if and only if A ⊆M is linearly independent

and the map B →M/
∑
a∈ARa is injective with linearly independent image.

Proposition 2.2.4. Let A ⊆ C ⊆ M be such that A is linearly independent. Then
there exists a maximal B ⊆ C containing A such that B is linearly independent.

By the preceding remark, the maximality is equivalent to the condition that the
image of every c ∈ C in M/

∑
b∈B Rb is torsion.

Proof. This follows immediately from Zorn’s lemma. Every chain (Bi)i∈I admits an
upper bound ∪i∈I Bi.

Remark 2.2.5. Thus for any R-module M , there exists a free R-submodule N such
that M/N is torsion. In general, such an N is not unique. Moreover, a maximal
free submodule does not necessarily exist. For example, the free Z-submodules of Q
are of the form rZ for some r ∈ Q.

Definition 2.2.6. A nonzero ring is called a division ring if every nonzero element
admits an inverse.

Corollary 2.2.7. Let D be a division ring. Every left D-module is free.

Proof. This follows immediately from the preceding remark since every torsion left
D-module is zero.

Conversely, a nonzero ring D such that every left D-module is free is a division
ring (Exercise).

For R nonzero, a basis of an R-module is a maximal linearly independent subset.
The converse holds if R is a division ring.

Proposition 2.2.8. Let M = ⊕
i∈IMi with I infinite, where each Mi is a nonzero

left R-module. Then every generating subset S ⊆M satisfies card(S) ≥ card(I).

Proof. For each s ∈ S, there exists a finite subset Js ⊆ I such that s ∈ ∑j∈Js
Mj.

Let J = ∪
s∈S Js. Then S ⊆ ∑j∈JMj. It follows that J = I. Thus S is infinite and

card(I) ≤ card(S) · ℵ0 = card(S).

Corollary 2.2.9. Let R be a nonzero ring and let A and B be bases of a left R-
module M with A infinite. Then card(A) = card(B).

Proof. We have card(B) ≥ card(A). In particular, B is infinite. By symmetry, we
have card(A) ≥ card(B).
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The corollary does not extend to the case where both A and B are finite.

Example 2.2.10. Let F be a field and let I be an infinite set. Let V = F⊕I and
let R = EndF (V ). Then any bijection I ' I q I induces an F -linear isomorphism
V ' V ⊕ V . Applying HomF (−, V ), we get an isomorphism of left R-modules
R ' R⊕R.

Definition 2.2.11. We say that a ring R has IBN (Invariant Basis Number) if
Rm ' Rn as left R-modules implies m = n. In this case, for M ' R⊕I , we call
card(I) the rank of M and denote it by rkR(M).

Remark 2.2.12. (1) A homomorphism Rm → Rn of left R-modules is given by
an n×m matrix. Thus R has (left) IBN if and only if every invertible matrix
is a square matrix. The same holds for right IBN. Thus having left IBN is
equivalent to having right IBN.

(2) If R → S is a ring homomorphism with S having IBN. Then R has IBN.
Indeed, a nonsquare invertible matrix over R would give rise to a nonsquare
invertible matrix over S.

Example 2.2.13. Nonzero finite rings have IBN. This is clear by comparing cardi-
nalities.

Proposition 2.2.14. Division rings have IBN.

A left D-module is also called a left D-vector space and its rank is also called
the dimension.

Proof. Let D be a division ring and M a left D-module. If B and B′ are finite bases
of M , then by the exchange property below, there exists B′′ ⊆ B′ with #B = #B′′

such that B′′ is a basis. Thus B′ = B′′.

Lemma 2.2.15 (Exchange property). Let D be a division ring and M a left D-
module. Let B be B′ be bases of M . Then, for every b ∈ B\B′, there exists b′ ∈ B′\B
such that (B\{b}) ∪ {b′} is a basis.

Proof. Write A = B\{b}. If Aq{b′} is linearly dependent for all b′ ∈ B′\B, then A
is generating and hence is a basis, contradicting the assumption that B is a basis.
Thus there exists b′ ∈ B′\B such that A q {b′} is linearly independent. Since B is
a basis, A q {b, b′} is linearly dependent. It follows that b ∈ ∑a∈ADa + Db′ and
Aq {b′} is generating.

Corollary 2.2.16. Nonzero commutative rings R have IBN.

Proof. Let m be a maximal ideal of R. Then the field R/m has IBN and we conclude
by Remark 2.2.12 (2).
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Finitely generated modules
Definition 2.2.17. A left R-module is finitely generated if it admits a finite gener-
ating set. A left R-module is cyclic if it admits one generator.

Remark 2.2.18. A left R-module is cyclic if and only if it is isomorphic to R/I for
some left ideal I ⊆ R. Indeed, if M = Rm, then the homomorphism R→M given
by r 7→ rm induces an isomorphism R/annR(m) ∼−→ M , where annR(m) = {r ∈ R |
rm = 0} is the annihilator of m, which is a left ideal of R.

Remark 2.2.19. Let M be a left R-module and (Ni)i∈I a family of left R-modules.
The homomorphism of abelian groups

(2.2.1)
⊕
i∈I

HomR(M,Ni)→ HomR(M,
⊕
i∈I

Ni)

is injective and the image consists of homomorphisms of left R-modules M →⊕
i∈I Ni that factorizes through ⊕

j∈J Nj for some finite subset J ⊆ I. If M is
finitely generated, then such a factorization always exists. In other words, (2.2.1) is
an isomorphism in this case.

2.3 Modules over a PID
Definition 2.3.1. A domain is a nonzero ring R with no zero-divisors, namely, for
all r, s ∈ R, rs = 0 implies r = 0 or s = 0. A Principal Left Ideal Domain (PLID)
is a domain R of which every left ideal is principal, namely, of the form Rr for
some r ∈ R. A Principal Right Ideal Domain (PRID) is a domain R of which every
right ideal is of the form rR for some r ∈ R. A Principal Ideal Domain (PID) is a
commutative PLID.

In other words, a domain is a nonzero ring for which the left regular module is
torsionfree. An ideal of a domain is torsionfree and a principal ideal of a domain
is free. A commutative ring is a PID if and only if every ideal is free. Indeed, a
free ideal of a commutative ring R is principal (since every pair of elements of R is
linearly dependent).

Example 2.3.2.
(1) The ring of rational integers Z and the ring of Gaussian integers Z[

√
−1] are

PIDs.
(2) Z[2

√
−1] is not a PID. Z[

√
−5] is not a PID. Z[X] is not a PID.

(3) For a division ring D, the polynomial ring D[X] is a PLID and a PRID. The
same holds for the ring of formal power series

D[[X]] = {
∞∑
i=0

aiX
i | ai ∈ D}.

In fact, the only nonzero left ideals of D[[X]] are D[[X]]Xn, n ≥ 0.
(4) Let F be a field (or a division ring) equipped with an endomorphism σ that

is not an isomorphism. The twisted polynomial ring F [X;σ] = {∑n
i=0 aiX

i |
ai ∈ F}, which is a (left) F -vector space in the usual way, with multiplication
defined by Xa = σ(a)X, is a PLID but not a PRID [L2, Example 1.25].
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Proposition 2.3.3. Let R be a PLID. Let M be a free left R-module. Then every
left R-submodule N of M is free and for every basis B of M , there exists a basis C
of N satisfying card(C) ≤ card(B).

Thus if R has IBN (for example if R is a PID), we have rkR(N) ≤ rkR(M).

Proof. Consider the set P of triples (A,C, f) where A ⊆ B is a subset such that
NA := N ∩∑a∈ARa is free, C ⊆ NA is a basis of NA, and f : C → A is an injection.
We equip the set with the following partial order: (A,C, f) ≤ (A′, C ′, f ′) if and
only if A ⊆ A′, C ⊆ C ′, and f ′|C = f . Then every chain (Ai, Ci, fi)i∈I in P has
an upper bound (∪iAi,∪iCi, f), where f |Ci

= fi. By Zorn’s lemma, there exists a
maximal element (A,C, f) of P . It suffices to show that A = B, so that C is a basis
of NB = N and card(C) ≤ card(B).

Assume that A 6= B. It suffices to show that there exists (A′, C ′, f ′) ∈ P
with (A,C, f) ⪇ (A′, C ′, f ′). Let b ∈ B\A and let A′ = A q {b}. Consider the
homomorphism of left R-modules φ : NA′ → R carrying rbb + ∑

a∈A raa to b. We
have ker(φ) = NA. Let I = φ(NA′), which is a left ideal of R. If I = 0, then
NA′ = NA and we conclude by taking C ′ = C and f ′ : C f−→ A ⊆ A′. Assume I 6= 0.
Since R is a PLID, we have I = Rs with s 6= 0. Choose m ∈ NA′ with φ(m) = s.
The homomorphism ψ : I → NA′ carrying rs to rm is a section of φ : NA′ → I. Thus
NA′ = ker(φ) ⊕ im(ψ) = NA ⊕ Rm is free of basis C ′ = A q {m}. Here we used
Lemma 2.2.1. We define f ′ : C ′ → A′ by f ′|C = f and f ′(m) = b.

Remark 2.3.4. (1) The union of a chain of free modules is not free in general.
For example, for R = Z and a ≥ 2 an integer, Z[ 1

a
] = ∪

n≥1
1
anZ is not free.

(2) A maximal linearly independent subset of a free module is not a basis in
general. For example, {2} ⊆ Z is not a basis.

(3) If we only need the freeness of N , it suffices to apply Zorn’s lemma to the
partially ordered set of pairs (A,C) such that C ⊆ NA is basis.

Next we discuss the relationship between free modules and torsionfree modules.

Remark 2.3.5. A free left module over a domain is torsionfree. The converse does
not hold even over a PID: The Z-module Q is not free. We now prove however that
finitely generated torsionfree modules over a PID is free.

Corollary 2.3.6. Every finitely generated torsionfree module M over a PID is a
free module of finite rank.

Proof. Let A ⊆M be a finite generating subset and let B ⊆ A be a maximal linearly
independent subset. For every a ∈ A\B, B q {a} is linearly dependent. In other
words, there exists a nonzero ra ∈ R such that raa ∈

∑
b∈B Rb. Let r = ∏

a∈A\B ra.
Then multiplication by r gives an injective homomorphism M → ⊕

b∈B Rb. By
Proposition 2.3.3, M is a free module of finite rank.

Remark 2.3.7. Let R be a commutative domain. Let M be an R-module. Then
the subset Mtor ⊆M of torsion elements is an R-submodule. Indeed, if am = 0 and
bn = 0 for a, b ∈ R nonzero and m,n ∈ M , then ab(m + n) = bam + abn = 0 and
acm = cam = 0 for all c ∈ R. The quotient module Mtf = M/Mtor is torsionfree,
and is called the torsionfree quotient of M .
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Corollary 2.3.8. Let R be a PID. Let M be an R-module such that Mtf is finitely
generated. Then there exists a free submodule of finite rank L ⊆ M such that
M = Mtor ⊕ L.

Proof. By Corollary 2.3.6, Mtf is free. Let C be a basis of Mtf . For each c ∈ C,
choose a lifting c̃ ∈ M . This defines a section s : Mtf → M carrying ∑c∈C rcc to∑
c∈C rcc̃. By Lemma 2.2.1, we have M = Mtor⊕L, where L = im(s) = ∑

c∈C Rc̃.

Warning 2.3.9. The torsion submodule of a module over a PID is not a direct
summand in general. One such example is the Z-module A = ∏

p Z/pZ, where p
runs through prime numbers. We have Ator = ⊕

p Z/pZ and Atf = A/Ator is a
divisible Z-module. That is, multiplication by n is surjective on Atf for all nonzero
n ∈ Z. (In fact, Atf is a Q-algebra.) Since no nonzero element of A is divisible (by
all nonzero n ∈ Z), Atf is not isomorphic to any Z-submodule of A. It follows that
Ator is not a direct summand of A.

Finitely generated modules over a PID
We will give a structure theorem for homomorphisms between finitely generated
free modules over a PID. Under chosen bases, such a homomorphism is given by
a matrix, with change of bases corresponding to left and right multiplication by
invertible matrices.

Definition 2.3.10. Let R be a ring. Two matrices A and B with entries in R are
said to be equivalent if there exist invertible matrices P and Q with entries in R
such that B = PAQ.

Theorem 2.3.11. Let A be an n×m matrix with entries in a PID R. Then A is
equivalent to a matrix of the form

(2.3.1)



α1 0 . . . 0 0 . . . 0
0 α2 . . . 0 0 . . . 0
... ... . . . ... ... . . . ...
0 0 . . . αr 0 . . . 0
0 0 . . . 0 0 . . . 0
... ... . . . ... ... . . . ...
0 0 . . . 0 0 . . . 0


with α1 | α2 | · · · | αr.

The matrix (2.3.1) is called a Smith normal form of A. Note that the αi’s are
unique up to multiplication by a unit. Indeed, adopting the convention αr 6= 0, αi is
an associate of di(A)/di−1(A) and r is the smallest integer i such that di+1(A) = 0.
Here di(A) denotes a greatest common divisor of all i × i minors of A with the
conventions d0(A) = 1 and dm+1(A) = dn+1(A) = 0. The principal ideals Rα1 ⊇
Rα2 ⊇ · · · ⊇ Rαr (or the elements α1 | α2 | · · · | αr) are called the invariant factors
of A.

A row operation is left multiplication by an invertible matrix. Here are some
examples:
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(1) Switching two rows;
(2) Adding a multiple of one row to another row;
(3) Multiplying one row by a unit in R (on the left).

Unlike the case over a field, these three kinds of row operations do not generate all
row operations. We also need the following generalization of (1), (2), (3): given an
invertible matrix (

α β
γ δ

)
and row indices i 6= j, replacing row i by α times row i plus β times row j, and
replacing row j by γ times row i plus δ times row j.

Proof of Theorem 2.3.11. For n = 0 or m = 0 the claim is trivial. Assume n > 0
and m > 0. We proceed by induction on n. We may assume that A = (aij) is not
zero. By row switching and column switching, we may assume a11 6= 0.

We proceed then by induction on the number δ(A) of prime factors of a11/d1(A),
counting multiplicities. If δ(A) = 0, then by adding multiples of the first row to
other rows and multiples of the first column to other columns, we may assume that
A is of the form (

a11 0
0 B

)
,

where B is a (n − 1) × (m − 1) matrix with all entries divisible by a11. It suffices
then to apply the induction hypothesis to B.

Assume δ(A) > 0. We distinguish three cases.
(1) Some entry of the first column, say ai1, is not divisible by a11. Let d be a

greatest common divisor a11 and ai1. Then there exist α, β ∈ R satisfying Bézout’s
identity: αa11 +βai1 = d. Applying the row operation given by the invertible matrix(

α β
−ai1/d a11/d

)

to the rows 1 and i, we obtain a matrix M = (mi,j) with m11 = d and hence
δ(M) < δ(A). It suffices to apply the induction hypothesis to M .

(2) Some entry of the first row is not divisible by a11. This case can be handled
similarly to case (1) using column operations.

(3) All entries of the first column and the first row are divisible by a11. Then
some aij is not divisible by a11 for i, j > 1. By adding a multiple of the first column
to the j-th column, we may assume that a1j = 0. By adding the j-th column to the
first column, we reduce to the case where ai1 is not divisible by a11, which is case
(1).

Our proof gives an algorithm to find the Smith normal form.

Remark 2.3.12. A commutative ring R of which every finitely generated ideal is
principal is called a Bézout ring. In other words, greatest common divisors exist in
R and satisfy Bézout’s identity. This is a necessary condition for the existence of
Smith normal forms for all matrices over R.

Examples of Bézout domains include PIDs, valuation rings (see exercises), and
subrings of F [X] of the form R + XF [X], where R is a Bézout domain (such as a
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PID) and F = Frac(R). It is not known whether every matrix over a Bézout domain
has a Smith normal form.

Corollary 2.3.13. Let R be a PID. Let F be a free R-module of rank n and let
M ⊆ F be a submodule. Then there exist a basis {e1, . . . , en} of F and ideals
I1 ⊇ I2 ⊇ · · · ⊇ In of R such that M = ⊕n

i=1 Iiei. The ideals I1 ⊇ I2 ⊇ · · · ⊇ In are
uniquely determined by F and M .

Let Ii = Rdi. The nonzero elements in the family (diei) form a basis of M . The
ideals Ii (or the elements di) are called the invariant factors of M ⊆ F .

Proof 1. By Proposition 2.3.3, M is a finitely generated free module. We apply the
theorem to the inclusion M ↪→ N .

Proof 2. Alternatively, since R is Noetherian (Example 2.4.3 (1)), M is finitely
generated by Proposition 2.4.8. We then choose a finite set of generators and apply
the theorem to the resulting homomorphism Rm → F . This gives another proof of
Proposition 2.3.3 for finitely generated free modules over a PID.

One can also prove Theorem 2.3.11 using Proposition 2.3.3.

Alternative proof of Theorem 2.3.11. Let F = Rn and let M be the image of the
R-linear map φ : Rm → Rn given by A. By Proposition 2.3.3, ker(φ) and M are
free. A basis of ker(φ) combined with a lifting of a basis of M gives a basis of Rm

(see Lemma 2.2.1). Thus it suffices to prove Corollary 2.3.13.
We proceed by induction on n. Since R satisfies the ACC for ideals (Example

2.4.3 (1)), the family (f(M))f∈HomR(F,R) of ideals admits a maximal element, I1 =
f1(M) by Remark 2.4.2. If I1 = 0, then M = 0 and the existence is clear.

Assume that I1 = d1R 6= 0. There exists x1 ∈ M such that f1(x1) = d1. For
every f ∈ HomR(F,R), write Rf(x1) + I1 = (Rf + Rf1)(x1) as Rd ⊇ I1. There
exists u, v ∈ R such that (uf + vf1)(x1) = r. By the maximality of I1, we have
Rd = I1, so that f(x1) ∈ I1. Thus the coefficients of x1 under any basis of F are in
I1. It follows that there exists e1 ∈ F such that x1 = d1e1.

By Proposition 2.3.3, F ′ = ker(f1) is free. Since f1(e1) = 1, every e ∈ F can be
written as e = f1(e)e1 + (e− f1(e)e1) with e− f1(e)e1 ∈ F ′ and F ′ ∩Re1 = 0. Thus
F = Re1 ⊕ F ′. For m ∈ M , f1(m)e1 ∈ (Rd1)e1 = Rx1 ⊆ M . Thus M = I1e1 ⊕M ′,
where M ′ = M ∩ F ′. By induction hypothesis, we obtain a basis {e2, . . . , en} of F ′

and a chain of ideals I2 ⊇ · · · ⊇ In such that M ′ = ⊕n
i=2 Iiei.

It remains to show I1 ⊇ I2. Let I2 = Rd2 and I1 + I2 = Rd. There exist u and
v such that ud1 + vd2 = r. Let (fi) be a dual basis of (ei):

fi(ej) = δij =

1 i = j

0 i 6= j.

Then (uf1 + vf2)(d1e1 + e2d2) = d. By the maximality of I1, we have Rd = I1. In
other words, I2 ⊆ I1.

We easily deduce the following structure theorem.
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Theorem 2.3.14. Every finitely generated module N over a PID R is isomorphic
to a module of the form ⊕n

i=1 R/Ii, where I1 ⊇ · · · ⊇ In is a chain of proper ideals.
The chain is uniquely determined by the isomorphism class of N .

The ideals Ii (or their generators) are called the invariant factors of N .

Proof. We write N = F/M , where F is a finitely generated free R-module, and
apply Corollary 2.3.13. It remains to prove the uniqueness. For I = R

∏
p p

ap , where
p runs through a set of representatives of the associate classes of irreducible elements
of R and ap = 0 for all but finitely many p, we have

pa(R/I)
pa+1(R/I)

' paR + I

pa+1R + I
'

R/pR ap > a

0 ap ≤ a.

For I = 0, we adopt the convention that ap = +∞ and the above formula still holds.
Thus, writing Ii = R

∏
p p

ap,i , we have #{i | ap,i > a} = dimR/pR(paN/pa+1N). Since
I1 ⊊ R, ap,1 > 0 for some prime p. Thus n = maxp dimR/pR(N/pN).

This gives another proof of Corollary 2.3.6 (provided that we use the second
proof of Corollary 2.3.13).

Corollary 2.3.15. Every finitely generated module N over a PID R is isomorphic
to a module of the form ⊕n

i=1 R/Ji, where Ji = 0 or Ji is generated by a positive
power of an irreducible element of R. Up to reordering, the ideals Ji are uniquely
determined by the isomorphism class of N .

The ideals Ji (or their generators) are called the elementary divisors of N .

Proof. This is obtained by further decomposing the R/Ii appearing in the structure
theorem. For I = R

∏m
j=1 p

aj

j , where p1, . . . , pm are pairwise nonassociate irreducible
elements of R, we have R/I ' ∏m

j=1 R/p
aj

j R by the Chinese Remainder Theorem.

We end this section with a couple of applications.

Corollary 2.3.16. Every finitely generated abelian group A is isomorphic to an
abelian group of the form ⊕n

i=1 Z/diZ, where 1 6= d1 | d2 | · · · | dn are nonnegative
integers, uniquely determined by the isomorphism class of A.

Corollary 2.3.17. Let F be a field and V an F [X]-module with dimF (V ) < ∞.
Then

V '
n⊕
i=1

F [X]/(fi)

where f1 | f2 | · · · | fn are monic polynomials of degree ≥ 1 in F [X], uniquely
determined by the isomorphism class of V .

In terms of matrices, Corollary 2.3.17 can be rephrased as follows: Any square
matrix A with entries in F is similar to a matrix of the form

Mf1 . . . 0
... . . . ...
0 . . . Mfn


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with fi as above. This is called the rational normal form of A. Here for f =
Xd + ad−1X

d−1 · · ·+ a0, Mf denotes the block


0 . . . 0 −a0
1 . . . 0 −a1
... . . . ... ...
0 . . . 1 −ad−1

 ,

which is the matrix of X on F [X]/(f) under the basis (1, X, . . . , Xd−1). One can also
replace the invariant factors by the elementary divisors, which are positive powers
of monic irreducible polynomials.

In the case where F is an algebraically closed field, the elementary divisors are
of the form f = (X−λ)d, and it is convenient to use instead of Mf the Jordan block



λ 0 . . . 0 0
1 λ . . . 0 0
... . . . . . . ... ...
0 0 . . . λ 0
0 0 . . . 1 λ

 ,

which is the matrix of X on F [X]/((X − λ)d) under the basis

(1, X − λ, . . . , (X − λ)d−1).

We obtain thus the Jordan normal form.

2.4 Chain conditions
Definition 2.4.1. We say that a module M is Noetherian if it satisfies the Ascending
Chain Condition (ACC): for every ascending chain of submodules M1 ⊆ M2 ⊆ . . . ,
there exists m such that Mn = Mm for all n ≥ m. We say that a module M is
Artinian if it satisfies the Descending Chain Condition: for every descending chain
of submodules M1 ⊇M2 ⊇ . . . , there exists m such that Mn = Mm for all n ≥ m.

We say that a ring is left Noetherian (resp. left Artinian) if the regular left R-
module R is Noetherian (resp. Artinian). We say that a ring is right Noetherian
(resp. right Artinian) if the regular right R-module R is Noetherian (resp. Artinian).
We say that a ring is Noetherian (resp. Artinian) if it is both left and right Noethe-
rian (resp. Artinian).

Remark 2.4.2. M is Noetherian (resp. Artinian) if and only if every set of sub-
modules of M admits a maximal (resp. minimal) element.

Example 2.4.3.
(1) Every PLID R is left Noetherian. Indeed, for an ascending chain of left ideals

I1 ⊆ I2 ⊆ . . . , we have I = ∪
i Ii = Rr and r ∈ Im for some m, so that I = Im.
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(2) The twisted polynomial ring R = F [X;σ] of Example 2.3.2 (4) is a PLID (and
hence left Noetherian) but not right Noetherian. In fact, for any b ∈ F\σ(F ),
we have the ascending chain of right ideals [L2, Example 1.25]

bXR ⊊ bXR +XbXR ⊊ bXR +XbXR +X2bXR ⊊ . . . .

(3) Every division ring D is Noetherian and Artinian. For a left D-module V , we
have

V is Noetherian ⇐⇒ V is Artinian ⇐⇒ V has finite rank.

(4) Every module of finite cardinality is Noetherian and Artinian.
(5) Let R be a PID and I a nonzero ideal. Then the quotient ring R/I has

only finitely many ideals and is Noetherian and Artinian. Indeed, for I =
R
∏
p p

ap , where p runs through a set of representatives of the associate classes
of irreducible elements of R and ap = 0 for all but finitely many p, the ideals
containing I are of the form R

∏
p p

bp with 0 ≤ bp ≤ ap.
(6) Let p be a prime number. The Z-module Z[p−1]/Z is Artinian but not Noethe-

rian. In fact, the ascending chain of submodules

Z/Z ⊊ p−1Z/Z ⊊ p−2Z/Z ⊊ . . .

does not stabilize. On the other hand, every proper submodule has the form
1
pnZ/Z for some n ∈ Z≥0∪{∞}, so that every descending chain of submodules
has the form

p−n1Z/Z ⊇ p−n2Z/Z ⊇ . . . ,

where n1 ≥ n2 ≥ . . . stabilizes. However, we will see later that left Artinian
rings are left Noetherian (Corollary 3.5.10).

(7) Let E/F be an infinite field extension. One can show that the ring(
E E
0 F

)
=
{(

a b
0 d

)
| a, b ∈ E, d ∈ F

}
⊆M2(E)

is left Noetherian and left Artinian, but neither right Noetherian nor right
Artinian [L2, Corollary 1.24].

(8) Let R be a domain that is not a division ring. Then R is not left or right
Artinian. Indeed, for any nonunit x ∈ R\{0}, we have the descending chain
of left ideals

R ⊋ Rx ⊋ Rx2 ⊇ . . . .

(9) Let R be a nonzero ring. Then the polynomial ring S = R[X] is not left or
right Artinian. Indeed, we have the descending chain of ideals

SX ⊋ SX2 ⊋ SX3 ⊊ . . . .

(10) Let R be a nonzero ring and let S = ∪
n≥1 R[X1/n]. Then S is not left or right

Noetherian (or Artinian). Indeed, we have the ascending chain of ideals

SX ⊊ SX1/2 ⊊ SX1/3 ⊊ . . . .
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(11) Let R be a nonzero ring and let S = R[Xi]i∈I , where I is an infinite set.
Then S is not left or right Noetherian (or Artinian). Indeed, for any sequence
i1, i2, . . . of elements of I, we have the ascending chain of ideals

SXi1 ⊊ SXi1 + SXi2 ⊊ . . . .

Proposition 2.4.4. Let 0 → L → M → N → 0 be a short exact sequence of
modules. Then M is Noetherian (resp. Artinian) if and only if L and N are.

Proof. The “only if” part is clear. To show the “if” part, let (Mi) be an ascending
(resp. descending) chain of submodules of M . Let Li = L∩Mi and Ni = (L+Mi)/L.
Then (Li) and (Ni) stabilize. We have a commutative diagram in the Noetherian
case

0 // Li //

��

Mi
//

��

Ni
//

��

0

0 // Li+1 //Mi+1 // Ni+1 // 0
and a similar diagram with vertical arrows reversed in the Artinian case. We con-
clude by the snake lemma.

Corollary 2.4.5. Let M1 and M2 be submodules of M . If both M1 and M2 are
Noetherian (resp. Artinian), then so is M1 +M2.

Proof. Indeed, we have a short exact sequence

0→M1 →M1 +M2 → (M1 +M2)/M1 → 0

with (M1 + M2)/M1 ' M2/(M1 ∩M2). It then suffices to apply the proposition
twice.

Corollary 2.4.6. Let R be a left Noetherian (resp. Artinian) ring and let M be a
finitely-generated left R-module. Then M is Noetherian (resp. Artinian).

Proof. Indeed, M is a quotient of Rn for some n ≥ 0.

Remark 2.4.7. Let R be a ring and I an ideal1. A left R/I-module M is left
Noetherian (resp. Artinian) if and only if M is left Noetherian (resp. Artinian) as
an M -module. Indeed, the R/I-submodules of M are precisely the R-submodules
of M . Thus if R is a left Noetherian (resp. Artinian) ring, then so is R/I.

More generally, let f : R → S be a ring homomorphism. If a left S-module M
is Noetherian as a left R-module via f , then it is Noetherian as a left S-module.
Indeed, S-submodules of M are R-submodules of M .

Proposition 2.4.8. A module M is Noetherian if and only if every submodule of
M is finitely generated.

Proof. “Only if”: Let N ⊆M be a submodule. By the ACC, there exists a maximal
finitely-generated submodule N ′ ⊆ N . For every m ∈ N , N + Rm is finitely
generated, and N ′ +Rm = N ′ by the maximality of N ′. Thus N ′ = N .

“If”: Let (Mi) be an ascending chain. Then N = ∪
iMi admits a finite generating

subset S. There exists n such that S ⊆Mn. Then N = Mn.
1We often abbreviate bilateral ideals to ideals.
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Corollary 2.4.9. Let R be a left Noetherian ring. Then a left R-module M is
Noetherian if and only if it is finitely generated.

Theorem 2.4.10 (Hilbert basis theorem). A ring R is left Noetherian if and only
if the polynomial ring R[X] is left Noetherian.

Given a nonzero polynomial P ∈ R[X], we let in(P ) denote the leading (or
initial) coefficient of P . For an additive subgroup I ⊆ R[X], we write ind(I) =
{in(P ) | P ∈ I, deg(P ) = d}∪{0}. In other words, ind(I) is the image of the group
homomorphism I≤d → R carrying P to its coefficient of Xd, where I≤d ⊆ I is the
subgroup consisting of polynomials of degree ≤ d. In particular, if I ⊆ R[X] is a
left ideal, then in0(I) ⊆ in1(I) ⊆ . . . is an ascending chain of left ideals of R.

Lemma 2.4.11. For additive subgroups J ⊆ I of R[X] such that ind(I) = ind(J)
for all d ≥ 0, we have J = I.

Proof. Let P ∈ I be a polynomial of degree d. We proceed by induction on d to
show that P ∈ J . The case d < 0 is trivial. Assume d ≥ 0. Then there exists Q ∈ J
of degree d such that P and Q have the same leading coefficients. Then P −Q ∈ I
has degree < d, and hence belongs to J by induction hypothesis. It follows that
P ∈ J .

Proof of Theorem 2.4.10. Since R ' R[X]/(X), the “if” part is clear (Remark
2.4.7). For the “only if” part, let I be a left ideal of R[X]. Since R is left Noethe-
rian, there exists n such that ind(I) = inn(I) for d ≥ n. For each 0 ≤ d ≤ n,
choose Pd,1, . . . , Pd,md

∈ I of degree d such that {in(Pd,j)}1≤j≤md
generates ind(I).

Let J ⊆ R[X] be the left ideal generated by the finite set {Pd,j}0≤d≤n, 1≤j≤md
. Then

J ⊆ I and ind(J) = ind(I) for d ≤ n. The same holds for d ≥ n. Indeed, for d ≥ n,
ind(J) ⊇ inn(J) = inn(I) = ind(I). We conclude by the lemma.

Corollary 2.4.12. Let R be a left Noetherian ring. Then so is the polynomial ring
R[X1, . . . , Xn].

Let R be a commutative ring. A commutative R-algebra isomorphic to a quotient
of R[X1, . . . , Xn] for some n is called a finitely-generated commutative R-algebra.
A finitely-generated commutative algebra over a Noetherian ring is Noetherian by
Corollary 2.4.12 and Remark 2.4.7.

Remark 2.4.13. The analogue of the Hilbert basis theorem also holds for the ring
of formal power series R[[X]]: A ring R is left Noetherian if and only if R[[X]] is
left Noetherian. Indeed, in the above proof it suffices to replace deg(P ) and in(P )
by v(f) = m and in(f) = am, respectively, where f = ∑

n≥m anX
n with am 6= 0.

Warning 2.4.14. A subring of a left Noetherian (resp. Artinian) ring R is not
necessarily left Noetherian (resp. Artinian). Indeed, every non-Noetherian commu-
tative domain is a subring of its fraction field, which is Noetherian and Artinian. A
less trivial example is R = F [Y,XY,X2Y, . . . ] ⊆ F [X,Y ], where F is a field. The
ring R is not Noetherian. Indeed, we have the ascending chain of ideals

(Y ) ⊊ (Y,XY ) ⊊ (Y,XY,X2Y ) ⊊ . . . .
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Jordan–Hölder Theorem
Definition 2.4.15. We say that a moduleM is simple (or irreducible) if it is nonzero
and the only submodules are 0 and M .

The definitions of simple modules and cyclic modules are quite different from
those for simple field extensions and cyclic field extensions.
Remark 2.4.16. If M is a simple module, then any nonzero m ∈M is a generator.
In particular, simple modules are cyclic, and hence isomorphic to R/I, where I ⊆ R
is a maximal left ideal. By a maximal left ideal, we mean a maximal element of the
set of proper left ideals. By Zorn’s lemma, any proper left ideal is contained in a
maximal left ideal. On the other hand, cyclic modules are not simple in general.
For example, the Z-modules Z and Z/4Z are not simple.
Definition 2.4.17. Let M be a module. An (increasing) filtration of M of length
n is a sequence of inclusions of submodules 0 = M0 ⊆ M1 ⊆ · · · ⊆ Mn = M . The
graded pieces of the filtration are Mi/Mi−1, 1 ≤ i ≤ n. We say that two filtrations
are equivalent if the graded pieces coincide up to permutation and isomorphism. A
filtration of M is called a composition series if the graded pieces are simple.
Proposition 2.4.18. A module admits a composition series if and only if it is both
Noetherian and Artinian.
Proof. Since simple modules are Noetherian and Artinian, the same holds for mod-
ules admitting a composition series by Proposition 2.4.4. Conversely, let M be a
Noetherian and Artinian module. If M = 0, there exists a unique composition series.
Assume M 6= 0. Since M is Artinian, there exists a minimal nonzero submodule M1
of M . Then M1 is simple. If M1 = M , we get a composition series of M . If not,
we repeat the above argument for M/M1. This process must stop at some point,
providing a composition series of M . Indeed, otherwise we would get an ascending
chain of submodules of M , contradicting the assumption that M is Noetherian.
Corollary 2.4.19. Let M be a Noetherian and Artinian module. Then every filtra-
tion of M without repetition can be refined to a composition series.
Proof. Let (Mi) be a filtration without repetition. It suffices to apply the proposition
to every subquotient Mi/Mi−1 and take the preimages in Mi.
Theorem 2.4.20 (Jordan–Hölder). Let M be a module. Any pair of composition
series of M are equivalent and hence have the same length.

Note that any refinement of a composition series is necessarily obtained by rep-
etition. Thus, the Jordan–Hölder theorem follows from the following result.
Theorem 2.4.21 (Schreier refinement theorem). Any pair of filtrations of a module
M have equivalent refinements.
Proof. We may assume M 6= 0. Let 0 = M0 ⊆ · · · ⊆ Mr = M and 0 = N0 ⊆ · · · ⊆
Ns = M be filtrations. For 1 ≤ i ≤ r and 0 ≤ j ≤ s, let Mi,j = Mi−1 + Mi ∩ Nj.
For 0 ≤ i ≤ r and 1 ≤ j ≤ s, let Ni,j = Nj−1 + Mi ∩ Nj. Then 0 = M1,0 ⊆ · · · ⊆
M1,s = M2,0 ⊆ · · · ⊆ Mr−1,s = Mr,0 ⊆ · · · ⊆ Mr,s = M is a refinement of (Mi).
Similarly, (Ni,j) is a refinement of (Ni). For 1 ≤ i ≤ r and 1 ≤ j ≤ s, we have
Mi,j/Mi,j−1 ' Ni,j/Ni−1,j by the following lemma.
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Lemma 2.4.22 (Zassenhaus). Let M ′ ⊆ M and N ′ ⊆ N be submodules of a mod-
ule L. Then we have an isomorphism

M ′ +M ∩N
M ′ +M ∩N ′ '

N ′ +M ∩N
N ′ +M ′ ∩N

.

Proof. The relevant modules fit into the diagram

M ′ +M ∩N
⊃

TTTT
TTTT

TTTT
TTT

∪

N ′ +M ∩N
⊂

kkkk
kkkk

kkkk
kkk

∪

M ′ +M ∩N ′

⊃
TTTT

TTTT
TTTT

TTT
M ∩N

∪

N ′ +M ′ ∩N
⊂

kkkk
kkkk

kkkk
kkk

M ′ ∩N +M ∩N ′

We have M ′ +M ∩N = (M ′ +M ∩N ′) + (M ∩N) and (M ′ +M ∩N ′)∩ (M ∩N) =
(M ′ ∩ N) + (M ∩ N ′). Here in the second equality we used Lemma 2.4.23 below.
Thus

M ′ +M ∩N
M ′ +M ∩N ′ '

M ∩N
M ′ ∩N +M ∩N ′ .

Similarly,
N ′ +M ∩N
N ′ +M ′ ∩N

' M ∩N
M ′ ∩N +M ∩N ′ .

Lemma 2.4.23. Let A ⊆ C ⊆M and A′ ⊆M be submodules. Then (A+A′)∩C =
A+ A′ ∩ C.

Proof. Clearly (A + A′) ∩ C ⊇ A + A′ ∩ C. Conversely, every c ∈ (A + A′) ∩ C
can be written as c = a + b with a ∈ A and b ∈ A′. Then b = c − a ∈ C. Thus
b ∈ A′ ∩ C.

Definition 2.4.24. A Noetherian and Artinian module M is said to be of finite
length. The length of a composition series of M is called the length of M and
denoted by lg(M). The graded pieces of a composition series are called the Jordan–
Hölder factors (or composition factors) of M . We let JH(M) denote the multiset of
isomorphism classes of Jordan–Hölder factors of M .

Proposition 2.4.25. Let 0 → L → M → N → 0 be a short exact sequence of
modules of finite length. Then JH(M) = JH(L) ∪ JH(N). In particular, lg(M) =
lg(L) + lg(N).

Proof. A composition series of L and the preimage of a composition series of N
concatenate into a composition series of M .

Remark 2.4.26. Let f : M → N be a homomorphism of modules of finite length
such that JH(M)∩JH(N) = ∅. Then f = 0. Indeed, JH(im(f)) ⊆ JH(M)∩JH(N) =
∅.
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2.5 Semisimple modules
Let R be a ring.

Proposition 2.5.1. For a module M the following conditions are equivalent:
(1) M is a sum of simple submodules: M = ∑

i∈IMi;
(2) M is a direct sum of simple submodules: M = ⊕

i∈IMi;
(3) Every submodule N of M is a direct summand: there exists a submodule N ′

of M such that M = N ⊕N ′.
Moreover, under condition (1), there exists a subset J ⊆ I such that M = ⊕

j∈JMj.

For M = N ⊕N ′, we call N ′ a direct sum complement of N in M .

Proof. (1) =⇒ (2). For J ⊆ I, we write MJ = ∑
j∈JMj. Let S be the set of J ⊆ I

such that MJ = ∑
j∈JMj is a direct sum. For any chain (Jk) in S, ∪k Jk is an upper

bound. Indeed, ∑j∈JMj is a direct sum if and only if Mj ∩MJ\{j} = 0 for all j ∈ J ,
which can be checked on finite subsets of J . By Zorn’s lemma, S admits a maximal
element J . Suppose some Mi, i ∈ I is not contained in MJ . Since Mi is simple,
Mi ∩MJ = 0 and J ∪ {i} ∈ S, contradicting the maximality of J . Thus every Mi is
contained in MJ and M = MJ .

(2) =⇒ (3). For J ⊆ I, we write MJ = ⊕
j∈JMj. Let S be the set of J ⊆ I

such that N ∩MJ = 0. Every chain (Jk) of S has an upper bound ∪k Jk. By Zorn’s
lemma, there exists a maximal J ⊆ I. It remains to show that M = N ⊕MJ . Let
P = N ⊕MJ . For each i ∈ I, if Mi ∩ P = 0, then N + MJ∪{i} is a direct sum,
contradicting the maximality of J . Thus, since Mi is simple, Mi∩P = Mi. It follows
that P = M .

(3) =⇒ (1). Let N be the sum of all simple submodules of M . Then M =
N ⊕ N ′. Assume that N ′ 6= 0. Let C be a nonzero cyclic submodule of N ′. By
Remark 2.4.16 (or Lemma 2.5.9 below), there exists a maximal proper submodule
A ⊆ C with C/A simple. By Lemma 2.5.2 below, we have C = A ⊕ B. Then
B ' C/A is simple and thus B ⊆ N , contradicting the assumption N ∩ N ′ = 0.
Therefore, N ′ = 0 and M = N .

Lemma 2.5.2. Let M = A⊕ A′ and let A ⊆ C ⊆M . Then C = A⊕ (A′ ∩ C).

Proof. Clearly A ∩ (A′ ∩ C) = 0. Moreover, by Lemma 2.4.23, C = (A+A′) ∩ C =
A+ (A′ ∩ C).

Definition 2.5.3. A module satisfying the above conditions is said to be semisimple.

Corollary 2.5.4. Let M = ⊕
i∈IMi with Mi simple and let N ⊆M be a submodule.

Then there exists J ⊆ I such that M = N ⊕ MJ , where MJ = ⊕
j∈JMj. In

particular, both N 'MI\J and M/N 'MJ are semisimple.

Proof. The first assertion follows from the proof of Part (2) =⇒ (3) of the propo-
sition. The second assertion is clear.

Warning 2.5.5.
(1) In the corollary, N is not equal to a direct sum of Mi in general. For example,

if M = F⊕2 over a field F and Mi = Fei, where (e1, e2) is the standard basis,
then Fv is not equal to Mi for any v 6∈ Fe1 ∪ Fe2.
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(2) An infinite product of simple modules is not semisimple in general. For ex-
ample, the Z-module A = ∏

p Z/pZ, where p runs through prime numbers, is
not semisimple, as we have already seen in Warning 2.3.9. Another way to see
that A is not semisimple is by considering the obvious homomorphism Z→ A,
which is an injection. Since Z is not a semisimple Z-module, neither is A.

Remark 2.5.6. There are ways to associate semisimple modules to more general
modules:

(1) For a module M of finite length, the semisimplification of M , Mss, is the direct
sum of the Jordan–Hölder factors (with multiplicities) of M .

(2) For any module M , the socle of M , soc(M), is the sum of simple submodules
of M , namely the largest semisimple submodule of M . This provides a functor
soc from the category of modules to the category of semisimple modules.

Dually, we have the following notion.
Definition 2.5.7. The radical rad(M) of a module M is the intersection of its
maximal submodules. We adopt the convention that rad(M) = M if M has no
maximal submodule.

By a maximal submodule of M , we mean a maximal element in the set of proper
submodules of M , or equivalently a submodule N ⊆ M such that M/N is simple.
Every simple quotient of M factors through M/rad(M). Thus, M has a largest
semisimple quotient if and only if M/rad(M) is semisimple. In this case, the largest
semisimple quotient is M/rad(M) and is called the cosocle of M .
Example 2.5.8. Let R be a PID that is not a field.

(1) A simple R-module is isomorphic to R/pR, where p is an irreducible element.
(2) A finitely generated R-module is semisimple if and only if its elementary di-

visors are irreducible (or, equivalently, its invariant factors are nonzero and
square-free).

(3) For p ∈ R irreducible and a ≥ 1, (R/paR)ss = (R/pR)a, soc(R/paR) =
pa−1R/paR, rad(R/paR) = pR/paR, and the cosocle of R/paR is isomorphic
to R/pR.

(4) soc(R) = 0. Let P be a system of representatives of the associate classes of
irreducible elements of R. Then

rad(R) =

R
∏
p∈P p P finite,

0 otherwise.

The cosocle of R does not exist if P is infinite.
(5) Let F = Frac(R). soc(F ) = 0, rad(F ) = F , and the cosocle of F is 0.

As shown by the example of the Z-module Q, maximal submodules of a nonzero
module do not exist in general. However, we have the following result.
Lemma 2.5.9. Every nonzero finitely generated module M admits a maximal sub-
module.
Proof. Let S be set of proper submodules of M . Every chain (Ni) of S admits an
upper bound ∪

iNi. Indeed, if M = ∪
iNi, then M = ∑n

j=1 Rxj with xj ∈ Nij , so
that M = Nik where k = max{ij}j, contradicting the assumption that each Ni is
proper. By Zorn’s lemma, S admits a maximal element N .
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Schur’s lemma
Lemma 2.5.10 (Schur). Let M and N be simple left R-modules and f : M → N
a homomorphism. Then either f = 0 or f is an isomorphism. In other words,
EndR(M) is a division ring.

Proof. If f 6= 0, then ker(f) 6= M and im(f) 6= 0. Thus ker(f) = 0 and im(f) =
N .

Proposition 2.5.11. Let M1, . . . ,Mr be pairwise nonisomorphic simple left R-
modules and let M = ⊕r

i=1 M
⊕ni
i . Then EndR(M) ' ∏r

i=1 Mni
(Di), where Di =

EndR(Mi).

We will study rings of the form ∏r
i=1 Mni

(Di) in Section 3.2.

Proof. This follows immediately from Schur’s lemma.

Remark 2.5.12. Let M be a semisimple left R-module. Then M = ⊕
V MV , where

V runs through isomorphism classes of simple left R-modules, MV is the image of
the map HomR(V,M) ⊗DV

V → M given by f ⊗ v 7→ f(v), and DV = EndR(V ),
which is a division ring by Schur’s lemma. See Section 2.8 for the definition of the
tensor product. Here MV is called the V -isotypic component of M . The multiplicity
of V in M is rkDV

HomR(V,M).

2.6 Indecomposable modules
Definition 2.6.1. A left R-module is called indecomposable if it is nonzero and is
not the direct sum of two nonzero submodules.

Proposition 2.6.2. Let M be Noetherian or Artinian module. Then M is a finite
direct sum of indecomposable submodules.

Proof. Assume the contrary. Since M is decomposable, M = M1⊕M ′
1 with M1 6= 0

and M ′
1 6= 0. Either M1 or M ′

1 is not a direct sum of indecomposable modules.
We may assume that M ′

1 is not. Repeating the argument for M ′
1, we obtain M ′

i =
Mi+1⊕M ′

i+1 with Mi 6= 0. In particular, we obtain a descending chain (M ′
i) and an

ascending chain (M1⊕· · ·⊕Mi) that does not stabilize, contradicting the assumption
that M is Noetherian or Artinian.

Example 2.6.3. Let I be an infinite set. The Z-module ZI is not a direct sum of
indecomposable submodules. In fact, it is not a free Z-module by a result of Baer
and every indecomposable submodule is isomorphic to Z.

To prove the last statement, let M be an indecomposable submodule of ZI . Then
there exists i ∈ I such that the i-th projection induces a nonzero homomorphism
M → Z and thus induces an surjective homomorphism φ : M → nZ ' Z for some
n 6= 0. Any section of φ induces an isomorphism from Z onto a direct summand of
M (by Lemma 2.2.1). Thus M ' Z.
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Idempotents
Definition 2.6.4. An element e of a ring S is called an idempotent if e2 = e. We
denote the set of idempotents in R by Idem(S).

If e is an idempotent, then (1−e)2 = 1−2e+e2 = 1−e and e(1−e) = 0 = (1−e)e.
Let R be a ring.

Proposition 2.6.5. Let M be a left R-module. We have a bijection

Idem(EndR(M)) ∼−→ {(M1,M2) |M = M1 ⊕M2}
e 7→ (eM, (1− e)M).

Proof. Clearly M = eM + (1 − e)M . If ex = (1 − e)y ∈ eM ∩ (1 − e)M , then
x = e2x = e(1− e)y = 0. Thus M = eM

⊕(1− e)M . The inverse carries (M1,M2)
to the composition M

p1−→ M1
i1−→ M , where p1 is the projection and i1 is the

inclusion.

Note that (1− e)M = ker(e).
Remark 2.6.6. eEndR(M)e is a ring with identity e and we have an isomorphisms
of rings

eEndR(M)e ' EndR(eM)
given by restriction. (By our convention, eEndR(M)e is not a subring of EndR(M)
unless e = 1.) Moreover, eEndR(M)e and (1 − e)EndR(M)(1 − e) are orthogonal:
fg = gf = 0 for all f ∈ eEndR(M)e and g ∈ (1− e)EndR(M)(1− e).
Example 2.6.7. The decomposition in Lemma 2.2.1 is given by the idempotent
e = s(ps)−1p: im(s) = eM and ker(p) = ker(e).
Corollary 2.6.8. A left R-module M is indecomposable if and only if EndR(M)
contains exactly two idempotents: 0 and 1.

Proposition 2.6.5 generalizes easily to finite direct sums as follows. A sequence
of elements e1, . . . , en ∈ S is called a complete system of orthogonal idempotents if
eiej = δi,jei, where δi,j is Kronecker delta, and ∑n

i=1 ei = 1.
Proposition 2.6.9. Let M be a left R-module. We have a bijection

{Complete systems of n orthogonal
idempotents of EndR(M)} ∼−→ {(M1, . . . ,Mn) |M = M1 ⊕ · · · ⊕Mn}

(e1, . . . , en) 7→ (e1M, . . . , enM).

Proof. This follows from Proposition 2.6.5 and Remark 2.6.6 by induction on n. The
inverse carries (M1, . . . ,Mn) to the compositions M pi−→ Mi

ιi−→ M , where pi is the
projection and ιi is the inclusion.

An idempotent e ∈ S is said to be primitive if it is not the sum of two nonzero
orthogonal idempotents. That is, e = e1 + e2 with e1, e2 ∈ Idem(S) and e1e2 =
0 = e2e1 implies e1 = 0 or e2 = 0. By Corollary 2.6.8 and Remark 2.6.6, an
idempotent e ∈ EndR(M) is primitive if and only if eM is indecomposable. Thus a
decomposition of M as a finite direct sum of indecomposable submodules correspond
to a complete system of orthogonal primitive idempotents of EndR(M).
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Modules over a finite product of rings
Corollary 2.6.10. Let R = ∏

i∈I Ri be a finite product of rings. For each i ∈ I,
consider the bilateral ideal ai = ∏

j∈I\{i} Rj and the element ei = (δi,j)j∈I ∈ R, where

δi,j =

1 i = j

0 i 6= j.

Let M be a left R-module. Then we have a decomposition M = ⊕
i∈IMi with

Mi = eiM = M [ai].

For a right ideal a of a ringR and a leftR-moduleM , M [a] := {m ∈M | am = 0}
is a submodule of M , called the a-torsion submodule of M . We have M [a] = M [b],
where b is the bilateral ideal of R generated by a, and M [b] is an (R/b)-module. In
particular, Mi above is an Ri-module.

Proof. Indeed, the ei’s form a complete system of orthogonal idempotents and it
follows that eiM = M [ai]. The decomposition follows immediately from Proposition
2.6.9.

Strongly indecomposable modules
Definition 2.6.11. A ring S is called local if the set of nonunits is an ideal. A left
R-module is called strongly indecomposable if EndR(M) is a local ring.

A local ring S is nonzero and the ideal of nonunits I is both a maximal left ideal
and a maximal right ideal. The quotient S/I is a division ring. (Thus S has IBN
by Proposition 2.2.14 and Remark 2.2.12 (2).)

Remark 2.6.12. (1) A local ring contains exactly two idempotents: 0 and 1.
Indeed, an idempotent e 6= 1 is a nonunit, because e(1 − e) = 0. Thus if e is
an idempotent and e 6∈ {0, 1}, then 1 = e+ (1− e) is a sum of nonunits.

(2) A division ring is a local ring.
Thus for a module M ,

M simple =⇒M strongly indecomposable =⇒M indecomposable.

Here in the first implication we used Schur’s lemma.

Example 2.6.13. Let R be a PID that is not a field.
(1) A finitely generated indecomposable R-module is isomorphic to R or R/paR,

where p is an irreducible element and a ≥ 1 is an integer.
(2) R/paR is strongly indecomposable. R is strongly indecomposable if and only

if R is local, namely R has a unique maximal ideal.
(3) The R-module F = Frac(R) is strongly indecomposable but not finitely gen-

erated or Artinian. Moreover, the converse of Schur’s lemma does not hold:
EndR(F ) ' F is a field, but F is not a simple R-module.

Theorem 2.6.14. Let M be an indecomposable module of finite length. Then every
endomorphism of M is either nilpotent or an isomorphism. Moreover, M is strongly
indecomposable.
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The two assertions follow from the two lemmas below.

Lemma 2.6.15 (Fitting). Let M be a module of finite length and let f : M → M
be an endomorphism. Then there exists a decomposition M = ker(f∞) ⊕ im(f∞)
such that f |im(f∞) : im(f∞) ∼−→ im(f∞) is an isomorphism and f |ker(f∞) : ker(f∞)→
ker(f∞) is nilpotent.

Proof. By the chain conditions, there exists n such that im(fm) = im(fn) and
ker(fm) = ker(fn) for all m ≥ n. We write im(f∞) = im(fn) and ker(f∞) =
ker(fn).

Let x = fn(y). If fn(x) = 0, then y ∈ ker(f 2n) = ker(fn) and x = 0. Thus
im(f∞) ∩ ker(f∞) = 0.

For any x ∈M , fn(x) ∈ im(fn) = im(f 2n), so that there exists y ∈M such that
fn(x) = f 2n(y). Then x = (x− fn(y)) + fn(y) ∈ ker(f∞) + im(f∞).

We have f |im(fn) : im(fn)→ im(fn+1) = im(fn) is surjective. Moreover, ker(f) ⊆
ker(fn) has zero intersection with im(fn). It follows that f |im(fn) is an isomorphism.
Moreover, f(ker(fn)) ⊆ ker(fn) and fn|ker(fn) = 0.

Lemma 2.6.16. Let R be a nonzero ring such that every r ∈ R is either nilpotent
or invertible. Then R is a local ring.

Note that an element of a nonzero ring cannot be both nilpotent and invertible.

Proof. We need to show that the set N of nilpotent elements of R is an ideal. Let
x ∈ N and r ∈ R. There exists n ≥ 1 such that xn = 0 but xn−1 6= 0. Then
rx(xn−1) = 0 = (xn−1)xr. Thus neither rx nor xr is invertible. It follows that they
are nilpotent.

Let x, y ∈ N and s = x + y. If s 6∈ N , then s is invertible and x = s − y =
s(1− s−1y) is invertible. Indeed, (1− s−1y)−1 = ∑∞

i=0(s−1y)i, which is a finite sum,
because s−1y is nilpotent. Contradiction.

Remark 2.6.17. The set of nilpotent elements in any commutative ring R is ob-
viously an ideal, called the nilradical of R and denoted by nil(R). A commutative
ring is said to be reduced if nil(R) = 0.

Decompositions into indecomposable modules are not always unique. However,
we have the following result.

Theorem 2.6.18 (Krull–Schmidt–Azumaya). Let ⊕m
i=1 Mi '

⊕n
j=1 Nj be an iso-

morphism with Mi strongly indecomposable and Nj indecomposable. Then m = n
and up to reordering Mi ' Ni.

Proof. We may assume ⊕m
i=1 Mi = ⊕n

j=1 Nj. Let M be the direct sum. We proceed
by induction on m. The case m = 0 is clear. Assume m ≥ 1. Consider the
morphisms

fj : M1 ↪→M
qj−→ Nj gj : Nj ↪→M

p1−→M1,

where qj and p1 are the projections. Then ∑m
j=1 gjfj = idM1 . Since EndR(M1) is

local, at least one gjfj is an isomorphism. Then fj is an injective homomorphism
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and, by Lemma 2.2.1, its image is a direct summand of Nj. Since Nj is indecom-
posable, fj : M1

∼−→ Nj is an isomorphism. Up to reordering, we may assume j = 1.
By Lemma 2.2.1, M = M1 ⊕ ker(q1). Thus ⊕m

i=2 Mi ' M/M1 ' ker(q1) = ⊕n
j=2 Nj

and we conclude by induction hypothesis.

Corollary 2.6.19. Let M be a module of finite length. Then M admits a decom-
position M '⊕m

i=1 Mi with Mi indecomposable. Moreover, the Mi are unique up to
permutation and isomorphism.

Proof. We have shown the existence in Proposition 2.6.2. The uniqueness follows
from Theorems 2.6.14 and 2.6.18.

2.7 Modules over a full matrix ring
Let R be a ring and n ≥ 1. Let S = Mn(R). We view Rn as a collection of column
vectors. It is equipped with a left S-module structure given by matrix multiplication.
We have an isomorphism SS ' ⊕n

i=1 R
n of left S-modules carrying a matrix A to

its columns. More generally, for any left R-module M , Mn, viewed as a collection
of column vectors, is a left S-module by matrix multiplication.

Remark 2.7.1. Viewing Rn as a right R-module by right scalar multiplication, we
have an isomorphism of rings S = Mn(R) ' EndRop(Rn) given by A 7→ (x 7→ Ax).

Proposition 2.7.2. Let R be a ring and n ≥ 1. We have an equivalence of categories

R-Mod→Mn(R)-Mod
M 7→Mn.

Proof. A quasi-inverse given by N 7→ p1N , where p1 ∈ Mn(R) is the matrix with
(1, 1)-entry 1 and all other entries 0. We have natural isomorphisms

M
∼−→ p1(Mn) φ : N ∼−→ (p1N)n

m 7→


m
0
...
0

 , a 7→ (p1t1ia),

where t1i is the permutation matrix given by transposition of 1 and i. The in-
verse of φ is (xi) 7→

∑n
i=1 t1ixi. Indeed, ∑n

i=1 t1ip1t1i is the identity matrix and
p1t1j

∑n
i=1 t1ip1yi = yj.

Corollary 2.7.3. Let M be a left R-module. Then we have a bijection

{left R-submodules of M} ∼−→ {left S-submodules of Mn}
M ′ 7→M ′n.

It is easy to give a direct proof of Corollary 2.7.3.
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Corollary 2.7.4. Let n ≥ 1. Then a ring R is left Noetherian (resp. Artinian) if
and only if S = Mn(R) is left Noetherian (resp. Artinian).

Proof. Since left S-submodules of Rn are of the form In, where I is a left ideal of S,
R is left Noetherian if and only if the left S-module Rn is Noetherian. We conclude
by the isomorphism SS ' ⊕n

i=1 R
n.

Example 2.7.5. Let D be a division ring. By Proposition 2.7.2, Dn is the unique
simple left Mn(D)-module up to isomorphism. For the uniqueness, we can also
argue as follows. Let S = Mn(D). We have SS ' ⊕n

i=1 D
n, so that Dn is the only

Jordan–Hölder factor of SS . Every simple left S-module is a quotient of SS , and
hence is isomorphic to Dn.

2.8 Tensor products of modules
Let R be a ring.

Definition 2.8.1. Let M be a right R-module and N a left R-module. Let (A,+)
be an abelian group. A map φ : M×N → A is called a balanced product if it satisfies

(1) φ(x+ x′, y) = φ(x, y) + φ(x′, y);
(2) φ(x, y + y′) = φ(x, y) + φ(x, y′);
(3) φ(xr, y) = φ(x, ry)

for all x, x′ ∈M , y, y′ ∈ N , r ∈ R.

Warning 2.8.2. M × N is an abelian group, but φ is not a homomorphism of
abelian groups unless 2φ = 0. In fact, φ(2x, 2y) = 4φ(x, y).

Remark 2.8.3. A balanced product can be viewed as an element of

HomR(N,HomZ(M,A)) ' HomRop(M,HomZ(N,A)).

Proposition 2.8.4. There exist an abelian group M ⊗R N and a balanced product
⊗ : M ×N →M ⊗RN satisfying the following universal property: for every abelian
group A and every balanced product φ : M × N → A, there exists a unique group
homomorphism φ̃ : M ⊗R N → A such that φ = φ̃ ◦ ⊗. Moreover, (M ⊗R N,⊗)
is unique up to unique isomorphism: if (M ⊗′

R N,⊗′) also satisfies the universal
property, then there exists a unique isomorphism f : M ⊗RN ∼−→M ⊗′

RN such that
⊗′ = f ◦ ⊗.

We call M ⊗RN the tensor product of M and N over R. The universal property
provides natural isomorphisms

HomZ(M ⊗R N,A) ' HomRop(M,HomZ(N,A)) ' HomR(N,HomZ(M,A)).

Proof. The uniqueness is clear by the universal property. For the existence, we
define M ⊗R N = F/L, where F is the free abelian group with basis M ×N and L
is the subgroup generated by the elements

(x+ x′, y)− (x, y)− (x′, y), (x, y + y′)− (x, y)− (x, y′), (xr, y)− (x, ry).
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We let x ⊗ y denote the image of (x, y) in M ⊗R N . The map ⊗ : M × N →
M⊗RN sending (x, y) to x⊗y is clearly a balanced product. For a balanced product
φ : M×N → A, the induced homomorphism F → A carrying (x, y) 7→ φ(x, y) factors
through F/I to give φ̃. The uniqueness of φ̃ is clear as x⊗ y generate M ⊗RN .

Remark 2.8.5. It follows from the construction that every element of M ⊗RN can
be written noncanonically as a finite sum ∑

i xi ⊗ yi with xi ∈M and yi ∈ N .

The universal property implies the functoriality of tensor product: given homo-
morphisms f : MR →M ′

R and g : NR → N ′
R , there exists a unique homomorphism

of abelian groups f⊗Rg : M⊗RN →M ′⊗RN ′ such that (f⊗Rg)(x⊗y) = f(x)⊗g(y).
Let R and S be rings.

Definition 2.8.6. An (R,S)-bimodule is an abelian group (M,+) equipped with a
left R-module structure and a right S-module structure satisfying r(ms) = (rm)s
for all r ∈ R, s ∈ S, m ∈M .

We sometimes write MR S for an (R,S)-bimodule M . A homomorphism of bi-
modules is a homomorphism of left and right modules at the same time.

Example 2.8.7. (1) Let R be a commutative ring. An R-module M can be
regarded as an (R,R)-bimodule by rxs := rsx.

(2) Given left R-modules M and N , composition equips HomR(M,N) withe the
structure of a (EndR(N),EndR(M))-bimodule.

(3) Given a left R-module M , we equip it with the induced right Rop-module
structure and the obvious left EndR(M)-module structure. Then M becomes
an (A,Rop)-bimodule. This can be seen as a special case of (2) via the iso-
morphism HomR(R,M) 'M carrying f to f(1).

Proposition 2.8.8. Let R, S, and T be rings. Let M be an (R,S)-bimodule and N
an (S, T )-bimodule. Then there exists a unique (R, T )-bimodule structure on M⊗SN
such that r(x⊗ y) = (rx)⊗ y and (x⊗ y)t = x⊗ (yt) for all x ∈M , y ∈ N , r ∈ R,
and t ∈ T .

Proof. Indeed, x 7→ rx is a homomorphism of right S-modules and y 7→ yt is a
homomorphism of left S-module. By the functoriality of tensor product, we obtain
a group homomorphism M ⊗S N →M ⊗S N carrying x⊗ y to rx⊗ yt.

Remark 2.8.9. Let R be a commutative ring and let M and N be R-modules,
regarded as (R,R)-bimodules. Then the (R,R)-bimodule structure on M ⊗R N
comes from an R-module structure. In fact, r(x ⊗ y)s = rx ⊗ ys = rx ⊗ sy =
srx⊗ y = rs(x⊗ y).

Remark 2.8.10. Let R, S, T be rings and let MR S , NS T , PR T be bimodules. We
have isomorphisms of abelian groups

Hom(R,T )-Mod(M ⊗S N,P ) ' Hom(R,S)-Mod(M,HomMod-T (N,P )),
' Hom(S,T )-Mod(N,HomR-Mod(M,P )),

The following properties follow easily from the universal property.
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Proposition 2.8.11. Let Q, R, S, T be rings and let LQ R, MR S , NS T be bimodules.
(1) We have R⊗RM 'M 'M ⊗S S as (R,S)-bimodules.
(2) We have (L⊗RM)⊗S N ' L⊗R (M ⊗S N) as (Q, T )-bimodules.
(3) We have M ⊗S N ' N ⊗Sop M as (R, T )-bimodules.

In (3) we have regarded (T op, Rop)-bimodules as (R, T )-bimodules.

Proposition 2.8.12. Tensor products preserve direct sums and cokernels as follows.
(1) We have (⊕i∈IMi)⊗SN '

⊕
i∈IMi⊗SN and M⊗S(⊕i∈I Ni) '

⊕
i∈IM⊗SNi.

(2) Exact sequences M ′ → M → M ′′ → 0 and N ′ → N → N ′′ → 0 induce exact
sequences

M ′ ⊗S N →M ⊗S N →M ′′ ⊗S N → 0,(2.8.1)
M ⊗S N ′ →M ⊗S N →M ⊗S N ′′ → 0.(2.8.2)

This follows from the universal properties of tensor product, direct sum, and
cokernel. Let us spell out the universal property of cokernel.

Lemma 2.8.13. Let N ′ f−→ N
g−→ N ′′ → 0 be a sequence of left S-modules satisfying

gf = 0. Then the sequence is exact if and only if for every left S-module P , the
induced sequence

0→ HomS(N ′′, P )→ HomS(N,P )→ HomS(N ′, P )

is exact.

To show that (2.8.2) is exact, it suffices to show that for every abelian group A,

0→ Hom(M ⊗S N ′′, A)→ Hom(M ⊗S N,A)→ Hom(M ⊗S N ′, A)

is exact. This can be identified with the exact sequence

0→ HomS(N ′′, P )→ HomS(N,P )→ HomS(N ′, P ),

where P = Hom(M,A).

Remark 2.8.14. The above properties allow us to compute the left R-module M⊗S
N as follows. Choosing generators and generating relations of the left R-module N ,
we get N = coker( SS

⊕J f−→ SS
⊕I). Then M ⊗S N ' coker(M⊕J fM−−→ M⊕I), where

fM is induced from M . In particular, for a left ideal a ⊆ R, M ⊗R R/a ' M/aM ,
where aM ⊆ denote the left R-submodule generated by am for a ∈ a and m ∈M .

Warning 2.8.15. (1) Tensor product does not preserve infinite products in gen-
eral. For example, Q⊗ZZ/pZ = 0, but Q⊗Z

∏
p Z/pZ is not zero. In fact, one

can show that Q ' Q⊗Z Z ↪→ Q⊗Z
∏
p Z/pZ (because Q is a flat Z-module,

see below).
(2) Tensor product does not preserve kernels. For example, Z ×p−→ Z is injective,

but after tensoring with Z/pZ we get Z/pZ 0−→ Z/pZ, which is not injective.

Definition 2.8.16. We say that a left S-module N is flat if − ⊗S N preserves
kernels.
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Chapter 3

Rings and algebras

3.1 Algebras and tensor products
Let R be a commutative ring.

Definition 3.1.1. An R-algebra is a ring A equipped with a ring homomorphism
R→ Z(A), where Z(A) denotes the center of A.

Some authors, notably Bourbaki [B2, III], use the term algebra for a more general
notion without an identity element.

An R-algebra A is equipped with the structure of an R-module. Multiplication
in an R-algebra A provides a homomorphism of R-modules m : A⊗RA→ A carrying
a⊗ b to ab.

A homomorphism of R-algebras is a ring homomorphism A→ B that is R-linear.

Tensor product of R-algebras
Let A and B be R-algebras. Then A ⊗R B is equipped with the structure of an
R-algebra satisfying (a⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′.

Proposition 3.1.2. Let ιA : A → A ⊗R B and ιB : B → A ⊗R B carrying a to
a ⊗ 1 and b to 1 ⊗ b respectively. Then ιA(A) and ιB(B) commute and the triple
(A⊗B, ιA, ιB) satisfies the following universal property: For every triple (C, fA, fB),
where C is an R-algebra and fA : A→ C and fB : B → C are homomorphism of R-
algebras such that fA(A) and fB(B) commute, there exists a unique homomorphism
of R-algebras φ : A⊗R B → C such that φιA = fA and φιB = fB.

Proof. The first assertion is clear. For the second assertion, φ is induced by the
balanced product (a, b) 7→ fA(a)fB(b).

Remark 3.1.3. The homomorphism of R-modules m : A⊗RA→ A is a homomor-
phism of R-algebras if and only if A is commutative (that is, multiplication in R is
commutative). Indeed, m((a⊗ b)(a′ ⊗ b′)) = aa′bb′ and m(a⊗ b)m(a′ ⊗ b′) = aba′b′.

Remark 3.1.4. The universal property provides a bijection

HomAlgR
(A⊗R B,C) ∼−→ HomAlgR

(A,C)× HomAlgR
(B,C)

113
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for every commutative R-algebra C. If A and B are commutative R-algebras, then
so is A ⊗R B. In this case, A ⊗R B is the coproduct of A and B in the category
CAlgR.

Remark 3.1.5. If B is a commutative R-algebra, then A⊗R B is a B-algebra via
ιB.

Remark 3.1.6. Let S and T be rings. An (S, T )-bimodule is the same as an
(S ⊗Z T )-module.

Let (Ai)i∈I be a family of R-algebras. We define AI = ⊗
i∈I Ai by lim−→J

⊗
j∈J Aj,

where j runs though finite subsets of I. An element of AI is a equivalent class of
(J, aJ), where aJ ∈ AJ = ⊗

j∈J Aj. Two pairs (J, aJ) and (J ′, aJ ′) are equivalent if
and only if there exists K ⊇ J∪J ′ such that ιJK(aJ) = ιJ ′K(aJ ′). Here ιJ : AJ → AK
and ιJ ′ : AJ ′ → AK are induced by the identity elements. Let ιJI : AJ → AI be the
induced homomorphism. We write ιJI(

⊗
j∈J aj) = ⊗

i∈I ai, where ai = 1 for i 6∈ J .

Remark 3.1.7. If Ai is free as an R-module with basis Si 3 1, then ⊗
i∈I ei, with

ei ∈ Si for all i ∈ I and ei = 1 for all but finitely many i ∈ I, form a basis of the
R-module AI . In particular, if each Ai is nonzero and free as an R-module, then so
is AI . We have used this in Lemma 1.5.5.

Linear disjointness
Let E/F and K/F be subextensions of a field extension L/F .

Definition 3.1.8. We say that E and K are linearly disjoint over F if the map
m : E ⊗F K → EK is an injection.

Remark 3.1.9. The image of m is the subring generated by E and K. Thus EK
is the fraction field of the commutative domain im(m). If E/F or K/F is algebraic,
then the image of m is EK by Remark 1.4.6. In this case, E and K are linearly
disjoint over F if and only if E ⊗F K is a field. Note that the last condition is
independent of the choice of L.

Remark 3.1.10. If E and K are linearly disjoint over F , then EK is the fraction
field of E⊗FK, and thus is independent of L (or the embeddings E ⊆ L and K ⊆ L)
up to isomorphisms.

Proposition 3.1.11. The following conditions are equivalent:
(1) E and K are linearly disjoint over F .
(2) Every subset S of E that is F -linearly independent is K-linearly independent.
(3) Every subset T of K that is F -linearly independent is E-linearly independent.

Proof. By symmetry it suffices to show (1) ⇐⇒ (2). Let V = ⊕
s∈S Es. Consider

the map K⊕S ' V ⊗FK i−→ E⊗FK m−→ EK carrying (as)s∈S to ∑s∈S ass. Since V is
a direct summand of E, i is a injection. Thus if m is an injection, then the composite
is an injection. Conversely, taking S to be a basis of E, then the injectivity of the
composite implies the injectivity of m.
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Example 3.1.12. If E/F is algebraic and K/F is purely transcendental, then they
are linearly disjoint by Proposition 1.24.20.

Example 3.1.13. If E/F is separable and K/F is purely inseparable, then they
are linearly disjoint. Indeed, we may assume that E/F and K/F are finite. Then
[EK : F ]sep ≥ [E : F ]sep = [E : F ] and [EK : F ]insep ≥ [K : F ]insep = [K : F ]. The
map m : E ⊗F K → EK is surjective with dimF (E ⊗F K) ≤ dimF (EK). It follows
that m is an isomorphism.

Example 3.1.14. If K/F is Galois, then E and K are linearly disjoint over E ∩K.
In fact, we may assume that E ∩ K = F and K/F is finite Galois. In this case,
[EK : E] = [K : F ] by Proposition 1.8.12.

Tensor algebra
Let M be an R-module. For n ≥ 0, we write T n(M) = M⊗Rn = M ⊗R · · · ⊗R M
(where M is repeated n times). By convention T 0(M) = R. We have canonical
isomorphisms mi,j : T i(M) ⊗R T j(M) ∼−→ T i+j(M) carrying (x1 ⊗ · · · ⊗ xi) ⊗ (y1 ⊗
· · · ⊗ yj) to x1 ⊗ · · · ⊗ xi ⊗ y1 ⊗ · · · ⊗ yj.

Definition 3.1.15. We call T (M) = ⊕∞
n=0 T

n(M) the tensor algebra of the R-
module M . The multiplication is induced by mi,j and the identity element is 1 ∈
R = T 0(M).

Let i : M = T 1(M) ↪→ T (M) be the inclusion.

Proposition 3.1.16 (Universal property for the tensor algebra). For every R-
algebra A equipped with a homomorphism of R-modules f : M → A, there exists
a unique homomorphism of R-algebras T (M)→ A such that f = φi.

We have a natural isomorphism HomAlgR
(TM,A) ' HomR-Mod(M,UA), where

U : AlgR → R-Mod denotes the forgetful functor. In other words, T is a left adjoint
to the forgetful functor U .

Proof. Indeed, φ|Tn(M) is given by theR-multilinear mapMn → A carrying (x1, . . . , xn)
to f(x1) · · · f(xn).

Definition 3.1.17. Let ISym(M) denote the ideal of T (M) generated by x⊗y−y⊗x,
x, y ∈ M and let I∧(M) denote the ideal of T (M) generated by x⊗ x, x ∈ M . We
call Sym(M) = T (M)/ISym(M) the symmetric algebra of the R-module M and
∧(M) = T (M)/I∧(M) the exterior algebra of the R-module M .

Since both ideals are generated by homogeneous elements, we have

ISym(M) =
∞⊕
n=0

InSym(M), I∧(M) =
∞⊕
n=0

In∧(M),

where InSym(M) = ISym(M) ∩ T n(M) and In∧(M) = I∧(M) ∩ T n(M). It follows that

Sym(M) =
∞⊕
n=0

Symn(M),
∧

(M) =
∞⊕
n=0

n∧
(M),
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where Symn(M) (resp. ∧n(M)) is the image of T n(M) in Sym(M) (resp. ∧(M)).
We denote the product in Sym(M) by (x, y) 7→ xy and the product in ∧(M) by

(x, y) 7→ x∧y. It is easy to see that Sym(M) is a commutative algebra. For x, y ∈M ,
(x+ y)⊗ (x+ y)− x⊗ x− y⊗ y = x⊗ y+ y⊗ x ∈ I∧(M), so that x∧ y = y ∧ x. It
follows that ∧(M) satisfies the Koszul sign convention: For x ∈ ∧i(M), y ∈ ∧j(M),
we have x ∧ y = (−1)ijy ∧ x.

We have Symn(M) = T n(M) and ∧n(M) = T n(M) for n ≤ 1. The universal
property for the tensor algebra implies the following.

Proposition 3.1.18 (Universal properties). (1) For every commutative R-algebra
A and every homomorphism of R-modules f : M → A, there exists a unique
homomorphism of R-algebras φ : Sym(M) → A such that f = φi, where
i : M = Sym1(M) ↪→ Sym(M) is the inclusion.

(2) For every R-algebra A and every homomorphism of R-modules f : M → A
such that f(x)2 = 0 for every x ∈M , there exists a unique homomorphism of
R-algebras φ : ∧(M) → A such that f = φi, where i : M = ∧1(M) ↪→ ∧(M)
is the inclusion.

By (1), we have a natural isomorphism HomCAlgR
(Sym(M), A) ' HomR-Mod(M,UA),

where U : CAlgR → R-Mod denotes the forgetful functor.
The universal properties for the tensor product of modules T n(M) induces the

following universal properties for the R-modules Symn(M) and ∧n(M). We say that
anR-multilinear map φ : Mn → N is symmetric (resp. alternating) if φ(. . . , x, y, . . . ) =
φ(. . . , y, x, . . . ) (resp. φ(. . . , x, x, . . . ) = 0) for x, y ∈M .

Proposition 3.1.19. (1) Let N be an R-module and φ : Mn → N a symmetric
R-multilinear map. Then there exists a unique homomorphism of R-modules
φ̃ : Symn(M) → N such that φ = φ̃p, where p : Mn → Symn(M) is the map
carrying (x1, . . . , xn) to x1 · · ·xn.

(2) Let N be an R-module and φ : Mn → N an alternating R-multilinear map.
Then there exists a unique homomorphism of R-modules φ̃ : ∧n(M) → N
such that φ = φ̃p, where p : Mn → ∧n(M) is the map carrying (x1, . . . , xn) to
x1 ∧ · · · ∧ xn.

Example 3.1.20. Let M be a free R-module of basis S. Then T (M) = R〈S〉 is
the free R-algebra generated by S and Sym(M) = R[S] is the polynomial R-algebra
on S. For any total order on S, ∧n(M) is a free R-module with basis x1 ∧ · · · ∧ xn,
where x1 < · · · < xn in S.

The symmetric group Σn acts on T n(M) by σ(x1 ⊗ · · · ⊗ xn) = xσ−1(1) ⊗ · · · ⊗
xσ−1(n). For every group homomorphism χ : Σn → {±1}, we define T nχ (M) = {x ∈
T n(M) | σ(x) = χ(σ)x, ∀σ ∈ Σn} and let Tχ(M) = ⊕∞

n=0 T
n
χ (M). We call ele-

ments of TSym(M) := T1(M) symmetric tensors and elements of T∧(M) := Tsgn(M)
skewsymmetric tensors.

Consider the compositions

φ1 : T nSym(M) ↪→ T n(M) q1−→ Symn(M), φsgn : T n∧ (M) ↪→ T n(M) qsgn−−→
n∧

(M).
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Let pχ = ∑
σ∈Σn

χ(σ)σ : T n(M) → T n(M). Then τpχ = pχτ = χ(τ)pχ. Thus
im(pχ) ⊆ T nχ (M).

We have InSym(M) ⊆ ∑
σ∈Σn

im(σ − 1) ⊆ ker(p1), so that p1 factorizes through
a unique homomorphism ψ1 : Symn(M) → T nSym(M). We have ψ1φ1 = n! · id and
φ1ψ1 = n! · id.

If 2 is invertible in R, then In∧(M) ⊆ ∑σ∈Σn
im(σ − sgn(σ)) ⊆ ker(psgn), so that

psgn factorizes through a unique homomorphism ψsgn : ∧n(M) → T n∧ (M). We have
ψsgnφsgn = n! · id and φsgnψsgn = n! · id.

Proposition 3.1.21. Assume that n! is invertible in R. Then φχ is an isomorphism
and we have T n(M) = T nSym(M)⊕InSym(M) = T n∧ (M)⊕In∧(M). In particular, we have
canonical isomorphisms of R-modules T nSym(M) ∼−→ Symn(M) and T n∧ (M) ∼−→ ∧nM .

Proof. We may assume n ≥ 2. Then 2 is invertible in R. It is clear that φχ is an iso-
morphism. Since φχψχ = qχ(iχψχ) is an isomorphism, where iχ : T nχ (M) ↪→ T n(M)
is the inclusion, we have T n(M) = ker(qχ) ⊕ im(ψχ). Since ψχ is an isomorphism,
im(ψχ) = T nχ (M).

Remark 3.1.22. If 2 is invertible in R, then we have an isomorphism T 2(M) ∼−→
Sym2(M)⊕ ∧2(M) carrying x⊗ y to (xy, x ∧ y).

Remark 3.1.23. The R-submodule TSym(M) ⊆ T (M) is not closed under multipli-
cation in general. However, we can equip TSym(M) with the structure of a commu-
tative R-algebra by xy = ∑

σ∈Σi+j/Σi×Σj
σ(x⊗y) for x ∈ T iSym(M) and y ∈ T jSym(M).

The map ψ : Sym(M)→ TSym(M) is a homomorphism of R-algebras.

3.2 Semisimple rings
Theorem 3.2.1 (Wedderburn–Artin). Let R be a ring. The following conditions
are equivalent:

(1) RR is a semisimple module.
(2) RR is a semisimple module.
(3) R 'Mn1(D1)× · · · ×Mnr(Dr), where the Di are division rings.

Definition 3.2.2. A ring satisfying the above conditions is said to be semisimple.

Proof. Since transposition provides an isomorphism Mn(D)op 'Mn(Dop), it suffices
to show (2) ⇐⇒ (3).

(3) =⇒ (2). We have RR ' (Dn1
1 )⊕n1 ⊕ · · · ⊕ (Dnr

r )⊕nr , where each Dni
i is a

simple right R-module.
(2) =⇒ (3). We have RR = ⊕

i∈I ai, where each ai is a minimal right ideal
of R. There exists a finite subset J ⊆ I such that 1 = ∑

j∈J xj for xj ∈ Ij. It
follows that I = J is finite. We have RR '

⊕r
i=1 M

⊕ni
i , where each Mi are pairwise

nonisomorphic simple right R-module. By Schur’s lemma Di = End((Mi)R) is a
division algebra. We have an isomorphism End(RR) ∼−→ R carrying f to f(1),
with inverse carrying a to x 7→ ax. Thus R ' End(RR) ' ⊕r

i=1 End((M⊕ni
i )R) '⊕r

i=1 Mni
(Di).
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Remark 3.2.3. By the Jordan–Hölder theorem, the pairs (ni, Di) are uniquely
determined by the isomorphism class of R up to permutation and isomorphism.

Corollary 3.2.4. A semisimple ring is Noetherian and Artinian.

Proposition 3.2.5. Let R be a semisimple ring. Then every left (or right) R-module
M is semisimple.

Proof. Indeed, M is a quotient of a free module R⊕I , which is semisimple.

3.3 Simple rings
Definition 3.3.1. A ring R is said to be simple if it has exactly two ideals: 0 and
R.

For any ring R and any maximal ideal I, R/I is a simple ring.
A commutative ring is simple if and only if it is a field.

Lemma 3.3.2. Let R be a ring. The ideals of Mn(R) are of the form Mn(I), where
I is an ideal of R.

Proof. Let J ⊆Mn(R) be an ideal. Let f : R→Mn(R) be the embedding carrying r
to the matrix with entry r at the upperleft corner and 0 elsewhere. Let I = f−1(J).
Then it is easy to see that J = Mn(I).

Warning 3.3.3. (1) R = Mn(D), where D is a division ring, is a simple ring.
For n ≥ 2, neither RR nor RR is simple.

(2) A simple ring is not semisimple in general. Let F be a field, V = F⊕N, and
let R = EndF (V ). Then the subset I ⊆ R consisting of linear operators of
finite rank is a maximal ideal (that is, a maximal element of the set of proper
ideals), so that S = R/I is a simple ring. Since R does not satisfy IBN, nor
does S. It follows that SS does not have finite length, by the Jordan-Hölder
theorem. Thus S is not a semisimple ring.

We make a brief digression on the double centralizer property.

Definition 3.3.4. Let E be a ring. The centralizer of a subring A ⊆ E is

ZE(A) := {z ∈ E | az = za ∀a ∈ A}.

We have ZE(A) ⊆ E is a subring and ZE(ZE(A)) ⊇ A. If equality holds, we say
that A ⊆ E satisfies the double centralizer property.

Let M be a left R-module. We apply the above to E = EndZ(M) and the image
A of R in E. We say M is balanced if A ⊆ E satisfies the double centralizer property.
Note that ZE(A) = EndR(M) and ZE(ZE(A)) = EndR′(M), where R′ = EndR(M).
Thus M is balanced if and only if the canonical homomorphism R → EndR′(M) is
surjective. We say M is faithful if R→ EndZ(M) is injective.

Theorem 3.3.5 (Rieffel). Let R be a simple ring and I a nonzero left ideal of
R. Let R′ = EndR(I) and let R′′ = EndR′(I). Then the canonical homomorphism
λ : R→ R′′ is an isomorphism.
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In other words, I is balanced and faithful.

Proof. Since ker(λ) is a proper ideal of R, we have ker(λ) = 0. Since IR is a
nonzero ideal of R, we have IR = R and λ(I)λ(R) = λ(R). For h ∈ R′′ and a ∈ I,
h · λ(a) = λ(h(a)). Indeed, for x ∈ I,

h(λ(a)(x)) = h(ax) = h(ρxa) = ρxh(a) = h(a)x = λ(h(a))(x),

where ρx ∈ R′ is the right multiplication by x. Thus λ(I) is a left ideal of R′′, and

R′′ = R′′λ(R) = R′′λ(I)λ(R) = λ(I)λ(R) = λ(R).

Corollary 3.3.6. Let R be a simple ring. Then the following conditions are equiv-
alent:

(1) R is semisimple;
(2) R is left Artinian;
(3) R has a minimal left ideal;
(4) R 'Mn(D) for some n ≥ 1 and some division ring D.

By a minimal left ideal, we mean a minimal element of the set of nonzero ideals.

Proof. (4) =⇒ (1) =⇒ (2). We have seen these in the last section.
(2) =⇒ (3). Clear.
(3) =⇒ (4). Let I ⊆ R be a minimal left ideal. Then D = EndR(I) is a division

ring. By the theorem, R ' EndD(I). Let J ⊆ EndD(I) be the ideal of D-linear
maps I → I of finite rank. Then J is a nonzero ideal, so that J = EndD(I). It
follows that rkD(I) = n <∞. Then R ' EndD(D⊕n) 'Mn(Dop).

3.4 Jacobson radicals
Let R be a ring.

Definition 3.4.1. The intersection of the maximal left ideals of R is called the
Jacobson radical of R and denoted by rad(R).

In the terminology of Definition 2.5.7, rad(R) is the radical of the regular left
R-module.

Proposition 3.4.2. For y ∈ R. Then following conditions are equivalent:
(1) y ∈ rad(R);
(2) yM = 0 for every simple left R-module M ;
(3) 1− xy has a left inverse for every x ∈ R;
(4) 1− xyz has an inverse for every x, z ∈ R.

Proof. (2) =⇒ (1). Let I ⊆ R be a maximal left ideal. Then R/I is a simple left
R-module. By (2), y(R/I) = 0. Thus y ∈ rad(R).
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(3) =⇒ (2). If ym 6= 0 for m ∈M , then M = Rym by the simplicity of M . In
particular, there exists x ∈ R such that m = xym. In other words, (1− xy)m = 0,
which implies m = 0.

(4) =⇒ (3). Take z = 1.
(1) =⇒ (3). Otherwise, by Zorn’s lemma, 1−xy is contained in a maximal left

ideal I of R and y ∈ I, which implies 1 ∈ I. Contradiction.
(1) =⇒ (4). We have already seen (1) =⇒ (2). For every simple left R-module

M , yzM ⊆ yM = 0. Thus yz ∈ rad(R). By (1) =⇒ (3), 1 − xyz admits a left
inverse, say u. Then u(1− xyz) = 1, so that u = 1 + uxyz has a left inverse by (1)
=⇒ (3). It follows that u and 1− xyz are invertible.

For a subset S of a left R-module M , we define the annihilator of S to be the
left ideal annR(S) = {r ∈ R | rs = 0 ∀s ∈ S}, which is a bilateral ideal if S ⊆M is
a left R-submodule. The equivalence (1) ⇐⇒ (2) above (which is trivial) implies
the following.

Corollary 3.4.3. We have rad(R) = ∩
M annR(M), where M runs through simple

left R-modules. In particular, rad(R) is an ideal of R.

Note that (4) remains the same if we replace R by Rop. Thus the equivalence
(1) ⇐⇒ (4) above implies the following.

Corollary 3.4.4. rad(R) is also the intersection of the maximal right ideals of R.

Example 3.4.5. (1) Let R be a PID. Let P be a system of representatives of the
associate classes of irreducible elements of R. Then

rad(R) =

R
∏
p∈P p P finite

0 otherwise.

(2) Let R be a PID and r = ∏n
i=1 p

ai
i , where p1, . . . , pn are pairwise nonassociate

irreducible elements of R and ai ≥ 1. Then rad(R/rR) = (∏n
i=1 pi)R/rR.

(3) Let R be a local ring. Then rad(R) is the maximal ideal of R. In this case,
R/rad(R) is a division ring.

(4) Let F be a field, V = F⊕N, R = EndF (V ). Then rad(R) = 0. Indeed, for
every one-dimensional subspace L of V , the endomorphisms of V vanishing
on L form a maximal left ideal of R. However, R has a unique maximal ideal,
which is nonzero. In particular, rad(R) is not the intersection of the maximal
ideals of R.

Lemma 3.4.6 (Nakayama). Let M be a finitely-generated left R-module such that
rad(R)M = M . Then M = 0.

Proof. Assume that M is nonzero. By the lemma below, there exists a submod-
ule N ⊆ M such that M/N is simple. Then rad(R)(M/N) = 0. It follows that
rad(R)M ⊆ N . Contradiction.

Lemma 3.4.7. Let M be a nonzero finitely-generated left R-module. Then M has
a simple quotient.
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Proof. Let M = ∑n
i=1 Rmi and Mk = ∑k

i=1 Rmi. There exists k ≥ 1 such that
M = Mk ⊋ Mk−1. Then M = Mk−1 + Rmk and M/Mk−1 ' R/I is cyclic, where
I is a proper left ideal. Let J be a maximal ideal containing I. Then the simple
module R/J is a quotient of M .

Definition 3.4.8. Let I ⊆ R be a left ideal. We say that I is nil if every x ∈ I is
nilpotent. We say that I is nilpotent if there exists n ≥ 1 such that In = 0.

Nilpotent ideals are nil.

Lemma 3.4.9. Let I ⊆ R be a nil left ideal. Then I ⊆ rad(R).

In particular, if R is commutative, then nil(R) ⊆ rad(R).

Proof. Let y ∈ I and x ∈ R. Then (1− xy)−1 = ∑∞
i=0(xy)i.

Proposition 3.4.10. Let R be a left Artinian ring. Then rad(R) is nilpotent.
Moreover, it is the largest nil left ideal and the largest nil right ideal.

Proof. The second assertion follows from the lemma. Let I = rad(R). We have a
descending chain I ⊇ I2 ⊇ . . . . There exists n ≥ 0 such that Im = In for all m ≥ n.
Assume In 6= 0. Then there exists a minimal element J0 in the set of left ideals J
such that InJ 6= 0. Let a ∈ J0 such that Ina 6= 0. Then In(Ina) = Ina 6= 0, so
that Ina = J0 by the minimality of J0. In particular, there exists y ∈ In such that
ya = a. Since 1− y ∈ R×, we have a = 0. Contradiction.

Corollary 3.4.11. Let R be a left Artinian ring. Then every nil left or right ideal
is nilpotent.

3.5 Semiprimitive and semiprimary rings
Definition 3.5.1. A ring R is said to be semiprimitive if rad(R) = 0.

For an ideal I of a ring R contained in rad(R), we have rad(R/I) = rad(R)/I.
In particular, for any ring R, R/rad(R) is semiprimitive.

Proposition 3.5.2. A ring R is semiprimitive if and only if there exists a semisim-
ple faithful left R-module M .

Proof. Assume that there exists a semisimple faithful left R-module M . Then
rad(R)M = 0 by the semisimplicity. It follows that rad(R) = 0 by the faithful-
ness.

For the converse, assume that rad(R) = 0. Let M be the direct sum of all simple
quotients of RR . Then ker(R→ EndZ(M)) = rad(R) = 0.

Remark 3.5.3. In a semiprimitive ring R, every minimal left ideal I is a direct
summand of RR . Indeed, since rad(R) = 0, there exists a maximal left ideal J such
that J ⊉ I. Then J+I = R by the maximality of J and J∩I = 0 by the minimality
of I. Thus RR = I ⊕ J .
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Proposition 3.5.4. A ring R is semisimple if and only if it is semiprimitive and
left Artinian.
Proof. Assume R semisimple. We have seen that R is left Artinian. Write RR =⊕n
i=1 Ii with Ii simple. Then for each j, ⊕j 6=i Ij is a maximal left ideal of R and

their intersection is zero. It follows that rad(R) = 0.
Conversely, assume that R is semiprimitive and left Artinian. Since R is left

Artinian, every nonzero left ideal contains a minimal left ideal. To show that R is a
semisimple, we may assume R 6= 0. Let J0 = RR . Take a minimal left ideal I1 ⊆ J0.
Then I = I1⊕J1. If J1 = 0, we are done. Otherwise, there exists a minimal left ideal
I2 ⊆ J1. Since I2 is a direct summand in RR , it is a direct summand in any left ideal
containing I2. In particular, J1 = I2 ⊕ J2. Continuing in this way, get a descending
chain RR = J0 ⊋ J1 ⊋ . . . and minimal left ideals Ii such that Ii ⊕ Ji = Ji−1. Since
R is left Artinian, the process must stop after a finitely many, say n, steps. Then
RR = ⊕n

i=1 Ii.
Remark 3.5.5. In the proof each Ji is a cyclic left R-module, hence a principal
left ideal. Thus we have in fact proved that R is semisimple if and only if R is
semiprimitive and satisfies the descending chain condition for principal left ideals.
Example 3.5.6. A PID is semiprimitive if and only if it has infinitely many maximal
ideals. In particular, Z is semiprimitive. By contrast, a PID is not semisimple unless
it is a field.
Definition 3.5.7. We say that a ring R is semilocal if R/rad(R) is left Artinian.
We say that R is semiprimary if R is semilocal and rad(R) is nilpotent.

A ring R is semilocal if and only if R/rad(R) is semisimple.
Example 3.5.8. (1) A local ring is semilocal.

(2) A left Artinian ring R is semiprimary. Indeed, R/rad(R) is clearly left Ar-
tinian, and rad(R) is nilpotent by Proposition 3.4.10.

Theorem 3.5.9 (Hopkins–Levitzki). Let R be a semiprimary ring and M a left
R-module. Then M is a Noetherian module if and only if M is an Artinian module.
Proof. It suffices to show that if M is Noetherian or Artinian, then M has finite
length. Let J = rad(R). We have Jn = 0 for some n. Consider the sequence
M = J0M ⊇ JM ⊇ · · · ⊇ JnM = 0. Let Ni = J i−1M/J iM , which is an R/J-
module. Since R/J is a semisimple ring, Ni is a semisimple module. If M is
Noetherian or Artinian, then so is each Ni, and it follows that each Ni has finite
lengths, which imply that M has finite length.
Corollary 3.5.10. A ring R is left Artinian if and only if R is semiprimary and
left Noetherian.

We summarize some properties of rings as follows.
local

��
semisimple +3

��

left Artinian +3

��

semiprimary +3 semilocal

semiprimitive left Noetherian



3.6. JACOBSON DENSITY THEOREM 123

3.6 Jacobson density theorem
Let R be a ring, M a left R-module, and R′ = EndR(M). We considered the
canonical homomorphism R→ R′′ = EndR′(M) in Section 3.3.

Example 3.6.1. Let R = Z, M = ⊕
p Z/pZ, where p runs through prime numbers.

Then R′ = R′′ ' ∏p Z/pZ. The homomorphism R→ R′′ is not surjective. However,
for every f ∈ R′′ and every finite subset S ⊆ M , there exists r ∈ R such that
rx = fx for every x ∈ S.

Definition 3.6.2. We say that R acts densely on MR′ , if for every f ∈ R′′ =
EndR′(M) and every finite subset S ⊆ M , there exists r ∈ R such that rx = f(x)
for all x ∈ S.

Remark 3.6.3. (1) If we equip M with the discrete topology and R′′ with the
coarsest topology such that the action R′′ ×M → M is continuous, then R
acts densely on MR′ if and only if the image of R→ R′′ is dense.

(2) If R acts densely on MR′ and MR′ is finitely generated, then M is balanced.
Indeed, it suffices to take S to be the a generating subset of MR′ .

Theorem 3.6.4 (Jacobson density). Let M be a semisimple left R-module and
R′ = EndR(M). Then R acts densely on MR′ .

Lemma 3.6.5. Let M be a semisimple left R-module. Then every R-submodule
N ⊆M is an R′′-submodule.

Proof. By semisimplicity we have M = N ⊕ P as left R-module. Let e = idN ⊕
0P : M →M . Then e ∈ R′. For every f ∈ R′′, f(N) = f(eM) = ef(M) ⊆ N .

Proof of Theorem 3.6.4. Let f ∈ R′′ and x1, . . . , xn ∈ M . Let R′
n = EndR(M⊕n) =

Mn(R′). Then f⊕n ∈ EndR′
n
(M⊕n). Indeed, for a = (ai,j) ∈ Mn(R′) and m =

(m1, . . . ,mn)T ∈M⊕n, we have

f⊕nam = (f(
∑
j

ai,jmj))i =
∑
j

ai,jf(mj) = af⊕nm.

By the lemma, N = R(x1, . . . , xn)T ⊆ M⊕n is stable under f⊕n. Thus, there exists
r ∈ R such that f⊕n(x1, . . . , xn)T = r(x1, . . . , xn)T , that is, f(xi) = rxi for all i.

Proposition 3.6.6. Let M be a semisimple left R-module. Then MR′ is semisimple.

Proof. Note that every element in M is a finite sum of elements x such that RxR is
simple. It suffices to show that for RxR simple, R′xR′ is simple. Let a ∈ R′ such that
ax 6= 0. It suffices to show that R′ax = R′x. Note that a induces an isomorphism
a0 : Rx ∼−→ Rax. Choose a decomposition M = Rax ⊕ N as left R-module and let
b : M p−→ Rax

a−1
0−−→ Rx ↪→ M , where p is the projection. Then bax = x, so that

R′ax = R′x.

Corollary 3.6.7. Let R be a left Artinian ring and M a semisimple left R-module.
Then MR is balanced and MR′ is finitely generated.
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Proof. Since R is left Artinian, the set {annR(S)}, where S runs through finite
subsets of M , admits a minimal element I = annR(S). For every x ∈ M , the
minimality of I implies that annR(S ∪ {x}) = I ∩ annR(x) equals I, that is, I ⊆
annR(x). Let R′S = ∑

s∈S R
′s. Since MR′ is semisimple, we have a decomposition

M = R′S ⊕ N as left R′-module. Let e = 0R′S ⊕ idN ∈ R′′. For every x ∈ N , by
Jacobson density theorem applied to S ∪ {x}, there exists r ∈ R such that rS = 0
but rx = x, which implies r ∈ I and x = rx = 0. Therefore, M = R′S is finitely
generated. It then follows from Jacobson density theorem applied to S that MR is
balanced.

The following are examples where the conclusion of the Jacobson density theorem
was already known.

Example 3.6.8. Let R = D be a division ring, M = Dn. Then R′ = Mn(Dop).
The homomorphism D → EndMn(Dop)(Dn) is an isomorphism.

Example 3.6.9. Let R be a semilocal ring. Then R̄ := R/rad(R) is a semisimple
ring. Simple R-modules are the same as simple R̄-modules. By the Wedderburn–
Artin theorem, there are simple R-modules M1, . . . ,Mr satisfying Mi 6'Mj for i 6= j,
such that R̄ → ∏r

i=1 EndDi
(Mi) is an isomorphism of rings. Here Di = EndR(Mi),

which is division ring by Schur’s lemma. This map composed with R → R/rad(R)
can be identified with R → EndR′(M), where M = ⊕r

i=1 Mi and R′ = EndR(M) =∏r
i=1 Di.

We have R̄R ' ⊕r
i=1 M

⊕ni
i , where ni = rkDi

(Mi). Every simple R-module is a
quotient of R̄R and thus is isomorphic to some Mi by the Jordan–Hölder theorem.

The following is an important special case.

Theorem 3.6.10 (Burnside). Let F be an algebraically closed field and R a finite-
dimensional F -algebra.

(1) For every simple left R-module M , the canonical map F → EndR(M) is an
isomorphism.

(2) We have R̄ := R/rad(R) ∼−→ ∏r
i=1 EndF (Mi), where M1, . . . ,Mr is a system

of representatives of isomorphism classes of simple R-modules. In particular,
dimF R̄ = ∑r

i=1(dimF Mi)2.

It remains to prove (1).
Let F be a field and R a nonzero F -algebra. Then the structural homomorphism

F → R is an injection. We regard F as a subfield of R.

Lemma 3.6.11. Let F be a field and D a finite-dimensional F -algebra without
zerodivisors. Then D is a division ring and D is the union of maximal subfields of
D containing F . In particular, if F is algebraically closed, then D = F .

An F -algebra that is a division ring is called a division F -algebra.

Proof. Let x ∈ D. The kernel of the homomorphism F [X]→ D carrying P to P (x)
is of the form (P ). Since dimF D < ∞, P (X) 6= 0. If P = QR, then Q(x) = 0 or
R(x) = 0, so that P | Q or P | R. Thus P is irreducible. Then F [x] ' F [X]/(P ) is
a field extension of F . Thus D = ∪

x∈D F [x] is a union of subfields of D containing
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F . Each subfield of D containing F is contained in a maximal subfield. The first
assertion follows. For the last assertion, note that every subfield of D containing F
is an algebraic extension of F , and hence is F if F is algebraically closed.

3.7 Central simple algebras
Any ring A is a Z(A)-algebra.

Remark 3.7.1. Let A be a simple ring. Then Z(A) is a field. Indeed, for nonzero
a ∈ Z(A), Ra = aR is a nonzero ideal of R, and hence equals to R. In other words,
a is invertible in R. It follows that a−1 ∈ Z(A), and a ∈ Z(A)×.

In the sequel let F be a field.

Definition 3.7.2. Let A be an F -algebra. We say that A is central if Z(A) = F .
We say that A is central simple if it is a central F -algebra and a simple ring.

Remark 3.7.3. A finite-dimensional central simple F -algebra is Noetherian and
Artinian, and hence isomorphic to Mn(D) for some division ring D and some n ≥ 1.
Then F ' Z(Mn(D)) = Z(D) and D is a central division F -algebra.

Example 3.7.4. (1) (Dickson) Let E/F be a finite cyclic extension with Galois
group 〈σ〉 of order n. Fix a ∈ F×. Let A = A(E/F, σ, a) = E ⊕ Ex ⊕
· · · ⊕ Exn−1 with xn = a and xb = σ(b)x for b ∈ E. We call A the cyclic
F -algebra associated to E/F , σ, and a. One can check that A is a central
simple F -algebra of dimension n2 [L2, Theorem 14.6].

(2) Assume that F contains a primitive n-th root of unity ζ and let a, b ∈ F×.
We define (a, b)ζ to be the F -algebra generated by x and y subject to the
relations xn = a, yn = b, and xy = ζyx. One can check that A is a central
simple F -algebra of dimension n2. In the case where [F ( n

√
b) : F ] = n, we

have (a, b)ζ ' A(F ( n
√
b)/F, σ, a), where σ is given by σ( n

√
b) = ζ n

√
b.

(3) Hamilton’s quaternion algebra H = (−1,−1)−1 = R ⊕ Ri ⊕ Rj ⊕ Rk with
i2 = j2 = k2 = ijk = −1 is a division R-algebra. Indeed, (a+ bi+ cj+dk)(a−
bi− cj − dk) = a2 + b2 + c2 + d2 for a, b, c, d ∈ R.

One can show that over a field F of characteristic 6= 2, a 4-dimensional central
simple F -algebra is isomorphic to some (a, b)−1.

We are interested in tensor products of central simple algebras.

Definition 3.7.5. Let A be an F -algebra. We call Ae := A⊗F Aop the enveloping
algebra of A.

If A ⊆ B is an F -subalgebra, we regard B as a left Ae-module by (a⊗a′)b = aba′.
In particular, A is a left Ae-module. Left Ae-submodules of A are precisely ideals of
A.

Lemma 3.7.6. The homomorphism

HomAe(A,B)→ ZB(A)
f 7→ f(1)

is an isomorphism.
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Note that f(1) ∈ ZB(A) since f(a) = af(1) = f(1)a.

Proof. The inverse carries c to a 7→ ca = ac.

In particular, we have EndAe(A) ∼−→ Z(A) carrying f to f(1).

Lemma 3.7.7. Let A be a finite-dimensional central F -algebra. Then A is simple
if and only if the homomorphism

λ : A⊗F Aop → EndF (A)
a⊗ b 7→ (x 7→ axb)

is surjective. In this case, λ is an isomorphism.

Proof. Suppose A is not simple and 0 6= I ⊊ A is an ideal, then for all a, b ∈ A,
λ(a⊗ b) stabilizes I. Thus λ is not surjective.

Conversely, assume that A is simple. Then A is a simple left Ae-module. More-
over, EndAe(A) ' Z(A) = F . By Jacobson density theorem, λ : Ae → EndF (A) is
surjective. Counting dimensions, we see that λ is an isomorphism.

Proposition 3.7.8. Let A be an F -algebra and let E/F be a field extension. Then
Z(A ⊗F E) ' Z(A) ⊗F E. In particular, A is a central F -algebra if and only if
A ⊗F E is a central E-algebra. Moreover, if A is finite dimensional, then A is
central simple if and only if A⊗F E is central simple.

Proof. The first assertion follows from the fact that Z(A) is the space of solutions
of the F -linear equations xa− ax = 0, where a runs through an F -linear basis of A.
The last assertion follows from Lemma 3.7.7.

Example 3.7.9. H⊗R C 'M2(C).

Let A and C be F -algebras. We regard A as a subalgebra of A ⊗F C via the
homomorphism A→ A⊗F C carrying a to a⊗ 1 and we regard C as a subalgebra
of A⊗F C via the homomorphism C → A⊗F C carrying c to 1⊗ c.

Proposition 3.7.10. Assume that A is a central F -algebra. Then ZA⊗FC(A) = C.

Proof. It is clear that C ⊆ ZB(A). Let (ci) be an F -linear basis of C. Then every
b ∈ B can be written uniquely as b = ∑

i ai ⊗ ci, where ai ∈ A. Assume b ∈ ZB(A).
For all a ∈ A, ∑i aai ⊗ ci = ab = ba = ∑

i aia⊗ ci, which implies aai = aia for all i.
Thus ai ∈ Z(A) = F for all i and b ∈ C.

In the case where A is simple and finite-dimensional, the proposition admits the
following converse.

Theorem 3.7.11. Let B be an F -algebra. Let A ⊆ B be a finite-dimensional
F -subalgebra which is central simple. Let C = ZB(A). Then the homomorphism
θ : A⊗F C → B carrying a⊗ c to ac is an isomorphism and we have a bijection

{ideals of C} ↔ {ideals of B}
I 7→ AI = θ(A⊗F I)

J ∩ C ←[ J.
Moreover, Z(B) = Z(C).



3.7. CENTRAL SIMPLE ALGEBRAS 127

Lemma 3.7.12. Let V and W be F -vectors spaces. Let W0 ⊆ W be an F -vector
subspace and let 0 6= v ∈ V . Then the set of w ∈ W such that v ⊗ w ∈ V ⊗F W0 is
precisely W0.

Proof. We extend v to an F -linear basis (vi) of W . Every element of V ⊗FW can be
written uniquely as ∑i vi⊗wi with wi ∈ W . We conclude by applying the existence
to v ⊗ w ∈ V ⊗F W0 and the uniqueness to V ⊗F W .

Lemma 3.7.13. Let V be an F -vector spaces and let E = EndF (V ).
(1) Let W be an F -vector space. Every left E-submodule of V ⊗F W has the form

V ⊗F W0 for some F -linear subspace W0 ⊆ W .
(2) Let M be a left E-module. The homomorphism of E-modules

θ : V ⊗F HomE(V,M)→M,

a⊗ f 7→ f(a)

is an injection. If, moreover, V is finite dimensional, then θ is an isomor-
phism.

Proof. (1) Let X ⊆ V ⊗F W be an E-submodule. Let W0 ⊆ W be the F -vector
subspace of w such that v ⊗ w ∈ X. Then V ⊗F W0 ⊆ X. Conversely, let x ∈ X.
Choose a basis (vi) of V and write x = ∑

i vi ⊗ wi. For each j, there exists φij ∈ E
such that φi,j(vi) = vj and φi,j(vi′) = 0 for all i′ 6= i. Then φi,jx ∈ X for all j implies
wi ∈ W0. Thus x ∈ V ⊗F W0.

(2) Let ker(θ) = V ⊗F W0. For each f ∈ W0, f(V ) = 0. Thus ker(θ) = 0.
Assume that n = dimF V < ∞. Then E ' Mn(F ) is semisimple and every simple
left E-module is isomorphic to V . Thus M = V ⊕S. The composite V ⊗F F⊕S →
V ⊗F HomE(V, V ⊕S) θ−→ V ⊕S is an isomorphism. It follows that θ is a surjection.

Proof of Theorem 3.7.11. Via Lemma 3.7.6, θ can be identified with the homomor-
phism θ : A ⊗F HomAe(A,B) → B given by a ⊗ f 7→ f(a). By Lemma 3.7.7,
Ae ' EndF (A). Thus θ is an isomorphism by Lemma 3.7.13.

By Lemma 3.7.12 and Lemma 3.7.13 (1), the maps are bijections between F -
vector subspaces I ⊆ C and A-submodules J ⊆ B. Both maps preserve ideals.

We have Z(B) ⊆ ZB(A) = C. Thus Z(B) ⊆ Z(C). Conversely, every x ∈ Z(C)
centralizes both A and C, and hence we have x ∈ Z(B).

Corollary 3.7.14. Let A be a finite-dimensional central simple F -algebra and let C
be an F -algebra. Then C is simple if and only if A⊗F C is. Moreover, C is central
if and only if A⊗F C is.

Combining this with the Wedderburn–Artin theorem, we obtain the following.

Corollary 3.7.15. Let A be a finite-dimensional central simple F -algebra and let
C be a finite-dimensional semisimple F -algebra. Then A ⊗F C is a semisimple
F -algebra.

Example 3.7.16. Let A and B be F -algebras. Then Kronecker product gives an
isomorphism Mm(A)⊗F Mn(B) 'Mmn(A⊗F B) of F -algebras.
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Theorem 3.7.17. Let B be a finite-dimensional central simple F -algebra and let A
be a semisimple F -subalgebra.

(1) We have ZB(ZB(A)) = A.
(2) If A is simple, then ZB(A) is simple. Moreover, in this case, dimF B =

dimF A · dimF ZB(A).

The following is a variant of Lemma 3.7.6.

Lemma 3.7.18. Let A be an F -subalgebra of an F -algebra B. Then we have an
isomorphism of F -algebras

EndA⊗FBop(B)→ ZB(A)
f 7→ f(1)

(b 7→ cb)←[ c.
This is clear. Note that f(1) ∈ ZB(A) since af(1) = f(a) = f(1)a. Moreover,

b 7→ cb is a homomorphism of left A-modules since cab = acb. The map from right
to left is clearly a homomorphism of F -algebras.

Proof of Theorem 3.7.17. Let R = A ⊗F Bop, which is semisimple, and let R′ =
EndR(B) ' ZB(A).

(1) By Jacobson density theorem, the (injective) homomorphism R → R′′ =
EndR′(B) deduced from λ : B⊗FBop ∼−→ EndF (B) is surjective. Let x ∈ ZB(ZB(A)).
Then the endomorphism b 7→ xb of B belongs to R′′. Thus x⊗ 1 ∈ A⊗F Bop, which
implies x ∈ A by Lemma 3.7.12. This proves ZB(ZB(A)) ⊆ A. The inverse inclusion
is obvious.

(2) Assume A simple. Then R is simple. Then R ' Mn(Dop) for some division
F -algebra D and some n ≥ 1. Let M = D⊕n be the simple R-module. We have
D ' EndR(M). Then BR ' M⊕r for some r ≥ 1 and ZB(A) ' R′ ' Mr(D) is
simple. Finally,

dimF B = rn dimF D, dimF R = n2 dimF D, dimF ZB(A) = r2 dimF D,

which implies (dimF B)2 = dimF R·dimF ZB(A) = dimF A·dimF B·dimF ZB(A).

Assumption 3.7.19. In the rest of this section, F -algebras are assumed to be
finite-dimensional.

Corollary 3.7.20. Let D be a central division F -algebra and let K ⊆ D be a
maximal subfield containing F . Then ZD(K) = K and (dimF K)2 = dimF D.

Proof. Indeed, ZD(K) is a division K-algebra and ZD(K) = K by Lemma 3.6.11.

It follows from this (or from the fact that A ⊗F F alg ' Md(F alg)) that the
dimension of a central simple F -algebra A is a square d2. We call d the degree of A.

Example 3.7.21. In H, R[i], R[j], and R[k] are maximal subfields. All three are
isomorphic to C.
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Skolem–Noether Theorem
Let B be an F -algebra. For every y ∈ B×, b 7→ yby−1 is an automorphism of the
F -algebra B. Such automorphisms are called inner.

Theorem 3.7.22. Let B be a central simple F -algebra and A a simple F -subalgebra
of B. Let f : A → B be a homomorphism of F -algebras. Then there exists y ∈ B×

such that f(a) = yay−1 for all a ∈ A.

In other words, f extends to an inner automorphism of B.

Proof. Let R = A⊗F Bop, which is a simple F -algebra by 3.7.14. Since R-modules
are semisimple and simple R-modules are also isomorphic, R-modules of the same
dimension over F are isomorphic.

We consider two R-modules structures on B: (a ⊗ b)x = axb and (a ⊗ b)x =
f(a)xb. There exists g ∈ AutF (B) such that g(axb) = f(a)g(x)b for all a ∈ A,
b, x ∈ B. Let y = g(1). Then f(a)y = g(a) = ya.

Corollary 3.7.23 (Skolem–Noether). Automorphisms of central simple F -algebras
are inner.

Corollary 3.7.24. Let B be a central simple F -algebra. If A and A′ are simple
subalgebras and there exists an F -isomorphism A ' A′, then A and A′ are conjugate
to each other. That is, there exists b ∈ B× such that A′ = bAb−1.

Proof. This follows from the theorem applied to A ' A′ ↪→ B.

Theorem 3.7.25 (Wedderburn’s Little Theorem). Every finite division ring D is
a field.

Proof. Let F = Z(D), which is a finite field. Then maximal subfields ofD containing
F are of degree n =

√
dimF D over F , and hence are isomorphic to each other as

extensions of F . By Corollary 3.7.24, they are conjugate to each other. Let K be
a maximal subfield of D containing F . Then D× = ∪

a∈D× aK×a−1. By the lemma
below, this forces D× = K×. Thus D = K.

Lemma 3.7.26. Let G be a finite group and H < G a subgroup such that G =∪
g∈G gHg

−1. Then G = H.

Proof. Note that gHg−1 depends only on the class of g inG/H. Moreover, #(gHg−1) =
#H. Since #G = (G : H)#H, the union is disjoint. However, 1 ∈ gHg−1 for all g.
Thus (G : H) = 1.

Corollary 3.7.27. Let D be a division ring of characteristic p > 0. Then any finite
subgroup G of D× is cyclic.

Proof. Let R = Fp[G] ⊆ D. Then R is a finite ring. For every nonzero x ∈ R,
xi = xj for some i 6= j. Thus R is a finite division ring and hence a finite field.
Therefore, G < R× is cyclic.

Warning 3.7.28. Unlike the case of fields, finite subgroups of the multiplicative
group of a division ring of characteristic 0 are not cyclic in general. For example, in
H×, {±1,±i,±j,±k} is not cyclic.
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Theorem 3.7.29 (Frobenius). Every finite-dimensional division R-algebra D is
isomorphic to R, C, or H.

Proof. If [Z(D) : R] > 1, then Z(D) ' C and D ' C. Assume Z(D) = R
and dimRD = n2 > 1. Let K be a maximal subfield of D containing R. Then
[K : R] = n > 1, so that K ' C as field extensions of R. It follows that dimRD = 4.
Let i ∈ K be a square root of −1. By Theorem 3.7.22 applied to the homomorphism
K → D of R-algebras carrying i to −i, there exists j ∈ D× such that jij−1 = −i.
That is, iji−1 = −j. Let K ′ = R[j]. Then K ′ ' C as field extensions of R. Consider
σ : K ′ → K ′ carrying x to ixi−1. This is a nontrivial element of Gal(K ′/R), and
hence corresponds to complex conjugation. Thus σ(j) = −j implies r := −j2 ∈
R>0. Up to replacing j by j/

√
r, we may assume j2 = −1. Let k = ij. Then

k2 = ijk = −1. Thus R[i, j, k] ' H. By dimension count, R[i, j, k] = D.

Splitting fields
Definition 3.7.30. Let A be a central simple F -algebra. We say that A is split
over F if A 'Mn(F ) for some n ≥ 1. Let K/F be a field extension. We say that K
is a splitting field of A, or that A splits over K, if A⊗F K is a split central simple
K-algebra.

Remark 3.7.31. If K is a splitting field of A and B, then it is also a splitting field
of A⊗F B and Aop.

Proposition 3.7.32. Let A = Mn(B) with B a central simple F -algebra and n ≥ 1.
Then K is a splitting field of A if and only if K is a splitting field of B.

Proof. If B ⊗F K ' Mm(K), then Mn(B) ⊗F K ' Mn(B ⊗F K) ' Mmn(B).
Conversely, if Mn(B) ⊗F K ' Mr(K) and if B ⊗F K ' Mm(E) for a division
F -algebra E, then Mmn(E) 'Mr(K) and hence E ' K by Remark 3.2.3.

Lemma 3.7.33. Let A be a central simple F -algebra and let K ⊆ A be a subfield
containing F . Let C = ZA(K). Then there exist m,n ≥ 1 such that Mm(A⊗F K) '
Mn(C) as K-algebras.

Note that A ⊗F K and C are central simple K-algebras. (That C is a central
simple K-algebra follows either from Theorem 3.7.17 or the lemma.)

Proof. Let AK := A ⊗F K. We have Aop
K ' K ⊗F Aop. By Lemma 3.7.18,

EndAop
K

(A) ' C. We have AK 'Mn(D), for a division K-algebra D. Let M be the
unique simple right AK-module. Then EndAop

K
(M) ' D. We have AAK

' M⊕m
AK

. It
follows that C 'Mm(D).

Proposition 3.7.34. Let D be a central division F -algebra. Then every maximal
subfield K of D containing F is a splitting field of D.

Proof. By Corollary 3.7.20, ZD(K) = K. Thus, by the lemma, Mm(D ⊗F K) '
Mn(K) as K-algebras for some m,n ≥ 1. It follows then from Remark 3.2.3 that
D ⊗F K 'Mr(K) for some r ≥ 1.
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The maximal subfields K of D containing F are minimal splitting fields of D by
the following.

Proposition 3.7.35. Let D be a central division F -algebra of degree d. Let K be a
splitting field of D with K/F finite. Then d | [K : F ].

Proof. We haveD⊗FK 'Md(K), which admits a simple moduleM with dimKM =
d. Since M is a left D-module, d2 | d[K : F ] by counting F -dimensions.

Theorem 3.7.36. Every central division F -algebra D contains a separable extension
K of F that is maximal among subfields of D.

Warning 3.7.37. Subfields of a central division F -algebra containing F are not
always separable. There are examples of central division F -algebras containing
purely inseparable extensions of F .

Proof of Theorem 3.7.36. Let K be a maximal separable subfield of D containing
F . We need to show that K is a maximal subfield. Let C = ZD(K), which is a
central division K-algebra. If K is not maximal, then C 6= K. The following lemma
then contradicts the maximality of K.

Lemma 3.7.38. Let D be a central division F -algebra with D 6= F . Then D
contains a separable extension K ⊋ F .

Proof. (Artin) Assume the contrary. Then F is not a perfect field and char(F ) =
p > 0. For every x ∈ D, F [x]/F is a purely inseparable extension, so that xpk ∈ F ,
where pk = [F [x] : F ] | d =

√
dimF D. Let q be the highest power of x dividing d.

Then xq ∈ F for all x ∈ D. Choose an F -linear basis 1 = x1, . . . , xd2 of D. There
are polynomials fi ∈ F [X1, . . . , Xd2 ] such that (∑i aixi)q = ∑

i fi(a1, . . . , ad2)xi for
all a1, . . . , ad2 ∈ F . Thus fi(a1, . . . , ad2) = 0 for all i ≥ 2 and a1, . . . , ad2 ∈ F . It
follows from the lemma below that fi = 0 for all i ≥ 2. It follows that for every field
extension K/F and every y ∈ D ⊗F K, we have yq ∈ K. Take K to be a splitting
field of F and take y to correspond to diag(1, 0, . . . , 0) ∈ Md(K) for example, we
get a contradiction.

Lemma 3.7.39. Let F be an infinite field and let f ∈ F [X1, . . . , Xn] such that
f(a1, . . . , an) = 0 for all a1, . . . , an ∈ F . Then f = 0.

Proof. We proceed by induction on n. The case n = 0 is trivial. Let n ≥ 1. By
induction hypothesis, f(X1, . . . , Xn−1, a) = 0 for all a ∈ F . Let f(X1, . . . , Xn) =∑
i1,...,in≥0 ci1,...,inX

i1
1 . . . X in

n , where ci1,...,in ∈ F . Fix i1, . . . , in−1 and let cj = ci1,...,in−1,j.
Then a is a root of the polynomial ∑j≥0 cjX

j for all a ∈ F . Since F is infinite, cj = 0
for all j.

Corollary 3.7.40. Every central simple F -algebra splits over a finite separable ex-
tension of F .
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Brauer groups
Definition 3.7.41. We say that central simple F -algebras A and B are similar,
written A ∼ B, if there exist m,n ≥ 1 such that Mm(A) ' Mn(B) as F -algebras.
We let BrF denote the set of similarity classes of central simple F -algebras. We
write [A] for the class of A.

Note that if A ∼ A′ and B ∼ B′, then A⊗F B ∼ A′⊗F B′. Thus tensor product
induces a binary operation on BrF , which is commutative (since A⊗F B ' B⊗F A)
and associative, with [F ] being the identity element. Moreover, A ⊗F Aop ∼ F , so
that [Aop] is an inverse of [A]. Thus BrF is an abelian group, called the Brauer
group of F .

Note that BrF is also the set of isomorphism classes of central division F -algebras.

Example 3.7.42. (1) If F is a separably closed field, then BrF is trivial.
(2) If F is a finite field, then BrF is trivial by Wedderburn’s little theorem.
(3) If F = k(X) for an algebraically closed field k, then BrF is trivial by a theorem

of Tsen.
(4) BrR = {[R], [H]} ' Z/2Z by Frobenius’ theorem.
(5) BrQp ' Q/Z. This fact is crucial in local class field theory.

Algebraically closed fields and examples (2) and (3) are special cases of C1-fields
(also called quasi algebraically closed fields), which all have trivial Brauer groups.

For a field extension K/F , we have a homomorphism BrF → BrK given by
[A] 7→ [A⊗F K]. We let Br(K/F ) denote the kernel. We have BrF = ∪

K Br(K/F ),
where K runs through finite Galois extensions of F .

Remark 3.7.43. Assume that F contains a primitive n-th root of unity ζ. Then
(a, b) 7→ (a, b)ζ (Example 3.7.4 (2)) induces a biadditive map F×/F×n×F×/F×n →
BrF , called the Galois symbol (or norm residue symbol). By a theorem of Merkurjev–
Suslin (1982), the image of the Galois symbol generates BrF [n]. (For an abelian
group, A[n] := ker(A ×n−→ A) denotes the n-torsion of A.)

3.8 Galois descent
Let K/F be a Galois field extension with Galois group G. Given a K-vector space
W , an action of G on the additive group W is called a Galois action if the following
conditions are satisfied:

(1) σ(ax) = σ(a)σ(x) for all σ ∈ G, a ∈ K, and x ∈ W ;
(2) W = ∪

HW
H , where H runs through open subgroups of G.

Note that (1) implies that the action is F -linear. Moreover, (2) is automatic if K/F
is finite. We let VectK,G denote the category whose objects are K-vector spaces
with Galois actions and whose morphisms are G-equivariant K-linear maps. The
G-equivariance of a map f means f ◦ σ = σ ◦ f for all σ ∈ G.

For any F -vector space V , V ⊗F K is equipped with the obvious Galois action.
We have (V ⊗F K)G ' V ⊗F KG ' V .

Theorem 3.8.1. The functor VectF → VectK,G given by V 7→ V ⊗F K is an
equivalence of categories. A quasi-inverse is given by W 7→ WG.
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Proof. We have already seen the isomorphism (V ⊗FK)G ' V , natural in V . Let W
be an object of VectK,G. It suffices to show that the natural morphism φ : WG ⊗F
K → W in VectK,G is an isomorphism. For this, it suffices to show that φ is a
bijection.

Let w ∈ W . Then w ∈ WH for some open subgroup H. We may assume that H
is a normal subgroup of G. Let E = KH and G/H = Gal(K/E) = {1 = σ1, . . . , σn}.
Let a1, . . . , an be an F -linear basis of E. By the linear independence of characters
(Lemma 1.15.5), (σj(ai))i,j is an invertible matrix. Thus there exists b1, . . . , bn ∈ Kn

such that ∑i biσj(ai) = δ1,j (Kronecker delta). Then

w =
∑
j

δ1,jσj(w) =
∑
i

bi
∑
j

σj(aiw).

Note that ∑j σj(aiw) ∈ (WH)G/H = WG. Thus w belongs to the image of φ. This
proves the surjectivity of φ.

Applying this to the K-vector space W0 = ker(φ), we get a surjection WG
0 ⊗F

K → W0. Since WG
0 = 0, we have W0 = 0. This proves the injectivity of φ.

(One can also prove the injectivity of φ directly. Let (vi) be an F -linear basis of
WG. Let w = ∑

i aivi ∈ ker(φ), ai ∈ K be a nonzero element with the least number
of i such that ai 6= 0. We may assume that ai1 = 1. Note that WG ∩ ker(φ) =
0. Thus there exists ai2 6∈ F . There exists σ ∈ G such that σai2 6= ai2 . Then
σ(w) − w ∈ ker(φ) has a shorter expression in the basis (vi). Contradiction. This
proves the injectivity of φ.)

Example 3.8.2. Let E/F be a finite separable field extension and let K/F be a
Galois extension containing E. The image of E under the above functor can be
described as follows: we have an isomorphism E⊗F K ∼−→ ∏

σK in VectK,G carrying
a ⊗ 1 to (σ(a))σ. Here σ runs through F -embedding E → K, and G = Gal(K/F )
acts on the product by τ(bσ) = (τbτ−1σ)σ. The G-equivariance is clear. To see
that the map is an isomorphism, note that, by the primitive element theorem, E =
F (x) ' F [X]/(P (X)), where P (X) = ∏

σ(X − σx).

Central simple algebras and Galois cohomology
Let K/F be a finite Galois field extension with group G and let A be a central simple
F -algebra of degree n that splits over K. Choose an isomorphism of K-algebras
f : A⊗FK →Mn(K). This is not G-equivariant in general: if it is, then A 'Mn(k).
Let GLn(K) = Mn(K)×. The adjoint action Ad(g) : b 7→ gbg−1 of GLn(K) on
Mn(K) factors through a faithful action of PGLn(K) := GLn(K)/K×. By the
Skolem–Noether theorem, for each σ ∈ G, there exists a unique cσ ∈ PGLn(K)
such that Ad(cσ) ◦ σ ◦ f = f ◦ σ. For σ, τ ∈ G, we have cστ = cσσ(cτ ). This leads to
the following nonabelian generalization of the first group cohomology.

Definition 3.8.3. Let G be a group and let H be a group equipped with an action
of G by automorphisms. A map c : G → H (written σ 7→ cσ) is called a crossed
homomorphism if cστ = cσσ(cτ ) for all σ, τ ∈ G. We let Z1(G,H) denote the set of
crossed homomorphisms G→ H. Note that H acts on this set by (hc)σ = hcσσ(h−1)
for h ∈ H, σ ∈ G. We let H1(G,H) denote the set of orbits of this action. This is



134 CHAPTER 3. RINGS AND ALGEBRAS

a pointed set, with the orbit of σ 7→ eH being the distinguished element. (Crossed
homomorphisms in this orbit are of the form σ 7→ hσ(h−1) and are called principal.)

Note that crossed homomorphisms correspond to sections of the projection H ⋊
G→ G that are group homomorphisms, via the formula σ 7→ (cσ, σ).

Theorem 3.8.4. Let K/F be a finite Galois field extension with group G and let
CSAn(K/F ) be the isomorphism classes of central simple F -algebras of degree n
that splits over K. The above construction gives a bijection Φn : CSAn(K/F ) ∼−→
H1(G,PGLn(K)), carrying the class of Mn(F ) to the distinguished element of H1.

The inverse of the map is given as follows. Given a crossed homomorphism
c : G → PGLn(K), one applies Galois descent to Mn(K) equipped with the Galois
action given by σ 7→ Ad(cσ) ◦ σ and get the central simple F -algebra

A = {b ∈Mn(K) | Ad(cσ)(σ(b)) = b, ∀σ ∈ G}.

The details are left to the reader.
Let H be a group equipped with an action of a group G and let H ′ be a normal

subgroup of H stable under the action of G. Let H ′′ = H/H ′. Let c : G→ H ′′ be a
crossed homomorphism. Choose a lifting of c to a map c̃ : G→ H. The map

G2 → H ′

(σ, τ) 7→ σ(c̃τ )c̃−1
στ c̃σ

measures the failure of c to be a crossed homomorphism. Assume that H ′ < Z(H).
Then the map is a 2-cocycle in the following sense.

Definition 3.8.5. Let M be an abelian group equipped with an action of G. A
map f : G2 →M is called a 2-cocycle (or factor system) if

ρf(σ, τ)− f(ρσ, τ) + f(ρ, στ) + f(ρ, σ) = 0

for all ρ, σ, τ ∈ G. A 2-coboundary is a cocycle given by (σ, τ) 7→ σ(cτ )− cστ + cσ for
some map c : G→M . We define the second cohomology group of G with coefficients
in M by H2(G,M) := Z2(G,M)/B2(G,M), where Z2(G,M) and B2(G,M) denote
the abelian groups of 2-cocycles and 2-coboundaries, respectively.

The above construction gives rise to a homomorphism δ : H1(G,H ′′)→ H2(G,H ′).
Moreover, δ−1(0) is the image of H1(G,H)→ H1(G,H ′′).

For K/F finite Galois of group G, we have δn : H1(G,PGLn(K))→ H2(G,K×).
(In fact, H1(G,GLn(K)) is trivial and δn is an injection.) The map CSAn(K/F )→
Br(K/F ) carrying the class of A to [A] is clearly an injection. Moreover, Br(K/F )
is the union of the images of CSAn(K/F ). It follows from the constructions that
the maps δn ◦ Φn induce a map Br(K/F ) → H2(G,K×), which is a group homo-
morphism.

Theorem 3.8.6. The group homomorphism Br(K/F )→ H2(G,K×) is an isomor-
phism.
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Remark 3.8.7. Let α ∈ BrF . The order of α is called the period of α and denoted
per(α). The degree of a central division F -algebra in the class α is called the
(Schur) index of α and denoted ind(α). Using the cohomological interpretation, one
can show that per(α) | ind(α) and they have the same prime factors.

We refer to [GS] for a proof of the theorem and a more complete exposition on
finite-dimensional central simple algebras.
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Chapter 4

Representations of finite groups

4.1 Group representations and modules
Let F be a field and let G be a group.
Definition 4.1.1. A (linear) representation of G over F is a pair (V, ρ), where V
is an F -vector space and ρ : G→ AutF (V ) is a group homomorphism. A morphism
(or intertwining operator) from one representation (ρ, V ) to another (ρ′, V ′) is an
F -linear map f : V → V ′ such that the diagram

V
f //

ρ(g)
��

V ′

ρ′(g)
��

V ′ f // V ′

commutes.
We will often abbreviate (V, ρ) to V or ρ. Representations of G over F form a

category RepF (G).
Our focus is on finite-dimensional representations. If V is one-dimensional, we

have a canonical isomorphism F× ' AutF (V ), and ρ is given by a homomorphism
G → F×. If V is n-dimensional, choosing a basis F⊕n ' V induces AutF (V ) '
GLn(F ), under which ρ becomes a homomorphism G→ GLn(F ).
Example 4.1.2. (1) The trivial representation of G is F equipped with the trivial

action.
(2) Let X be a set equipped with an action of G and let V = F⊕X be the free

F -vector space with basis X. The action of G on X induces a representation
of G on V , called a permutation representation. In the case where G acts on
X = G by left translation, this is called the regular representation.

Definition 4.1.3. The group F -algebra of G, F [G], is the free F -vector space with
basis G, and with multiplication extending the multiplication on G. The identity
element is 1 ∈ G.
Example 4.1.4. If G = 〈g〉 is a cyclic group of order n, we have

F [G] ∼−→ F [X]/(Xn − 1)

carrying g to the image X.

137
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The group algebra is characterized by the following universal property. For every
F -algebra, the inclusion G→ F [G] induces a bijection

HomAlgF
(F [G], A) ∼−→ HomGrp(G,A×).

Indeed, every homomorphism ρ : G → A× extends uniquely to a homomorphism
F [G]→ A of F -algebras by linearity.

Applying the bijection to A = EndF (V ), we get HomAlgF
(F [G],EndF (V )) ∼−→

HomGrp(G,AutF (V )). Thus an F -linear representation of G on V is the same as a
(left) F [G]-module structure on V . Moreover, morphisms of representations are the
same as morphisms of F [G]-modules. Thus, we have an isomorphism of categories
F [G]-Mod ' RepF (G).

The regular representation corresponds to the regular F [G]-module.
A subrepresentation is a F [G]-submodule. A quotient representation is a quotient

F [G]-module. We say that a representation is irreducible if the corresponding F [G]-
module is simple. They appear as quotients of the regular representation. Schur’s
lemma applies: EndF [G](V ) is a division F -algebra for V irreducible. The Jordan–
Hölder theorem applies to finite-dimensional representations. If G is a finite group,
there are only finitely many isomorphism classes of irreducible representations: they
are the Jordan–Hölder factors of the regular representation. The Wedderdurn–Artin
theorem, in the form of Example 3.6.9, is a powerful tool for studying them.

Direct sums of representations correspond to direct sums of F [G]-modules. We
say that a representation is semisimple (or completely reducible) if the corresponding
F [G]-module is semisimple. We say that a representation is indecomposable if the
F [G]-module is. The Krull–Schmidt–Azumaya theorem applies to finite-dimensional
representations: a finite-dimensional representation is a direct sum of indecompos-
able representations and the indecomposable factors are unique up to permutation
and isomorphism (Corollary 2.6.19).

We have the following constructions.
Field extension Let (V, ρ) be a representation of G over F and E/F a field ex-

tension. Then E ⊗F V , with G acting trivially on E and by ρ on V , is a
representation of G over E. In terms of modules, E ⊗F V is a module over
E ⊗F F [G] ' E[G].

Pullback Let φ : H → G be a group homomorphism and (V, ρ) be a representation
of G over F . Then (V, ρ ◦ φ) is a representation of H over F . In terms of
modules, this corresponds to restriction of scalars via the homomorphism of
F -algebras F [φ] : F [H] → F [G]. We φ is an inclusion (resp. quotient map),
the pullback is called the restriction (resp. inflation) from G to H.

Subspace of invariants Let (V, ρ) be a representation of G over F . Then V G =
{v ∈ V | ρ(g)v = v, ∀g ∈ G} is an F -vector subspace. We have V G =
HomF [G](F, V ), where F denotes the trivial representation of G. This is a
kind of pushforward via G→ 1, which will be studied in more generality later.

The constructions below use the following isomorphism of F -algebras

F [G1]⊗F F [G2]
∼−→ F [G1 ×G2]

g1 ⊗ g2 7→ (g1, g2).
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External tensor product Let (Vi, ρi) be a representation of Gi over F , i = 1, 2.
Then (V1 ⊗F V2, ρ1 ⊠F ρ2) is a representation of G1 ×G2 over F , where (ρ1 ⊠
ρ2)(g1, g2) = ρ1(g1)⊗ ρ2(g2). In terms of modules, V1 ⊗F V2 is a module over
F [G1]⊗F F [G2] ' F [G1 ×G2].

Tensor product Let (Vi, ρi) be a representation of G over F , i = 1, 2. Then
(V1 ⊗F V2, ρ1 ⊗ ρ2), obtained from ρ1 ⊠ ρ2 by restriction via the diagonal
G → G× G, is a representation of G over V . More explicitly, (ρ1 ⊗ ρ2)(g) =
ρ1(g) ⊗ ρ2(g). In terms of modules, this corresponds to restriction of scalars
via the homomorphism F [G]→ F [G×G] ' F [G]⊗F F [G] given by g 7→ g⊗g.
This is not to be confused with tensor product over the ring F [G].

The following construction uses the isomorphism G
∼−→ Gop given by g 7→ g−1,

which induces an isomorphism F [G] ' F [Gop] ' F [G]op.
Hom-space Let (V, ρ) and (V ′, ρ′) be representations of G and G′ over F , i = 1, 2.

Then HomF (V, V ′) is a representation of G × G′: (g, g′) ∈ G × G′ acts by
f 7→ ρ′(g′) ◦ f ◦ ρ(g)−1. In terms of modules, HomF (V, V ′) is a module over
F [G]op ⊗F F [G′] ' F [G×G′].

• In the case where G′ = 1 and V ′ = F , HomF (V1, F ) is a representation of
G over F , called the dual or contragredient of (V, ρ) and denotes (V̌ , ρ̌).

• In the case G = G′, we can restrict further restrict via the diagonal
G → G × G and regard HomF (V, V ′) as a representation of G: g ∈ G
acts by ρ′(g) ◦ f ◦ ρ(g)−1. We have HomF [G](V, V ′) = HomF (V, V ′)G.

Remark 4.1.5. Except for the isomorphism G ' Gop and the last bullet point,
all of the above apply to representations of monoids modulo suitable changes. The
contragredient of a representation of a monoid G is a representation of Gop. More-
over, some of the above also holds with F replaced by a commutative ring. (In
fact, we have already encountered representations over Z in the definition of group
cohomology.)

Theorem 4.1.6 (Maschke). Let G be a finite group. Then F [G] is semisimple if
and only if char(F ) ∤ #G.

Proof. Assume char(F ) ∤ #G. Let V be an F [G]-module andW an F [G]-submodule.
We have V = W ⊕W ′ for some F -vector subspace. Let e : V → W ↪→ V be the
idempotent and let e′ = 1

#G
∑
g∈G g ◦ π ◦ g−1. Then e′ ∈ EndF [G](V ), e′|W = idW ,

and im(e′) = W . Thus V = W ⊕ ker(e′) as F [G]-modules. Therefore, F [G] is
semisimple.

Conversely, assume char(F ) | #G. Let s = ∑
g∈G g. We have gs = sg = s for all

g ∈ G, so that s ∈ Z(F [G]) and s2 = ∑
g∈G gs = #G · s = 0. Thus Fs is a nilpotent

ideal of F [G], and rad(F [G]) ⊇ Fs 6= 0.

The study of representations of finite groups can be divided into
• Ordinary representation theory for the case char(F ) ∤ #G; and
• Modular representation theory for the case char(F ) | #G.

We will focus on the ordinary case and refer the reader to [S2, Part III] and [CR,
Chapter XII] for the modular case, which is more involved.



140 CHAPTER 4. REPRESENTATIONS OF FINITE GROUPS

4.2 Absolutely simple modules
Let A be an F -algebra. For a field extension E/F , we write AE := A⊗F E. For an
A-module M , we write ME := M ⊗F E, which is an AE-module.

Remark 4.2.1. If ME is a simple AE-module, then M is a simple A-module. In
fact, if 0 6= N ⊊ M is an A-submodule, then NE can be identified with a nonzero
proper AE-submodule of ME.

Definition 4.2.2. We say that M is an absolutely simple A-module if ME is a
simple AE-module for every field extension E/F . In the case where A = F [G], we
say that the corresponding representation is absolutely irreducible.

Theorem 4.2.3. Let A be an F -algebra and M an A-module with dimF M < ∞.
Then the following conditions are equivalent:

(1) M is absolutely simple;
(2) MF̄ is simple for an algebraic closure F̄ of F ;
(3) ME is simple for every finite field extension E/F ;
(4) M is semisimple and EndA(M) = F ;
(5) The homomorphism A→ EndF (M) is surjective.

Proof. (1) =⇒ (2). Trivial.
(2) =⇒ (3). This follows from Remark 4.2.1.
(3) =⇒ (4). Let φ ∈ EndA(M). Choose an eigenvalue λ of φ as an F -linear

endomorphism and let E = F (λ). Let φE := φ⊗ idE ∈ EndAE
(ME) = D. Since ME

is simple, D is a division ring by Schur’s lemma. Since φE − λ is not invertible, we
have φE = λ is a scalar. Thus φ is a scalar.

(4) =⇒ (5). This follows from the Jacobson density theorem.
(5) =⇒ (1). For every field extension, AE → EndE(ME) is surjective. The

simplicity of ME follows.

Corollary 4.2.4. Let A be a commutative F -algebra and let M be an absolutely
simple A-module with dimF M <∞. Then dimF M = 1.

In particular, any absolutely irreducible finite-dimensional representation of a
commutative group is one-dimensional.

Proof. By (5), EndF (M) is commutative, which implies dimF M ≤ 1.

Corollary 4.2.5. Let A and B be F -algebras. Let M be an absolutely simple A-
module, N an absolutely simple B-module, with dimF M <∞, dimF N <∞. Then
M ⊗F N is an absolutely simple A⊗F B-module.

We leave it to the reader to state the corresponding result for group representa-
tions.

Proof. Indeed, the surjectivity of A → EndF (M) and B → EndF (N) implies the
surjectivity of A⊗F B → EndF (M)⊗F EndF (N) ' EndF (M ⊗F N).

Proposition 4.2.6. Let A be a finite-dimensional F -algebra, E/F a field extension,
N a simple AE-module. Then there exists a simple A-module M such that N is a
Jordan–Hölder factor of ME.
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Proof. Choose a composition series 0 = P0 ⊆ · · · ⊆ Pn = AA with each Mi :=
Pi/Pi−1 a simple A-module. Then ((Pi)E) is a filtration of (AE)AE

. By Schreier’s
refinement theorem, this can be refined into a composition series of (AE)AE

. Since
N is a Jordan–Hölder factor of (AE)AE

, it appears as a Jordan–Hölder factor of
some (Mi)E.

Definition 4.2.7. We say that a finite-dimensional F -algebraA splits if every simple
left A-module is absolutely simple. For a field extension E/F , we say that A splits
over E if the E-algebra AE splits. (In the case where A = F [G], we say that G
splits over E.)

Proposition 4.2.8. Let A be a finite-dimensional F -algebra.
(1) A splits if and only if A/rad(A) ' ∏r

i=1 Mni
(F ) for integers r ≥ 0, ni ≥ 1.

(2) If A splits, then A splits over every field extension E/F .
(3) If A splits over an algebraic extension K/F , then A splits over E ⊆ K finite

over F . In particular, any finite-dimensional A-algebra splits over a finite
extension of F .

It follows from (1) that the above definition is compatible with the definition
of split central simple algebras. Moreover, a finite-dimensional simple F -algebra is
split if and only if it is isomorphic to Mn(F ) for some n ≥ 1.

Proof. (1) This follows from the Wedderburn–Artin theorem in the form of Example
3.6.9, together with condition (4) of Theorem 4.2.3.

(2) Let N be a simple AE-module. By Proposition 4.2.6, there exists a simple
A-module M such that N is a Jordan–Hölder factor of ME. Since M is absolutely
simple, ME is simple and N 'ME. For every field extension, K/E, N ⊗EK 'MK

is simple.
(3) The second assertion follows from the first one applied to an algebraic closure

of F . Let M ′
1, . . . ,M

′
r be a system of representatives of isomorphism classes of

simple AK-modules. Choose an F -linear bases (a`) and (m(k)
i ) of A and (M ′

k)K
and write a`m

(k)
i = ∑

j c
(`)
`,i,jm

(k)
j with c

(k)
`,i,j ∈ F̄ . Let E be the subextension of

K/F generated by c
(`)
`,i,j. Then E/F is finite and we get AE-modules Mk with

Mk ⊗E F̄ ' M ′
k. Then Mk is absolutely simple. Let M be a simple AE-module.

Then HomAE
(M,Mk)⊗EK ' HomAK

(M ⊗EK, (Mk)⊗EK) is nonzero for some k.
It follows that M 'Mk as AE-module.

Proposition 4.2.9. Let A and B be split finite-dimensional F -algebras. Then A⊗F
B is split over F and every simple A⊗F B-module is isomorphic to M ⊗F N , where
M is a simple A-module and N is a simple B-module.

In particular, if G and H are finite group split over F , then G×H is split over
F and every irreducible representations of G×H over F is of the form ρ⊠σ, where
ρ and σ are irreducible representations of G and H over F , respectively.

Proof. Every simple A ⊗F B-module P is a Jordan–Hölder factor of A ⊗F BA⊗FB
,

and hence a Jordan–Hölder factor of M ⊗F N for some simple A-module M and
some simple B-module N . By Corollary 4.2.5, M ⊗F N is absolutely simple. Thus
P is isomorphic to M ⊗F N for some M and N as above.
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Semisimplicity and field extensions
Proposition 4.2.10. Let M be a semisimple A-module with dimF M <∞ and let
E/F be a separable extension. Then ME is a semisimple AE-module.

Proof. Let B be the image of A in EndF (M). Then dimF B < ∞ and B is a
semisimple F -algebra by Propositions 3.5.2 and 3.5.4. Then ME is a semisimple BE-
module by case (b) of Proposition 4.2.11 below. It follows that ME is a semisimple
AE-module.

Proposition 4.2.11. Let A ' ∏r
i=1 Mni

(Di) be a finite-dimensional semisimple
F -algebra, where each Di is a division F -algebra. Let E/F be a field extension.
Assume that (a) each Z(Di)/F is separable or (b) E/F is separable. Then AE is a
semisimple E-algebra.

Proof. We have AE '
∏r
i=1 Mni

((Di)E). Thus we may assume that A = D is a
division F -algebra. Then D ⊗F E ' D ⊗Z(D) Z(D) ⊗F E. By the lemma below
Z(D)⊗F E '

⊕m
j=1 Lj, where each Lj is a field. Then D⊗F E '

⊕m
j=1 D⊗Z(D) Lj,

where each D ⊗Z(D) Lj is a central simple Lj-algebra by Proposition 3.7.8.

Remark 4.2.12. It follows from the proof that if A is a central simple Z(A)-
algebra of degree d with [Z(A) : F ] < ∞ and satisfying (a) or (b) above, then
A⊗F E '

∏m
j=1 Bj, where each Bj is a central simple Z(Bj)-algebra of degree d. If,

moreover, E is a splitting field of A, then A ⊗F E '
∏m
j=1 Md(E). In this case, we

have m = [Z(A) : F ] by dimension count.

Lemma 4.2.13. Let E/F and K/F be field extensions with E/F separable. Assume
that (a) E/F is finite or (b) K/F is finite. Then E ⊗F K '

∏m
j=1 Lj with each Lj

a separable field extension of K.

Proof. (a) We have E = F (x) ' F [X]/(P (X)) (either by the primitive element
theorem or by reduction to the case of a simple extension), where P (X) ∈ F [X] is
a separable polynomial. Let P (X) = ∏m

j=1 Qj(X) with Qj(X) ∈ E[X] irreducible.
Then E ⊗F K '

∏m
j=1 K[X]/(Qj(X)).

(b) We reduce easily to two cases: K/F separable or purely inseparable. If K/F
is separable, then applying (a), we get E ⊗F K '

∏m
j=1 Lj with Lj separable over

F . If E/F is purely inseparable, then E/F and K/F are linearly disjoint (Example
3.1.13) and E ⊗F K is a field separable over K by Remark 3.1.9.

Remark 4.2.14. By case (a), for any finite étale commutative F -algebra A (Defi-
nition 1.22.25), AE is a finite étale commutative E-algebra.

Proposition 4.2.15. Let A be a finite dimensional F -algebra. The following con-
ditions are equivalent:

(1) For every field extension E/F , AE is semisimple.
(2) For an algebraic closure F̄ of F , AF̄ is semisimple.
(3) A ' ∏r

i=1 Mni
(Di), where each Di is a division F -algebra with Z(Di)/F sep-

arable.
Under Condition (3), A splits over any Galois extension of E/F containing all
Z(Di), and, in particular, over a finite separable extension of F .
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Proof. (1) =⇒ (2). Trivial.
(2) =⇒ (3). By the Wedderburn–Artin theorem, we have A ' ∏r

i=1 Mni
(Di).

Moreover, Z((Di)F̄ ) ' Z(Di)⊗F F̄ by Proposition 3.7.8, so that Z(AF̄ ) ' ∏r
i=1 Z(Di)⊗F

F̄ . If Z(Di)/F is not separable, then Z(Di)⊗F F̄ is not reduced (exercise), and we
get a nonzero nilpotent element x ∈ Z(AF̄ ). Then Ax ⊆ rad(AF̄ ), contradicting the
semisimplicity of AF̄ .

(3) =⇒ (1). This is case (a) of Proposition 4.2.11.
For the last two assertions, note that, in the proof of Proposition 4.2.11, Z(D)⊗F

E is a finite product of E by Example 3.8.2 under the assumption that Z(D) ⊆ E
and E/F Galois. Thus we may assume that Z(Di) = F for all i. Then it suffices
to take E/F to be a finite separable extension containing a maximal subfield of Di

containing F for each i.

Combined with Maschke’s theorem, we obtain the following result.

Corollary 4.2.16. Let G be a finite group satisfying char(F ) ∤ #G. Then G splits
over a finite separable extension of F .

Linear independence of matrix coefficients
Theorem 4.2.17 (Frobenius–Schur). Let A be an F -algebra, M1, . . . ,Mr absolutely
simple left A-modules such that dimF Mk < ∞ for all k and Mk 6' M` for k 6= `.
Choose F -linear bases (m(k)

i )1≤i≤nk
of Mk and (m̌(k)

j )1≤j≤nk
of M̌k := HomF (Mk, F ).

Then the functions
c

(k)
i,j : A→ F a 7→ m̌

(k)
j (am(k)

i ),

where 1 ≤ k ≤ r, 1 ≤ i, j ≤ nk are F -linearly independent.

Proof. Let M = ⊕r
k=1 Mk. Let B be the image of A in EndF (M). Then B

is a finite-dimensional semisimple F -algebra by Propositions 3.5.2 and 3.5.4 and
M1, . . . ,Mr are pairwise nonisomorphic absolutely simple B-modules. By Theorem
4.2.3, EndB(M) = F r. By the Jacobson density theorem, λ : B → ∏r

k=1 EndF (Mk)
is a surjection. By the definition of B, λ is an injection. Thus λ is an isomorphism.
(One can also deduce this from the Wedderburn–Artin theorem.) The functions c(k)

i,j

factor through B and form a basis of HomF (B,F ).

Corollary 4.2.18. Let G be a group, (V1, ρ1), . . . , (Vr, ρr) absolutely irreducible
finite-dimensional representations of G over F . Choose F -linear bases (v(k)

i )1≤i≤nk

of Vk and (v̌(k)
j )1≤j≤nk

of V̌k. Then the functions

c
(k)
i,j : G→ F g 7→ v̌

(k)
j (ρk(g)v(k)

i ),

where 1 ≤ k ≤ r, 1 ≤ i, j ≤ nk are F -linearly independent.

The corollary holds in fact for monoids and generalize the linear independence
of degree one characters (Lemma 1.15.5).
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Characters
Definition 4.2.19. Let A be an F -algebra and M a left A-module with dimF M <
∞. We call the F -linear map

χM : A→ F a 7→ tr(a,M)

the character of M .

Remark 4.2.20. (1) Let 0→M ′ →M →M ′′ → 0 be a short exact sequence of
A-modules. Then χM = χM ′ + χM ′′ . In particular, χM depends only on the
isomorphism class of M . Moreover, χM vanishes on rad(A), since the same
holds for χN with N simple.

(2) Let [A,A] ⊆ A be the additive subgroup generated by elements of the form
ab− ba, a, b ∈ A, which is an F -linear subspace (but not an ideal in general).
Then χM vanishes on [A,A].

Corollary 4.2.21 (Linearly independence of characters). The characters of the
isomorphism classes of absolutely simple left A-modules Mk with dimF Mk <∞ are
F -linearly independent.

In particular, for absolutely simple left A-modules M and M ′, χM = χM ′ if and
only if M 'M ′.

Proof. In Theorem 4.2.17, we take (m̌(k)
i ) to be a dual basis of (m(k)

i ). Then χMk
=∑nk

i=1 c
(k)
i,i .

The corollary has the following variant.

Proposition 4.2.22. Assume that char(F ) = 0. The characters of the isomorphism
classes of simple left A-modules Mk with dimF Mk <∞ are F -linearly independent.
In particular, for left A-modules M and M ′, χM = χM ′ if and only if JH(M) =
JH(M ′).

Proof. It suffices to prove the first assertion. As in Theorem 4.2.17, we may as-
sume that dimF A < ∞. By the Wedderburn–Artin theorem, A = ⊕r

i=1 Ak, where
Ak = EndDk

(Mk), Dk = EndA(Mk), M1, . . . ,Mr is a system of representatives of
isomorphism classes of simple A-modules. Let ek ∈ A be the idempotent corre-
sponding to Ak, so that ek|M`

= δk,`. Then χMk
(e`) = 0 for k 6= ` and χMk

(ek) =
dimF Mk 6= 0.

Definition 4.2.23. Let G be a group and (V, ρ) a finite-dimensional linear repre-
sentation of G over F . We call the function

χ(V,ρ) : G→ F g 7→ tr(ρ(g))

the character of (V, ρ).

If χ = χ(V,ρ), then χ(hgh−1) = χ(g). In other words, it is constant on conjugacy
classes of G. A function G → F satisfying this condition is called a class function
(or central function) on G. We let ClassFunct(G,F ) denote the F -vector space of
class functions G → F . For A = F [G], restriction via the embedding G ↪→ F [G]
induces an isomorphism HomF (A/[A,A], F ) ∼−→ ClassFunct(G,F ).
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Warning 4.2.24. χ(V,ρ) is in general nonconstant on the commutator subgroup
[G,G].

Remark 4.2.25. (1) If dimF V = 1, then χ(V,ρ) = ρ.
(2) χV (1) = dimF V . This is called the dimension (or degree) of χV .
(3) χρ⊗ρ′(g) = χρ(g)χρ′(g).
(4) χρ̌(g) = χρ(g−1).
(5) Assume that G is finite. Then χρ(g) is a sum of roots of unity (in a separable

closure of F ). Moreover, for F = C, χρ(g−1) is the complex conjugate of χρ(g).

Example 4.2.26. If G is a finite group and reg denotes the regular representation

of G, then χreg(g) =

#G g = 1
0 g 6= 1.

Corollary 4.2.21 and Proposition 4.2.22 apply to characters as follows. The
character of an (absolutely) irreducible representation is said to be (absolutely)
irreducible.

Corollary 4.2.27. Let G be a group. The absolutely irreducible characters of G
over F are F -linearly independent. If char(F ) = 0, then the irreducible characters
of G over F are F -linearly independent and finite-dimensional representations V
and V ′ satisfy χV = χV ′ if and only if JH(V ) ' JH(V ′).

4.3 Characters of finite groups
Let G be a finite group and F a field.

Assumption 4.3.1. In this section, we assume char(F ) ∤ #G. By Maschke’s theo-
rem, this is equivalent to assuming that F [G] is semisimple.

Proposition 4.3.2. Let V1, . . . , Vr be a system of representatives of irreducible rep-
resentations of G over F . Let K/F be a field extension such that K is a splitting
field of G. Then (Vi)K '

⊕ti
j=1 W

⊕di
i,j , where Di = EndF [G](Vi), ti = [Z(Di) : F ],

d2
i = dimZ(Di)(Di), and Wi,j, 1 ≤ i ≤ r, 1 ≤ j ≤ ti, form a system of representa-

tives of irreducible representations of G over K. Moreover, if K/F is finite, then
tidi | [K : F ] for every i.

The number di is called the Schur index of Vi.

Proof. By the Wedderburn–Artin theorem, F [G] ' ∏r
i=1 Ai, whereAi = EndDi

(Vi) '
Mni

(Dop
i ). Note that Ai is a central simple Z(Di)-algebra of degree nidi. By Proposi-

tion 4.2.15, Z(Di)/F is separable. Thus, by Remark 4.2.12, (Ai)K '
∏ti
j=1 Mnidi

(K).
By Proposition 3.7.35, di | [K : Z(Di)] = [K:F ]

ti
, where Z(Di) is regarded as a subfield

of K via the j-th embedding.

If ni denotes the multiplicity of Vi in the regular representation of G over F ,
then the regular representation of G over K takes the form ⊕r

i=1
⊕ti

j=1 W
⊕nidi
i,j , so

that dimKWi,j = dini, and #G = ∑r
i=1 ti(dini)2.
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Corollary 4.3.3. χV1 , . . . , χVr are F -linearly independent. Moreover, char(F ) ∤ di.

In particular, for irreducible representations V and V ′ of G over F , χV = χV ′ if
and only if V ' V ′. We have already seen some special cases in the previous section.

Proof. We have χVi
= di

∑ti
j=1 χWi,j

. Since χVi
6= 0, char(F ) ∤ di. Since Wi,j are

absolutely irreducible, χWi,j
are linearly independent.

Let K/F be a field extension. We say that a representation W of G over K can
be realized over F if there exists a representation V of G over F such that VK ' W .

Corollary 4.3.4. Let K/F be a field extension such that K is a splitting field of G.
Then F is a splitting field of G if and only if every irreducible representation of G
over K is realizable over F .

Proof. The “only if” part follows from Proposition 4.2.6. For the “if” part, there
exist representations Vi,j of G over F such that (Vi,j)K ' Wi,j. Then Vi,j is absolutely
irreducible. Since χVi,j

= χWi,j
, we have χVi

= di
∑ti
j=1 χVi,j

. By the previous lemma,
ti = 1 and Vi ' Vi,1. Thus Vi is absolutely irreducible.

Next we strengthen the independence of characters. Let χ, χ′ : G→ F be func-
tions. We define

〈χ, χ′〉 = 1
#G

∑
g∈G

χ(g)χ′(g−1) ∈ F.

This is a symmetric and F -bilinear form.

Theorem 4.3.5 (First orthogonality relation for characters). Let V and V ′ be ir-
reducible representations of G over F . Then

〈χV , χV ′〉 =

dimF (EndF [G](V )) V ' V ′

0 V 6' V ′.

Let V1, . . . , Vr be a system of representatives of the isomorphism classes of irre-
ducible representations of G over F . Then, by the Wedderburn–Artin theorem,

(4.3.1) F [G] '
r∏
i=1

EndDi
(Vi),

where Di = EndF [G](Vi). Then 1 = ∑
i ei with ei ∈ EndDi

(Vi) ei|Vj
= δi,j.

Lemma 4.3.6. Let V be an irreducible representation of V and let eV be the corre-
sponding idempotent element in the above decomposition. Let nV be the multiplicity
of V in the regular representation. Then

eV = nV
#G

∑
g∈G

χV (g−1)g.

In particular, char(F ) ∤ nV .
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Proof. Let χreg be the character of F [G]F [G] . Write eV = ∑
h∈G ahh. Then

χreg(eV g−1) =
∑
h∈G

ahχreg(hg−1) = ag#G.

On the other hand, χreg(eV c) = nV χV (c). In particular, χreg(eV g−1) = nV χV (g−1).
Thus ag = nV

#GχV (g−1). The last assertion follows from the fact that eV 6= 0.

Proof of Theorem 4.3.5. By the lemma, 〈χV , χV ′〉 = 1
nV
χV ′(eV ). For V 6' V ′,

χV ′(eV ) = 0. For V ' V ′, χV ′(eV ) = χV ′(1) = dimF V . Finally, dimF V =
nV dimF D, where D = EndF [G](V ).

Corollary 4.3.7. Let W and W ′ be finite-dimensional representations of G over F .
Then 〈χW , χW ′〉 = dimF HomF [G](W,W ′).

Proof. Since W and W ′ are semisimple, we may assume that they are irreducible.
In this case, the equality is the first orthogonality relation.

Corollary 4.3.8. Assume char(F ) = 0.
(1) For finite-dimensional representations W and W ′, χW = χW ′ if and only if

W ' W ′.
(2) For χ = ∑

V mV χV , where χV runs through irreducible characters and mV ∈
F , we have mV = 〈χ, χV 〉/ dimF (EndF [G](V )).

(3) A finite-dimensional representation W is absolutely irreducible if and only if
〈χW , χW 〉 = 1.

Proof. (1) This follows from Corollary 4.2.27.
(2) This follows from the theorem.
(3) This follows from Corollary 4.3.7.

Next we study the space of class functions.

Lemma 4.3.9. Let H be a group. For each finite conjugacy class C of H, let
sC := ∑

g∈C g ∈ F [H]. Then the sC form an F -linear basis of Z(F [H]).

In other words, the map

Z(F [H])→ Map(H,F )
∑
g

agg 7→ (g 7→ ag)

identifies Z(F [H]) with class functions with finite support.

Proof. Let c = ∑
g agg ∈ F [H]. Then c ∈ Z(F [H]) if and only if ch = hc for all

h ∈ H. Note that hch−1 = ∑
g aghgh

−1. Thus c ∈ Z(F [H]) if and only if ahgh−1 = ag
for all g, h ∈ H. In other words, c ∈ Z(F [H]) if and only if ag is constant on every
conjugacy class of H.

By (4.3.1), Z(F [G]) ' ∏r
i=1 Z(Di). Let s be the number of conjugacy classes of

G, which is also dimF ClassFunct(G,F ). It follows then from the lemma that

s =
r∑
i=1

[Z(Di) : F ].

We have proved the following.
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Theorem 4.3.10. The following conditions are equivalent:
(1) Z(Di) = F ;
(2) r = s;
(3) The irreducible characters form an F -linear basis of ClassFunct(G,F ).

These conditions are satisfied if G splits over F .

For each conjugacy class C of G, we let 1C denote the indicator function of
C ⊆ G. Then (1C)C form a basis of ClassFunct(G,F ). For G split over F , the
transition matrix between the from the basis (χV )V to the basis (1C)C can be given
as follows.

Theorem 4.3.11 (Second orthogonality relation for characters). Assume that G is
split over F . Then for g, h ∈ G,

(4.3.2)
∑
V

χV (g)χV (h−1) =


#G
#C if g, h belong to the same conjugacy class C
0 otherwise.

Here V runs through isomorphism classes of irreducible representations of G over
F .

In other words,
∑
V

χV (g)χV (h−1) =
∑
C

#G
#C

1C(g)1C(h) = #G
#Ch

1Ch
(g),

where C runs through conjugacy classes of G, and Ch denotes the conjugacy class
of h. Moreover, #G/#Ch = #ZG(h), where ZG(h) = {g ∈ G | gh = hg} denotes
the centralizer of h in G.

One way to prove the second orthogonality is via the following bimodule version
of the Wedderburn–Artin theorem.

Theorem 4.3.12. Let R be a semisimple ring. Then RR R '
⊕r
i=1 Mi⊗Dop

i
M ′

i , where
M1, . . . ,Mr is a system of representatives of the isomorphism classes of simple left
R-modules, Di = EndR(Mi), M ′

i = HomDi
(Mi, Di).

Corollary 4.3.13. Assume that G is split over F . Let G × G act on F [G] by
ρ(g, h) : x 7→ gxh−1. Then

(4.3.3) (F [G], ρ) '
⊕
V

V ⊠ V̌ ,

where V runs through isomorphism classes of irreducible representations of G over
F .

Proof of Theorem 4.3.11. This follows from evaluating the traces of (g, h) on both
sides of (4.3.3). Note that ρ(g, h) permutes the basis G of F [G], so that tr(ρ(g, h))
equals the cardinality of the fixed point set {x ∈ G | gxh−1 = x}, which equals the
righthand side of (4.3.2).

Let us summarize some character formulas for G split over F : we have r = s,
ni = dimF Vi, #G = ∑r

i=1 n
2
i , χreg = ∑r

i=1 niχi, and χi(1) = ni (in F ). Moreover,
〈χi, χj〉 = δi,j.
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Example 4.3.14. Let G = Σ3 with #Σ3 = 6. There are three conjugacy classes:

{e}, {(12), (13), (23)}, {(123), (132)}.

There are two obvious characters of dimension 1: χ0 = 1 and χ1 = sgn. We denote
the remaining irreducible character by θ. Assume that G is split over F . Then
6 = 12 + 12 + n2

θ, so that nθ = 2. We deduce θ from χreg = χ0 +χ1 + 2θ. Here is the
table of irreducible characters of Σ4.

g e (12), (13), (23) (123), (132)
#Cg 1 3 2
χ0(g) 1 1 1
χ1(g) 1 −1 1
θ(g) 2 0 −1

The character θ is the character of the obvious representation of Σ3 on V = ker(F 3 Σ−→
F ), called the standard representation of Σ3, which must be irreducible. It follows
that Σ3 splits over any field of characteristic 6= 2, 3.

The first orthogonality is the orthogonality of the rows of the character table,
weighted by #C. The second orthogonality is the orthogonality of the columns.

We have V ⊗ V ' (F, χ0) ⊕ (F, χ1) ⊕ V . Indeed, if V ⊗ V ' (F, χ0)⊕m0 ⊕
(F, χ1)⊕m1 ⊕ V ⊕mV , then χ2

V = m0χ0 + m1χ1 + mV θ, which implies m0 ≡ m1 ≡ 1
(mod char(F )) and mV ≡ 1 (mod char(F )). We conclude by m0,m1, 2mV ≤ 4 =
dimF V and char(F ) 6= 2, 3.

Example 4.3.15. Let G = A4 be the alternating group with #A4 = 12. There are
four conjugacy classes:

{e}, C = {(12)(34), (13)(24), (14)(23)},
{(123), (134), (142), (243)}, {(132), (124), (143), (234)}.

Assume that F contains a primitive cube root of unity ω. Recall that V = {e} ∪ C
is a normal subgroup of A4. The quotient A4/V is cyclic of order 3, and thus has
three characters of dimension 1. Inflation gives us three characters χ0 = 1, χ1, χ2
of A4 of dimension 1. Assume that G is split over F . We denote the remaining
irreducible character by θ. Then 12 = 12 + 12 + 12 + n2

θ, so that nθ = 3. We deduce
θ from χreg = χ0 + χ1 + χ2 + 3θ. Here is the character table of A4:

g e (12)(34) (123) (132)
#Cg 1 3 4 4
χ0(g) 1 1 1 1
χ1(g) 1 1 ω ω2

χ2(g) 1 1 ω2 ω
θ(g) 3 −1 0 0

The character θ is the character of the obvious representation ofA4 on V = ker(F 4 Σ−→
F ), which must be irreducible. It follows that A4 splits over a field of characteristic
6= 2, 3 if and only if it contains a primitive cube root of unity.
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Example 4.3.16. Let G = Dn be the dihedral group of order 2n. We have Dn =
〈r, s | rn = 1, s2 = 1, srs = r−1〉. Every element of Dn is of the form rk or srk, for
0 ≤ k ≤ n− 1. Assume that F contains a primitive n-th root of unity ζ. Then, for
h ∈ Z, we have representations ρh : Dn → GL2(F ) given by

ρh(rk) =
(
ζhk 0
0 ζ−hk

)
, ρh(srk) =

(
0 ζ−hk

ζhk 0

)
.

For 0 < h < n/2, ζh 6= ζ−h, so that the only lines stabilized by ρh(r) are the coor-
dinate axes, which are not stabilized by ρh(s). Thus, for such h, ρh is (absolutely)
irreducible. We let χh denotes the character of ρh. The χh for 0 < h < n/2 are
distinct. In fact, if a = ζh + ζ−h, then ζh and ζ−h are the only roots of X2−aX+ 1.
There are two characters of dimension 1, ψ1 and ψ2.

For n odd, these exhaust all the irreducible representations up to isomorphism:
2× 12 + n−1

2 × 22 = 2n. For n even, there are two more characters of dimension 1,
ψ3 and ψ4: 4× 12 + (n2 − 1)× 22 = 2n. Here is the character table for Dn:

g rk srk

ψ1(g) 1 1
ψ2(g) 1 −1

(n even) ψ3(g) (−1)k (−1)k
(n even) ψ4(g) (−1)k (−1)k+1

χh(g) ζkh + ζ−kh 0

We have (F 2, ρ0) ' (F, ψ1)⊕ (F, ψ2) and, if n is even, (F 2, ρn/2) ' (F, ψ3)⊕ (F, ψ4).
Some other useful forms of ρh are (assuming ζh 6= ±1 for ρ′′

h)

ρ′
h(rk) =

(
cos 2hkπ

n
− sin 2hkπ

n

sin 2hkπ
n

cos 2hkπ
n

)
, ρ′

h(srk) =
(

cos 2hkπ
n

− sin 2hkπ
n

− sin 2hkπ
n
− cos 2hkπ

n

)
;

ρ′′
h(r) =

(
0 −1
1 ζh + ζ−h

)
, ρ′′

h(s) =
(

0 1
1 0

)
.

Here cos 2π
n

= ζ+ζ−1

2 and sin 2π
n

= ζ−ζ−1

2i . We have

ρ′′
h(g) =

(
1 −ζh
−ζh 1

)
ρh(g)

(
1 −ζh
−ζh 1

)−1

for g ∈ Dn. It follows that a field of characteristic ∤ 2n splits Dn if and only if it
contains ζ + ζ−1. In particular, D1, D2, D4 split over any field of characteristic 6= 2
and D3, D6 split over any field of characteristic 6= 2, 3.

4.4 Induced representations
Remark 4.4.1. Let f : S → R be a morphism of rings. Restriction of scalars gives
a functor f ∗ : R-Mod→ S-Mod, which admits a left adjoint

f! : S-Mod→ R-Mod, MS 7→ R⊗S M
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and a right adjoint

f∗ : S-Mod→ R-Mod, MS 7→ HomS(R,M).

For MS and NR , we have isomorphisms, special cases of Remark 2.8.10:

HomR(R⊗S M,N) ' HomS(M, f ∗N)
α 7→ (m 7→ α(1⊗m))

(r ⊗m 7→ rβ(m))←[ β,
HomS(f ∗N,M) ' HomR(N,HomS(R,M))

α 7→ (n 7→ (r 7→ α(rn))
(n 7→ β(n)(1))←[ β.

We fix a field F . Let φ : H → G be a homomorphism of groups, inducing a
homomorphism of F -algebras F [φ] : F [H] → F [G]. Translating the above into the
language of representations, the pullback functor φ∗ : RepF (G)→ RepF (H) admits
a left adjoint

φ! : RepF (H)→ RepF (G), V 7→ F [G]⊗F [H] V

and a right adjoint

φ∗ : RepF (H)→ RepF (G), V 7→ HomF [H](F [G], V ).

Proposition 4.4.2 (Frobenius reciprocity). Let V and W be representations of H
and G over F , respectively. Then we have canonical isomorphisms

HomF [G](φ!V,W ) ' HomF [H](V, φ∗W ),
HomF [H](φ∗W,V ) ' HomF [G](W,φ∗V ).

These functors are transitive in the following sense: For a sequence P ψ−→ H
φ−→ G

be homomorphisms of groups, we have (φψ)∗ = ψ∗φ∗ by definition. Moreover, we
have canonical isomorphisms (φψ)∗ ' φ∗ψ∗ and (φψ)! ' φ!ψ!.

Restriction via the inclusion G ↪→ F [G] induces an isomorphism

φ∗(V, ρ)
∼−→ {f : G→ V | f(φ(h)g) = ρ(h)f(g), ∀h ∈ H, g ∈ H}.

G acts on the righthand side by right translation: (gf)(g′) = f(g′g). In the sequel
we will identify φ∗(V, ρ) with the righthand side.

Every φ can be decomposed into a surjective homomorphism, followed by an
inclusion.
Remark 4.4.3. Assume that φ : H → G is a surjective homomorphism. Let K =
ker(φ). Then we have an isomorphism

φ∗(V, ρ) ' V K

f 7→ f(1)
(h 7→ ρ(h)v)←[ v.

Here V K ⊆ V denotes the subspace of K-invariants. On the other hand, F [G] '
F [H]/I, where I is the ideal generated by k−1, k ∈ K. Thus φ!(V, ρ) ' VK := V/IV ,
which is called the space of K-coinvariants. Here IV ⊆ V is the F -linear subspace
generated by ρ(k)v − v for k ∈ K, v ∈ V .
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In the sequel we assume that H is a subgroup of G and that φ : H ↪→ G is the
inclusion.

Definition 4.4.4. We write resGH for φ∗, IndGH for φ∗, and indGH for φ!. We call
IndGH(V ) the induced representation and indGH(V ) the compactly induced representa-
tion.1

The terminology and notation is somewhat explained by the following.

Proposition 4.4.5. The homomorphism of representations of G

indGH(V )→ IndGH(V ) g ⊗ v 7→

g′ 7→

g′gv g′g ∈ H
0 otherwise


is an injection and its image consists precisely of those maps f : G→ V in IndGH(V )
that are supported on the union of finitely many right cosets of H. In particular, if
H has finite index in G, then indGH(V ) ∼−→ IndGH(V ).

Proof. The inverse from the subspace of maps finitely supported modulo H to
indGH(V ) is given by f 7→ ∑

ḡ∈G/H g ⊗ f(g−1), where g is a representative of the
coset ḡ.

Remark 4.4.6. Let S be a set of representatives of H\G. As F -vector spaces
IndGH(V ) ' Map(S, V ) = V S and indGH(V ) ' V ⊕S. In particular, dimF indGH(V ) =
(G : H) dimF (V ).

Example 4.4.7. indH{1}(1) ' F [H] is the regular representation. For every character
χ of H of dimension 1, we have a surjective homomorphism of F -algebras F [H]→ F
carrying h to χ(h), whose kernel is the ideal generated by h − χ(h). This gives a
morphism φ : indH{1}(1)→ (F, χ) of representations of H, corresponding to the iden-
tity map 1 ' resH{1}χ by Frobenius reciprocity. The morphism indGH(φ) : indG{1}(1)→
indGH(χ) can be identified the projection F [G] → F [G]/∑h∈H F [G](h − χ(h)). In
particular, for χ = 1, indGH(1) ' F [G]/∑h∈H F [G](h− 1) is the permutation repre-
sentation associated to the action of G on G/H.

Dually the identity map resH{1}χ ' 1 induces by Frobenius reciprocity a morphism
of representations ψ : (F, χ)→ IndH{1}χ. Assume that H is finite. Identifying IndH{1}χ

with F [H], we have eχ := ψ(1) = ∑
h∈H χ(h−1)h ∈ F [H]. We have indGH(χ) '

F [G]eχ carrying g ⊗ 1 to geχ, and the morphism indGH(ψ) : indGH(χ) → indG{1}(1)
can be identified with the inclusion F [G]eχ ↪→ F [G]. The composition indGH(χ) →
F [G]→ indGH(χ) is multiplication by #H.

Proposition 4.4.8. Let W be an irreducible representation of G and V a subrep-
resentation (resp. quotient) of resGH(W ). Then W is a quotient of indGH(V ) (resp. a
subrepresentation of IndGH(V )).

1In older literature, indG
H(V ) is called the induced representation and IndG

H(V ) the coinduced
representation.
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Proof. If V is a subrepresentation of resGH(W ), then, by Frobenius reciprocity, we
have a nonzero homomorphism indGH(V ) → W , which must be surjective by the
irreducibility of W . On the other hand, if V is a quotient of resGH(W ), then, by
Frobenius reciprocity, we have a nonzero homomorphism W → IndGH(V ), which
must be an injection.

Corollary 4.4.9. Assume that H is an abelian subgroup of G with (G : H) =
d < ∞ and F is a splitting field for H. Then every finite-dimensional irreducible
representation W of G over F has dimension ≤ d.

Proof. Let V be an irreducible subrepresentation of resGH(W ). Then dimF V = 1
by Corollary 4.2.4 and dimF indGH(V ) = d. By the proposition, W is a quotient of
indGH(V ), so that dimF W ≤ dimF indGH(V ) = d.

We described the restrictions of the induced representations to {1} in Remark
4.4.6. Next we describe the restriction of the induced representation to more general
subgroups. It is convenient to introduce the following.

Notation 4.4.10. For g ∈ G, let cg : Hg := g−1Hg → H be the homomorphism
given by h 7→ ghg−1. For a representation (V, ρ) of H, we let (V g, ρg) denote c∗

g(V, ρ).

Theorem 4.4.11 (Mackey). Let H and K be subgroups of G and let (V, ρ) be a
representation of H over F . Then we have isomorphisms of representations of K:

resGKIndGH(V ) ∼−→
∏

ḡ∈H\G/K
IndKHg∩KresHg

Hg∩K(V g),

resGK indGH(V ) ∼−→
⊕

ḡ∈H\G/K
indKHg∩KresHg

Hg∩K(V g),

f 7→ (fg),

where g ∈ G is any representative of the double coset ḡ, and fg : K → V is given by
k 7→ f(gk).

Proof. The inverse sends (fg) to f : G → V with f(hgk) = ρ(h)fg(k) for h ∈ H,
K ∈ K.

Remark 4.4.12. To a group G, we associate a category BG with one object ∗ and
with EndBG(∗) = G. The category RepF (G) can be identified with Fun(BG,VectF ).
For a homomorphism of groups H → G, φ∗ corresponds to composition with the
functor Bφ : BH → BG. Moreover, φ! and φ∗ correspond respectively to left and
right Kan extensions of functors in category theory.

For functors F1 : C1 → C and F2 : C2 → C, we let C1 ×h
C C2 denote the homotopy

fiber product: the objects are triples (X1, X2, α), where Xi is an object of Ci and
α : F1X1

∼−→ F2X2 is an isomorphism in C; a morphism (X1, X2, α)→ (Y1, Y2, β) is an
pair (f1, f2) with fi : Xi → Yi in Ci such that βF1(f1) = F2(f2)α. Then BK×h

BGBH
is a groupoid, namely, a category in which all morphisms are isomorphisms. We
have an equivalence of categories ⨿ḡ∈H\G/K B(Hg ∩ K) → BK ×h

BG BH with the
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component at ḡ carrying ∗ to (∗, ∗, g) and k ∈ Hg ∩K to (k, gkg−1). Consider the
square

BK ×h
BG BH ψ′

//

φ′

��

BH
φ

��
BK ψ // BG,

commutative up to a natural isomorphism. We can rephrase Mackey’s theorem in
the following way: the natural transformations

ψ∗φ∗ → φ′
∗ψ

′∗, ψ∗φ! ← φ′
!ψ

′∗,

induced from the natural isomorphism ψ′∗φ∗ ' φ′∗ψ∗ by adjunction, are natural
isomorphisms. Such statements about adjoint functors are sometimes referred to as
the Beck–Chevalley condition.

Corollary 4.4.13. Let H be a normal subgroup of G. Then

resGHIndGH(V ) '
∏

ḡ∈G/H
V g, resGH indGH(V ) '

⊕
ḡ∈G/H

V g.

Corollary 4.4.14. Let G be a finite group with char(F ) ∤ #G and let H be a
subgroup. Let V be an absolutely irreducible representation of H over F . Then
indGH(V ) is absolutely irreducible if and only if for every g ∈ G, g 6∈ H, we have

HomF [Hg∩H](resHg

Hg∩H(V g), resHHg∩H(V )) = 0.

Proof. By Maschke’s theorem and Theorem 4.2.3, indGH(V ) is absolutely irreducible
if and only if EndF [G](indGH(V )) = F . By Frobenius reciprocity,

EndF [G](indGH(V )) ' HomF [H](resGH indGH(V ), V )
' HomF [H](

⊕
ḡ∈H\G/H

indHHg∩HresHg

Hg∩H(V g), V )

'
∏

ḡ∈H\G/H
HomF [Hg∩H](resHg

Hg∩H(V g), resHHg∩H(V )),

where we used Mackey’s theorem. For ḡ ∈ H\G/H, the factor is EndF [H](V ) = F .
Thus EndF [G](indGH(V )) = F if and only if all the other factors are zero.

Proposition 4.4.15. Let H be a subgroup of G of finite index and let (V, ρ) be a
finite-dimensional representation of H over F . Then, for all x ∈ G,

χindG
H(V )(x) =

∑
ḡ∈H\G
ḡ=ḡx

χV (gxg−1) =
∑

ḡ∈G/H
xḡ=ḡ

χV (g−1xg),

where g ∈ G is any representative of the coset ḡ.

Note that ḡx = ḡ if and only if x ∈ Hg. Moreover, χV (gxg−1) = χV g(x). If x is
not conjugate to an element of H, then χindG

H(V )(x) = 0.
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Proof. We have an isomorphism

IndGH(V ) ∼−→
∏

ḡ∈H\G
MapH(Hg, V ),

where MapH(Hg, V ) := {f : Hg → V | f(hg) = ρ(h)f(g)}. Since x permutes the
factors, we have

χIndG
H(V )(x) =

∑
ḡ∈H\G
ḡ=ḡx

tr(x,MapH(Hg, V )).

Moreover, we have an isomorphism of Hg-representations

MapH(Hg, V ) ∼−→ V g f 7→ f(g).

Indeed, for x ∈ Hg, (xf)(g) = f(gx) = f(gxg−1g) = ρ(gxg−1)f(g). This finishes
the proof of the first equality. The second one is obtained by taking g 7→ g−1.

Remark 4.4.16. Dually we can also prove the character formula using the tensor
product description of indGH(V ). We have an isomorphism

F [G]⊗F [H] V '
⊕

ḡ∈G/H
ḡF [H]⊗F [H] V.

Since x permutes the summands, we have

χindG
H(V ) =

∑
ḡ∈G/H
xḡ=ḡ

tr(x, ḡF [H]⊗F [H] V ).

Finally, we have an isomorphism of gHg−1-representations

V
∼−→ ḡF [H]⊗F [H] V v 7→ g ⊗ v.

Indeed, for x ∈ gHg−1, we have x(g ⊗ v) = gg−1xg ⊗ v = g ⊗ (g−1xg)v.

Definition 4.4.17. Let H be a subgroup of G of finite index. For a class func-
tion χ : H → V , we define the induced class function indGHχ : G → V by x 7→∑
ḡ∈G/H
xḡ=ḡ

χ(g−1xg).

The character formula for induced representations can be stated as χindG
H(V ) =

indGHχ. We leave it to the reader to state and directly verify a version of Mackey’s
theorem for class functions.

Corollary 4.4.18. Let G be a finite group with char(F ) ∤ #G and let H be a
subgroup of G. Let χ : H → F and θ : G→ F be class functions. Then

〈θ, indGHχ〉G = 〈resGHθ, χ〉H .

Proof. Up to replacing F by an extension, we may assume that F is a splitting field
for G and H. Then χ and θ are F -linear combinations of characters by Theorem
4.3.10 and we are reduced to the case of characters. We conclude by Frobenius
reciprocity and Corollary 4.3.7.
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Example 4.4.19. Let G = A4, H = V . Assume char(F ) 6= 2, 3 and let χ be
a nontrivial character of V ' (Z/2Z)2 of dimension 1. Then indA4

V χ equals the
character θ of Example 4.3.15.

Example 4.4.20. Let G = Dn, H = 〈r〉 ' Z/nZ. Assume char(F ) ∤ 2n and
that F contains a primitive n-th root of unity ζ. Let φh be the character of 〈r〉
of dimensional 1 given by φh(rk) = ζhk. Then indDn

〈r〉φh equals the character χh of
Example 4.3.16. We note however that χh is the character of a representation that
can be realized over the smaller field F0(ζ + ζ−1), where F0 denotes the prime field
of F .

4.5 Representations of the symmetric group
Recall that any permutation g ∈ Σn is a product of disjoint cycles. Up to adding
cycles of length 1, we may assume that every integer in 1, . . . , n appears in one of
the cycles. The cycle type of g is the collection of lengths of the cycles, which is a
partition of n in the following sense.

Definition 4.5.1. A partition λ = (λ1 ≥ · · · ≥ λr) of n is a collection of positive
integers such that λ1 + · · ·+ λr = n. In this case, we write λ ` n.

Two permutations are conjugate in Σn if and only if they have the same cycle
type. Thus the conjugacy classes of Σn are in bijection with partitions of n.

A partition λ = (λ1 ≥ · · · ≥ λr) can be visualized as a Young diagram with λi
boxes on the i-th row. For example, the Young diagram of λ = (3 ≥ 2) is2

(4.5.1)

A Young tableau of shape λ ` n is the Young diagram corresponding to λ, with
1, . . . , n filled in without repetition. For example the Young diagram (4.5.1) can be
filled into the Young tableau

(4.5.2) 4 5 2
3 1

The group Σn acts freely and transitively on the set of Young tableaux of shape
λ ` n by permuting the integers.

Two Young tableaux t and t′ are said to be row equivalent if for each i, the i-th
row of t and the i-th row of t′ have the same set of integers. The row stabilizer
subgroup of t is Rt < Σn consisting of elements g ∈ Σt such that t and gt are row
equivalent. Similarly, we can define column equivalence and column stabilizers. The
latter is denoted by Ct. For the Young tableau t in (4.5.2), Rt = Σ{2,4,5} × Σ{1,3}
and Ct = Σ{3,4} × Σ{1,5}.

Let F be a field.
2We adopt the English notation. In the French notation, the diagram is upside down: .
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Definition 4.5.2. For a Young tableau t, we define the Specht module St to be the
image of the canonical morphism (Example 4.4.7)

indΣn
Ct

(sgn)→ F [Σn]→ indΣn
Rt

(1)

of representations of Σn over F .

Remark 4.5.3. Unwinding the definition, St can be identified with F [Σn]ct, where
ct = esgn|Ct

e1Rt
= ∑

g∈Rt

∑
h∈Ct

sgn(h)hg ∈ F [G]. This element is called the Young
symmetrizer.

For t of shape (n), ct = ∑
g∈Σn

g and for t of shape (1 ≥ · · · ≥ 1), ct =∑
g∈Σn

sgn(g)g. For any F -vector space V , we discussed the effects of these two
symmetrizers on the representation V ⊗n of Σn above Proposition 3.1.21.

Theorem 4.5.4. Assume that char(F ) ∤ n!. Then each St is absolutely irre-
ducible and every irreducible representation of Σn over F is isomorphic to some
St. Moreover, St ' St

′ if and only if t and t′ have the same shape. In particu-
lar, shape(t) 7→ [St] gives a one-to-one correspondence between partitions of n and
isomorphism classes of representations of Σn over F .

Corollary 4.5.5. Σn splits over any field of characteristic ∤ n!.

It is convenient to define a canonical representative of the isomorphism class
corresponding to a partition λ as follows. A row equivalence class of Young tableaux
is called a tabloid. We denote the tabloid containing a tableau t by {t} and we
visualize it by removing the vertical edges in the tableau. For example, for the
tableau t in (4.5.2), the tabloid {t} is visualized as

4 5 2
3 1

The group Σn acts transitively on the set of Young tabloids of shape λ ` n by
g{t} = {gt}, with Rt being the stabilizer of {t}. We let Mλ denote the corresponding
permutation representation. We have an isomorphism

(4.5.3) indΣn
Rt

(1) ∼−→Mλ, g ⊗ 1 7→ g{t}.

We define et := esgn|Ct
= ∑

h∈Ct
sgn(h)h ∈ F [Σn], vt = et{t} ∈Mλ for t of shape

λ, and Sλ = ∑
shape(t)=λ Fvt.

Lemma 4.5.6. For every g ∈ G, we have

Rgt = gRtg
−1, Cgt = gCtg

−1, egt = getg
−1, vgt = gvt.

Proof. The first (resp. second) equality follow from the fact that ht is row (resp.
column) equivalent to t if and only if ght = (ghg−1)(gt) is row (resp. column)
equivalent to gt. It follows that egt = ∑

h∈Ct
sgn(g−1hg)g−1hg = et. Finally, vgt =

getg
−1{gt} = gvt.

It follows that for any t of shape λ, Sλ = ∑
g∈G Fvgt = F [G]vt.
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Proposition 4.5.7. The isomorphism (4.5.3) induces an isomorphism St
∼−→ Sλ.

We call Sλ the Specht module of shape λ.

Proof. By Example 4.4.7, St = F [G](et ⊗ 1). Thus the image of St under (4.5.3) is
F [G]vt = Sλ.

Example 4.5.8. For λ = (n), Sλ = Mλ = 1. For λ = (1 ≥ · · · ≥ 1), Mλ is the
regular representation, Ct = Σn for any tableau t of shape λ, and Sλ = sgn.

For λ = (n − 1 ≥ 1), we have a bijection from the set of tabloids of shape λ to
{1, . . . , n} carrying {t} to its value on the second row. We denote the Young tabloid
mapping to i by mi. Then Mλ = ⊕n

i=1 Fmi with obvious action of Σn, and Sλ is
spanned by mi−mj. In other words, Sλ can be identified with ker(F n Σ−→ F ), which
is called the standard representation of Σn and denoted by std if char(F ) ∤ n!. Note
that χMλ(g) equals the number of fixed points of g on {1, . . . , n}, and χSλ(g) =
χMλ(g)− 1.

In general, χMλ(g) is the number Young tabloids of shape λ fixed by g.

Remark 4.5.9. If λ ` n and λ′ denotes the transpose (or conjugate) partition of λ
corresponding to the transposed Young diagram, then Sλ

′ ' sgn ⊗ (Sλ)∨. Indeed,
for any finite group G and c = ∑

g∈G agg ∈ F [G], we have a commutative diagram

F [G]
f '
��

φc∗ // F [G]
f'
��

F [G]∨ φ∨
c // F [G]∨,

where f(g) = g∨, (g∨)g∈G is a dual basis of G, c∗ = ∑
g∈G agg

−1, and φc is right
multiplication by c. Thus im(φc∗) ' im(φ∨

c ). Moreover, for G = Σn, im(φc−) '
sgn ⊗ im(φc), where c− = ∑

g∈Σn
sgn(g)agg. If t is a tableau and t′ denotes its

transpose, then ct
′ = (c∗

t )−.
Since every g ∈ Σn is conjugate to g−1, we have (Sλ)∨ ' Sλ if char(F ) ∤ n!

(exercise).

Example 4.5.10. Here is the character table of Σ4 (assuming char(F ) 6= 2, 3).

g e (12) (123) (1234) (12)(34)
#Cg 1 6 8 6 3

1 1 1 1 1 1
sgn 1 −1 1 −1 1
χstd 3 1 0 −1 −1

sgn · χstd 3 −1 0 1 −1
χ 2 0 −1 0 2

Here χ is obtained by inflation from the standard representation of Σ3 via Σ4 →
Σ4/V ' Σ3.

We will first prove the absolute irreducibility of Sλ.
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Lemma 4.5.11. Let t be a tableau with n boxes. For every transposition h ∈ Ct,
et ∈ F [Σn](1 − h). If h ∈ Ct ∩ Rs is a transposition for a tableau s with n boxes,
then et{s} = 0.

Proof. Let (hi) be a system of representatives of Ct/〈h〉. Then

et =
∑
i

sgn(hi)hi −
∑
i

sgn(hi)hih =
∑
i

sgn(hi)hi(1− h).

For h ∈ Rs, (1− h){s} = 0.

Lemma 4.5.12. Let t be a tableau of shape λ. Then etM
λ = Fvt. Moreover, if s

is a tableau of shape λ satisfying et{s} 6= 0, then et{s} = ±vt.

Proof. By the previous lemma, the integers in the first row of s lie in different
columns of t. Thus there exists h ∈ Ct that carries these integers to the first row
of t. Then the first rows of {ht} and {s} coincides. Proceeding row by row, we can
find g ∈ Ct such that g{t} = {s}. Then

et{s} =
∑
h∈Ct

sgn(h)hg{t} = sgn(g)et{t} = ±vt.

This implies etMλ ⊆ Fvt. The inclusion in the other direction is trivial: et{t} =
vt.

Proposition 4.5.13. Let λ ` n. Then HomF [Σn](Sλ,Mλ) = F · id.

Proof. Let t be a tableau of shape λ. For any φ ∈ HomF [Σn](Sλ,Mλ), φ(vt) =
etφ({t}) = cvt for some c ∈ F by the previous lemma. We conclude by the fact that
Sλ = F [Σn]vt.

Corollary 4.5.14. Assume char(F ) ∤ n!. Then Sλ is absolutely irreducible.

Proof. We have EndF [Σn](Sλ) ⊆ HomF [Σn](Sλ,Mλ) = F · id, and thus is either F · id
or 0. It remains to show that Sλ is nonzero. Let t be a tableau of shape λ such that
for every i < j, the integers on the i-th row are all smaller than the integers on the
j-th row. Then the only element h ∈ Ct satisfying h{t} = {t} is h = e. It follows
that the coefficient of {t} in vt is 1. In particular, 0 6= vt ∈ Sλ.

To finish the proof of the theorem, we need a bit more combinatorial preliminar-
ies.

Definition 4.5.15. For λ, µ ` n with λ = (λ1 ≥ · · · ≥ λr) and µ = (µ1 ≥ · · · ≥ µs),
we say that λ dominates µ and we write λ . µ, if ∑k

i=1 λi ≥
∑k
i=1 µi for all k ≥ 1.

Here we convene that λi = 0 for i > r and µi = 0 for i > s.

The dominance relation on partitions of n is a partial order. There is no domi-
nance between (4 ≥ 1 ≥ 1) and (3 ≥ 3).

Lemma 4.5.16. Let λ, µ ` n and let t and s be tableaux of shapes λ and µ, respec-
tively. Assume that the integers in each row of s lie in different columns of t. Then
λ . µ.
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Proof. The first row of s has µ1 integers, which are in different columns of t. Up to
replacing t by ht with h ∈ Ct, we may assume that these numbers are in the first
row of t. Thus λ1 ≥ µ1.

The second row of s has µ2 integers, which are in different columns of t. Up to
replacing t by ht with h ∈ Ct, we may assume, without modifying the integers of the
previous step, that these integers are in the first two rows of t. Then λ1+λ2 ≥ µ1+µ2.
We continue in this way and conclude by induction.

It follows from Lemmas 4.5.11 and 4.5.16 that if etMµ 6= 0, then λ . µ.

Proposition 4.5.17. Let λ, µ ` n such that HomF [Σn](Sλ,Mµ) 6= 0. Then λ . µ.

Proof. Let φ ∈ HomF [Σn](Sλ,Mµ). For every tableau of shape λ, φ(vt) = etφ({t}),
which is zero unless λ . µ.

Proof of Theorem 4.5.4. We have already seen that Sλ is absolutely irreducible. As-
sume Sλ ' Sµ. Then HomF [Σn](Sλ,Mµ) 6= 0. By the proposition, λ . µ. By
symmetry, µ . λ. Thus µ = λ.

It follows that the Sλ represent p(n) isomorphism classes of irreducible represen-
tations, where p(n) denotes the number of partitions of n. The number of isomor-
phism classes of irreducible representations is less than or equal to the number of
conjugacy classes, which equals p(n). Thus the Sλ exhaust all isomorphism classes
of irreducible representations.

In the rest of this section we assume char(F ) ∤ n!.

Corollary 4.5.18. Let µ ` n. Then Mµ '⊕λ.µ(Sλ)⊕mλ,µ with mµ,µ = 1.

Proof. We have Mµ ' ⊕λ`n(Sλ)⊕mλ,µ . By Proposition 4.5.17, µλ,µ = 0 unless λ . µ.
Moreover, µµ,µ = 1 by Proposition 4.5.13.

Young’s rule says that mλ,µ equals the Kostka number, the number of semis-
tandard tableaux of shape λ and type µ. Given λ, µ ` n, a generalized tableau of
shape λ and type µ is the Young diagram for λ filled with integers, with the integer
i repeated µi times.3 A semistandard tableau of type µ is a generalized tableau of
which each row is nondecreasing and each column is increasing.

For µ = (1 ≥ · · · ≥ 1), Mµ is the regular representation and dimF S
λ = mλ,µ is

the number of standard Young tableaux of shape λ. A standard Young tableau is a
Young tableau with increasing rows and columns, namely a semistandard tableau
of type (1 ≥ · · · ≥ 1). In fact, vλ, λ running through standard Young tableaux of
shape λ, form an F -linear basis of Sλ. Another description of the dimension of Sλ
is the hook length formula (Frame–Robinson–Thrall):

dimF S
λ = n!∏

x h(x),

where x runs through boxes of the Young diagram for λ and h(x) denotes the length
of the hook with corner x, namely the number of boxes directly below or directly to
the right of x, including x itself.

We refer to [S1] for a proof of these facts and more on the symmetric group.
3A Young tableau is a generalized tableau of type (1 ≥ · · · ≥ 1).
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Example 4.5.19. Here is the character table of Σ5 (assuming char(F ) 6= 2, 3, 5).

g e (12) (123) (1234) (12345) (12)(34) (123)(45)
#Cg 1 10 20 30 24 15 20

1 1 1 1 1 1 1 1
sgn 1 −1 1 −1 1 1 −1

χstd 4 2 1 0 −1 0 −1
sgn · χstd 4 −2 1 0 −1 0 1
χ∧2std 6 0 0 0 1 −2 0
χV 5 1 −1 −1 0 1 1

sgn · χV 5 −1 −1 1 0 1 −1

To obtain the last three lines, we use the formulas (exercise)

χSym2V (g) = χV (g)2 + χV (g2)
2

, χ∧2V (g) = χV (g)2 − χV (g2)
2

.

to compute χ∧2std and χSym2std = (10, 4, 1, 0, 0, 2, 1). Then

〈χ∧2std, χ∧2std〉 = 1, 〈χSym2std, χSym2std〉 = 3, 〈χSym2std,1〉 = 1, 〈χSym2std, std〉 = 1.

Thus Sym2std ' 1⊕ std⊕ V for a representation V of dimension 5. The character
χV = χSym2std − 1− χstd satisfies 〈χV , χV 〉 = 1. Let us check that ∧2std and V are
irreducible representations. This is clear if char(F ) = 0. For char(F ) = p, writing
V ' ⊕

i V
⊕mi
i with Vi irreducible, we get ∑imini = 5 and ∑

im
2
i ≡ 1 (mod p),

where ni = dimF Vi. The only solution is mi = 1 for exactly one i and mi = 0 for
all other i. For ∧2std, note that the only representations of dimension 1 are 1 and
sgn (which follows for example from the fact the Jordan–Hölder factors of Σ5 are A5

and Z/2Z), and 〈χ∧2std,1〉 = 〈χ∧2std, sgn〉 = 0. It follows that ∧2std '⊕i V
m′

i
i with

Vi irreducible and ni = dimF Vi ≥ 2. Then ∑
im

′
ini = 6 and ∑

im
′2
i ≡ 1 (mod p),

and the only solution is m′
i = 1 for exactly one i and m′

i = 0 for all other i.

Since χ∧2std = sgn ·χ∧2std, it is the character of Sλ for the only partition λ = (3 ≥
1 ≥ 1) ` 5 satisfying λ′ = λ. Finally, we need to identify χS(3≥2) and χS(2≥2≥1) . One
checks that χM(3≥2) equals χSym2std. Indeed, the Young tabloids of shape (3 ≥ 2)
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fixed by g are as follows.

e (12) (123) (1234) (12345) (12)(34) (123)(45)

all 10 1 2 3
4 5

1 2 3
4 5

(none) (none) 1 2 3
4 5

1 2 4
3 5

1 2 5
3 4

1 2 5
3 4

3 4 5
1 2

3 4 5
1 2

Then χM(3≥2) = 1 + χstd + χ. It follows that χS(3≥2) = χV and χS(2≥2≥1) = sgn · χV .

Consider V = Mn−1≥1 = ⊕n
i=1 Fmi = 1 ⊕ std and V ⊗n (where Σn acts on

each copy of V but does not permute the copies). Then V ⊗n contains the regular
representation of Σn. Indeed, the map F [G]→ V ⊗n given by a 7→ a(m1⊗ · · · ⊗mn)
is injective. It follows that every irreducible representation of Σn is a factor of std⊗k

for some 0 ≤ k ≤ n.
One can show that S(n−k≥1≥···≥1) ' ∧k std.
There are several other approaches to the representation theory of the symmetric

group, of which we mention the recent one of Vershik and Okounkov based on the
chain Σ1 < · · · < Σn−1 < Σn [VO].

4.6 Induction theorems
Definition 4.6.1. We say that a group G is supersolvable if there exists an ascending
chain of subgroups {1} = G0 < · · · < Gn = G of normal subgroups of G such that
Gi/Gi−1 is cyclic for all 1 ≤ i ≤ n. We say that a group G is nilpotent if there exists
a finite central series: an ascending chain of subgroups {1} = G0 < · · · < Gn = G
of normal subgroups of G such that Gi/Gi−1 ⊆ Z(G/Gi−1) for all 1 ≤ i ≤ n.

Remark 4.6.2. (1) A supersolvable group is clearly solvable.
(2) A central extension of a supersolvable group by a finite abelian group is su-

persolvable. It follows that a finite nilpotent group is supersolvable.

Example 4.6.3. (1) Any abelian group is nilpotent.
(2) Any p-group is nilpotent. For this, it suffices to show that for every nontrivial

p-group G has nontrivial center. Consider the conjugation action of G on G.
The cardinality of each orbit is a power of p. Thus the cardinality of the fixed
point set Z(G) is congruent to #G modulo p. In other words, p | #Z(G).
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(3) Dn is supersolvable: 〈r〉 < Dn. However, D3 is not nilpotent: Z(D3) = {1}.
(4) A4 is solvable but not supersolvable.

Theorem 4.6.4. Let G be a finite supersolvable group. let F be a field char(F ) 6=
#G, splitting all subgroups of G. Then every irreducible representation of G over F
is induced from a 1-dimensional representation of some subgroup.

Lemma 4.6.5. Let G be a nonabelian supersolvable group. There exists a normal
abelian subgroup N of G such that N ⊋ Z(G).

Proof. The quotient Ḡ = G/Z(G) is supersolvable. Let 1 = Ḡ0 ⪇ · · · ⪇ Ḡn = Ḡ
be a sequence of normal subgroups of Ḡ with Ḡi/Ḡi−1 cyclic for all i. In particular,
Ḡ1 = 〈g〉 is cyclic. Then it suffices to take N to be the inverse image of Ḡ1 in G.
Note that N is abelian since it is generated by Z(G) and any g ∈ G of image ḡ.

Lemma 4.6.6 (Clifford). Let G be a group and N /G a normal subgroup. Let (V, ρ)
be an irreducible representation of G over F . Then

resGN(V ) '
⊕
i∈I

(Wi)⊕J ,

where the Wi are irreducible representations of N satisfying Wi 6' Wi′ for i 6= i′.
Moreover, for every i ∈ I, we have V ' indGHi

(W⊕J
i ), where Hi < G is the stabilizer

of W⊕J
i , and (G : Hi) = #I.

Proof. Choose an irreducible subrepresentation W of resGN(V ). Since V is irre-
ducible, we have resGN(V ) = ∑

ḡ∈G/N ρ(g)W . We have ρ(g)W ' W g−1 . Let H =
{g ∈ G | W g−1 ' W}. Then W ′ := ∑

h̄∈H/N ρ(h)W ' W⊕J for some J . Moreover,

resGN(V ) =
∑

ḡ∈G/H
ρ(g)W ′ '

∑
ḡ∈G/H

(W⊕m)g−1
.

The sum is a direct sum decomposition into isotypic components. Thus G permutes
the isotypic components and H is the stabilizer of W⊕J . Finally, we have

indGH(W ′) = F [G]⊗F [H] W
′ ∼−→

⊕
ḡ∈G/H

ρ(g)W ′ = V

given by g ⊗ v 7→ ρ(g)v.

Remark 4.6.7. Let φ : G→ Ḡ be a surjective homomorphism, H̄ < Ḡ a subgroup
and H = φ−1(H̄). For any representation V of Ḡ, composition with φ induces
φ∗IndḠH̄

∼−→ IndGH(φ∗
HV ), where φH : H → H̄ is the restriction of φ.

Proof of Theorem 4.6.4. We proceed by induction on #G. Let (V, ρ) be an irre-
ducible representation of G. Then (V, ρ) is the inflation of a representation of
Ḡ = G/ ker(ρ). By the previous remark, we may assume that (V, ρ) is a faith-
ful representation4, namely that ker(ρ) = 1. If G is abelian, then F splits G and

4A faithful F [G]-module is a faithful representation of G over F , but the converse does not hold
in general.
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dimF V = 1 by Corollary 4.2.4. Otherwise, by Lemma 4.6.5, there exists a normal
abelian subgroup N / G that is not contained in Z(G). We apply Lemma 4.6.6.
Since F splits N , we have dimF Wi = 1. If n = 1, then every g ∈ N acts by
scalar multiplication by χW1(g) on V , so that ρ(N) ⊆ Z(ρ(G)), which contradicts
the assumption that N is not contained in Z(G). Thus H ⊊ G and V ' indGH(W ),
where W is a representation of H. Since V is irreducible, so is W . We conclude by
induction hypothesis.

Remark 4.6.8. The assumption that F splits subgroups of G cannot be dropped.
For example, for G = Z/3Z, the simple R[G]-module of dimension 2 is not induced
from a representation of dimension 1.

A representation induced from a 1-dimensional representation is called mono-
mial. A finite group such that all irreducible representations over C are monomial is
called an M-group (or monomial group). Thus supersolvable groups are M-groups.
Taketa showed that M-groups are solvable.

Example 4.6.9. (1) We have seen that A4 is an M-group, but not supersolvable.
(2) Let G < H× be the union of H = {±1,±i,±j,±k} and the 16 elements

±1±i±j±k
2 . Then H is solvable: {1} < {±1} < H < G is a composition

series. However, G is not an M-group. The map G → H ⊗R C ' M2(C)
carrying g to g ⊗ 1 gives a 2-dimensional representation of G over C, which
is not monomial, because G has no subgroup of order 2. (As a side note,
G ' SL2(F3) := ker(det : GL2(F3)→ F×

3 ).)

Definition 4.6.10. For a prime number p, a product of a p-group with a cyclic
group of order prime to p is called a p-elementary group. A group is said to be
elementary if it is p-elementary for some prime p.

Elementary groups are clearly supersolvable.

Theorem 4.6.11. Let G be a finite group and F a field with char(F ) = 0.
(1) (Artin) Every character χ of G is a Q-linear combination of characters induced

from characters of cyclic subgroups. More precisely, there are integers aH ∈ Z
such that χ = ∑

H
aH

(NG(H):H) indGH(1), where H runs through cyclic subgroups of
G.

(2) (Brauer) Assume that F splits G. Then every character of G is a Z-linear
combination of characters induced from characters of elementary subgroups.
In particular, every character of G is a Z-linear combination of monomial
characters.

For a proof we refer to [S2, §§9, 10] and [J, §5.12].
Brauer’s theorem is very useful in reducing problems about representations to

the special case of 1-dimensional representations. Brauer used it to prove that Artin
L-functions are meromorphic. Here is another application.

Corollary 4.6.12. Let G be a finite group of exponent m and let F be a field with
char(F ) = 0 and containing a primitive m-th root of unity. Then F is a splitting
field of G.
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Proof. Let K/F be a splitting field of G. By Corollary 4.3.4, it suffices to show
that every representation W of G over K can be realized over F . By Brauer’s
theorem, χW = ∑n

i=1 aiindGHi
(λi), where for each i, ai ∈ Z, Hi < G is a subgroup and

λi : Hi → K is a character of dimension 1. For every g ∈ Hi, λi(g)m = λi(gm) = 1,
so that λi(g) ∈ F . Note that indGHi

(F, λi) is a representation of G over F . It follows
that χW = ∑r

i=1 ciχVi
, where ci ∈ Z and V1, . . . , Vr are irreducible representations of

G over F with Vi 6' Vj for i 6= j. Then (Vi)K and (Vj)K have no common irreducible
factor. It follows that W ' (Vi)K for some i.

Corollary 4.6.13. Let G be a finite group of exponent m and let F be a field
with char(F ) = 0. Let V be an irreducible representation of G over F and let
D = EndF [G](V ). Let t = [Z(D) : F ] and d2 = dimZ(D)(D). Then td | ϕ(m), where
ϕ is Euler’s totient function.

Proof. Let ζm be a primitive m-th root of unity. Then F (ζm) is a splitting field of
G. By Proposition 4.3.2, td | [F (ζm) : F ] | ϕ(m).

We end this section with some miscellaneous results. Given a field extension K
and a function χ : G → K, we let F (χ) denote the subfield of K generated by F
and χ(g), g ∈ G.

Proposition 4.6.14. Let G be a finite group and F a field with char(F ) ∤ #G. Let
K/F be an extension splitting G. Let V be an irreducible representation of G and
let W be an irreducible factor of VK. Let D = EndF [G](V ). Then there exists an
F -isomorphism Z(D) ' F (χW ).

For a representation (W,π) over a field K and σ ∈ Aut(K), we let (W σ, πσ)
denote the representation of G over K where W σ is W equipped with the structure
of K-vector space given by c ·Wσ w = σ(c) ·W w, for c ∈ K and w ∈ W . If
σ : K[G]→ K[G] denotes the ring homomorphism induced by σ, we haveW σ = σ∗W
as F [G]-module. Under a chosen K-linear basis of W , πσ(g) is obtained from π(g)
by applying σ−1. It follows that χWσ = σ−1χW .

Proof. We may assume that K/F is a finite Galois extension of group Γ. We have
D⊗F K '

∏
ιD⊗Z(D)K, where ι runs through F -embeddings Z(D)→ K. The fac-

tors correspond to isomorphism classes of irreducible factors of VK , with compatible
action of Γ. Let ι be the embedding corresponding to W . Let H be the stabilizer
of ι, which is also the stabilizer of χW . Then ι(Z(D)) = KH . Moreover, σ ∈ Γ
stabilizes χW if and only if σ fixes F (χW ). Thus F (χW ) = KH .

Proposition 4.6.15. Let G be a finite group and let F be a field of characteristic
p > 0 satisfying p ∤ #G.

(1) Let V be an irreducible representation of G over F . Then V is realizable over
Fp(χV ) and EndF [G](V ) is a field. In particular, the Schur index of V equals
1.

(2) Let χ1, . . . , χr be the irreducible characters of G over a splitting field of G of
characteristic p. Then Fp(χ1, . . . , χr) is a splitting field of G.
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Note that for G of exponent m, every χ(g) is a sum of m-th roots of unity.
Thus Corollary 4.6.12 holds with the condition char(F ) = 0 replaced by the weaker
condition that char(F ) ∤ #G.

Proof. (1) Let F0 = F (χV ). Let U be an irreducible representation of G over F0 such
that V is an irreducible factor of UF . By Wedderburn’s little theorem, EndF0[G](U)
is a field. Let K0/F0 be a finite abelian extension of group Γ such that K0 is a
splitting field of G. The multiplicities of the irreducible factors of VK0 are 1. Let
W be one of them. Then UK0 '

⊕
σ̄∈Γ/HW

σ−1 , where H is the stabilizer of W .
Moreover, VFK0 '

⊕
σ̄∈(Γ0+H)/HW

σ−1 , where Γ0 = im(Gal(FK0/F ) → Γ). Then
the stabilizer of χV in Γ is Γ0 +H. However, F (χV ) = F0 = KΓ

0 . Thus Γ = Γ0 +H
and V ' UF . It follows that EndF [G](V ) = EndF0[G](U)⊗F K is commutative.

(2) This follows from (1) and Corollary 4.3.4.

We state without proof the following partial improvement of Corollary 4.4.9.

Proposition 4.6.16. Let G be a finite group and H a normal abelian subgroup. Let
F be a splitting field of G with char(F ) ∤ #G. Then for every irreducible represen-
tation V of G, dimF (V ) | (G : H).

In the case char(F ) = 0, the proof uses algebraic integers [S2, §8.1]. For
char(F ) > 0, one lifts to characteristic zero [S2, §15.5].

4.7 Tannaka duality
Let F be a field and G a group. Let Φ: RepF (G)→ VectF be the forgetful functor
carrying (V, ρ) to V . We let Aut⊗(Φ) < Aut(Φ) denote the subgroup consisting of
natural automorphisms φ : Φ ∼−→ Φ such that for each pair of objects V and W in
RepF (G), φV⊗W = φV ⊗ φW .

Theorem 4.7.1 (Tannaka). The map T : G → Aut⊗(Φ) given by T (g)(V,ρ) =
ρ(g) : V → V is a group isomorphism.

This is a linear analogue of Remark 1.22.27.

Proposition 4.7.2. Let R be a ring and Φ: R-Mod → Ab the forgetful functor.
Then we have an isomorphism of rings

R ' End(Φ), r 7→ T (r), S(φ) := φR(1)←[ φ,
where T (r)M : M →M is given by r.

Proof. It is clear that ST = id. Let us check TS = id. Let φ ∈ End(Φ). For
every object M of R-Mod and every m ∈M , let f : R→M be the homomorphism
carrying 1 to m. Then φM(m) = φM(f(1)) = φR(1)m = TS(φ)M(m).

Lemma 4.7.3. Let ∆: F [G] → F [G] ⊗F F [G] be the F -linear map given by g to
g ⊗ g for g ∈ G. Let x ∈ F [G] be such that ∆(x) = x⊗ x. Then x = 0 or x ∈ G.
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Proof. Let x = ∑
g∈G agg. Then ∑g∈G agg ⊗ g = ∆(x) = x⊗ x = ∑

g,h∈G agahg ⊗ h.
Then ag = a2

g agah = 0 for g 6= h. Thus ag = 0 or 1 and there exists at most one g
with ag 6= 0.

Proof of Theorem 4.7.1. Let φ ∈ Aut⊗(Φ). Note that ∆: reg → reg ⊗ reg is a
morphism in RepF (G). Thus

∆(φreg(1)) = φreg⊗reg(∆(1)) = (φreg ⊗ φreg)(1⊗ 1) = φreg(1)⊗ φreg(1).

By the lemma, it follows that φreg(1) ∈ G. We claim that S : φ 7→ φreg(1) is an
inverse of T . It is clear that ST = idG. That TS = id follows from Proposition
4.7.2.

Remark 4.7.4. (1) For F separably closed and G finite, one can show that
RepF (G), regarded as a symmetric monoidal category, determines G up to
isomorphism [DM, Theorem 3.2].

(2) The F -algebra F [G] does not determine G. For example, for G finite abelian,
one can only recover #G from the C-algebra C[G] ' C#G.

(3) The category R-Mod does not determine the ring R. Two rings R and S
are said to be Morita equivalent if the categories R-Mod and S-Mod are
equivalent. For example, R and Mn(R) are Morita equivalent. Morita gave
criteria for such equivalences of categories. See [L1, §18].
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