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Chapter 1

Adèles, Idèles

1.1 Topological groups
Definition 1.1.1. A topological group is a group G equipped with a topology such
that the maps

G×G→ G (x, y) 7→ xy (multiplication)
G→ G x 7→ x−1 (inversion)

are continuous.

Remark 1.1.2. The continuity of the multiplication and inversion maps is equiva-
lent to the continuity of the map G×G→ G given by (x, y) 7→ x−1y.

Example 1.1.3.
(1) Any group equipped with the discrete topology is a topological group.
(2) The additive groups R, C equipped with the Euclidean topology are topological

groups. More generally, a finite-dimensional real vector space equipped with
the Euclidean topology is a topological group.

(3) The multiplicative groups R×, C× equipped with the Euclidean topology are
topological groups. More generally, the general linear groups GLn(R), GLn(C),
equipped with the Euclidean topology are topological groups.

(4) The additive group Qp and the multiplicative group Q×p equipped with the
topology defined by the p-adic absolute value are topological groups.

Remark 1.1.4. For x ∈ G, the map lx : G → G given by y 7→ xy, called left
translation by x, is continuous. Moreover, lx has a continuous inverse lx−1 , so lx is a
homeomorphism. Similarly, the map rx : G→ G given by y 7→ yx (right translation
by x) is a homeomorphism. It follows that G is a homogeneous space, in the sense
that given x, y ∈ G, there exists a homeomorphism G → G sending x to y (for
example, lyx−1 or rx−1y or ryl−1

x ). Thus G looks topologically the same at all points.
We can use translations to transfer topological properties from one point to another.

Lemma 1.1.5. For a topological group G, the following conditions are equivalent:
(1) G is Hausdorff;
(2) every point of G is closed;
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2 CHAPTER 1. ADÈLES, IDÈLES

(3) the identity element e ∈ G is closed.

Recall that a topological space X is Hausdorff if and only if the diagonal ∆X ⊆
X ×X is closed.

Proof. (1) ⇒ (2). Clear. (This holds in fact for any topological space.)
(2) ⇒ (3). Trivial.
(3) ⇒ (1). Indeed, (3) implies that ∆G = φ−1(e) is closed in G×G, where

φ : G×G→ G (x, y) 7→ x−1y.

Recall that a topological space is locally compact if every point admits a compact
neighborhood. Every closed subspace of a locally compact space is locally compact.
Recall the following fact from general topology:
• Every open subspace of a locally compact Hausdorff space is locally compact

([B1, I.9.7], [H, page 59]). Equivalently, for each point x of a locally compact
Hausdorff space, compact neighborhoods of x form a basis of neighborhoods
of x.

Definition 1.1.6. A locally compact group is a locally compact Hausdorff topolog-
ical group.

All the topological groups in Example 1.1.3 are locally compact groups. In (4),
Zp is a compact neighborhood of 0. Indeed, as the finite discrete spaces Z/pnZ are
compact, the compactness of Zp ' lim←−n Z/p

nZ follows from the following fact from
general topology.

Lemma 1.1.7. Let (Xi)i∈I be a system of compact Hausdorff spaces indexed by a
partially ordered set I. Then the limit lim←−i∈I Xi is compact Hausdorff.

Proof. (1) (Tychonoff’s Theorem) The product of a (possibly infinite) family of
compact spaces is compact.

(2) The product of a (possibly infinite) family of Hausdorff spaces is Hausdorff.
(3) The limit V = lim←−i∈I Xi of a system of Hausdorff spaces is a closed subspace of

the product X = ∏
i∈I Xi. Indeed, V is the intersection of the closed subspaces

Vij ⊆ X defined by αij(xi) = xj (inverse image of the graph in Xi ×Xj of the
transition map αij : Xi → Xj) for i ≤ j.

Subgroups
Lemma 1.1.8. Let G be topological group and let H ⊆ G be a subgroup. Then the
closure H̄ is a subgroup.

Proof. Indeed, we have φ−1(H) ⊇ H×H, which implies φ−1(H̄) ⊇ H ×H = H̄×H̄
by continuity.

Lemma 1.1.9. Every open subgroup H of a topological group G is closed.
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Proof. Indeed, every left coset gH is open, and H = G− ⋃gH 6=H gH.

Proposition 1.1.10. Every locally closed subgroup H of a topological group G is
closed.

Proof. By the preceding lemmas, H is an open subgroup of H̄, hence is closed in
H̄, thus closed in G.

Corollary 1.1.11. Every locally compact subgroup of a Hausdorff topological group
is closed. In particular, every discrete subgroup of a Hausdorff topological group is
closed.

Proof. Indeed, every locally compact subset of a Hausdorff space is locally closed,
because every compact subset of a Hausdorff space is closed.

Corollary 1.1.12. A subgroup H of a locally compact group is closed if and only if
H is locally compact.

Example 1.1.13. Z ⊆ R is a discrete (hence closed) subgroup. Zp ⊆ Qp is an open
(hence closed) subgroup.

Locally profinite groups
This subsection will not be used in the sequel of this chapter or in the next chapter.

The identity component of a topological group G is defined to be the connected
component containing the identity e. It is a normal closed subgroup.

Recall that a topological space X is called totally disconnected if the connected
components of X are one-point sets. Every subspace of a totally disconnected space
is totally disconnected. Every limit of totally disconnected spaces is totally dis-
connected. A topological group G is totally disconnected if and only if its identity
component is {e}. Totally disconnected groups are Hausdorff.

Proposition 1.1.14. Let G be a locally compact group. The following conditions
are equivalent:
(1) G is totally disconnected.
(2) Every neighborhood of e contains an open subgroup of G.
(3) The intersection of open subgroups of G is {e}.

Proof. (1) ⇒ (2). This is [B1, Section III.4, Proposition 14, Corollaire 1].
(2) ⇒ (3). Since G is Hausdorff, the intersection of neighborhoods of e is {e}.
(3)⇒ (1). Since open subgroups are closed, the identity component is contained

in every open subgroup.

Corollary 1.1.15. Let G be a topological group. The following conditions are equiv-
alent:
(1) G is compact and totally disconnected.
(2) G is a filtered limit of discrete finite groups.
(3) G is a limit of discrete finite groups.
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Proof. (1) ⇒ (2). By the proposition, open subgroups of G form a basis of neigh-
borhoods of e. Since G is compact, each open subgroup has finite index, hence only
a finite number of conjugates. The intersection of the conjugates is a normal open
subgroup of G. Thus normal open subgroups V of G form a basis of neighborhoods
of e. The continuous homomorphism f : G → lim←−V G/V has dense image. For ev-
ery e 6= g ∈ G, there exists V such that g 6∈ V . Thus f is injective. Since G is
compact and the target is Hausdorff, f is closed. Therefore, f is an isomorphism of
topological groups.

(2) ⇒ (3) ⇒ (1). Clear.

Definition 1.1.16. A topological group is locally profinite (resp. profinite) if it is
locally compact (resp. compact) and totally disconnected.

Example 1.1.17. Zp and Z×p are profinite groups. Qp and Q×p are locally profinite
groups.

Example 1.1.18. Let L/K be a (possibly infinite) Galois field extension. Then
Gal(L/K) ' lim←−F Gal(F/K) is a profinite group, where F runs through intermediate
fields such that F/K is a finite Galois extension. Conversely, for every profinite
group G and every field k, there exists an extension K/k and a Galois extension
L/K such that G ' Gal(L/K) (Exercise, due to Waterhouse).

Quotients
Let H be subgroup of a topological group G. The left coset space G/H is equipped
with the quotient topology. This is the finest topology on G/H such that the
quotient map q : G→ G/H is continuous. A subset V ⊆ G/H is open if and only if
q−1(V ) is open.

Proposition 1.1.19. (1) The quotient map q : G→ G/H is open.
(2) If H is a normal subgroup of G, then G/H is a topological group.

Proof. (1) Indeed, for any open subset U ⊆ G, q−1(q(U)) = ⋃
h∈H Uh ⊆ G is open,

so q(U) ⊆ G/H is open by the definition of quotient topology.
(2) We need to show that the map φ′ : G/H×G/H → G/H given by (x, y) 7→ x−1y

is continuous. The map sits in the commutative diagram

G×G φ //

q×q
��

G

q

��
G/H ×G/H φ′ // G/H,

where φ : (x, y) 7→ x−1y. The map q×q is open and surjective, hence a quotient
map. The continuity of φ and q then implies the continuity of φ′.

Remark 1.1.20. The product of two quotient maps of topological spaces is not
a quotient map in general. For example, if we equip Q ⊆ R with the subspace
topology and take q : Q→ X to be the quotient map identifying Z ⊆ Q to a point,
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then q× q is not a quotient map. Indeed, if U ⊆ R×R is an open subset such that
Ū ∩ ((Z×Q)∪ (Q×Z)) = ∅ and the closure of p2(Ū ∩ (Z×R)) contains some a ∈ Q,
then V = Ū ∩ (Q×Q) = (q × q)−1((q × q)(V )) is closed in Q×Q but (q × q)(V ) is
not closed because its closure contains (q × q)(0, a).

Proposition 1.1.21. (1) H is closed if and only if G/H is Hausdorff.
(2) H is open if and only if G/H is discrete.
(3) If G is locally compact, then G/H is locally compact.

Proof. (1) We use the notation in the proof of the previous proposition. If G/H
is Hausdorff, then {H} ⊆ G/H is closed, so H = q−1({H}) ⊆ G is closed.
Conversely, if H ⊆ G is closed, then (q × q)−1(∆G/H) = φ−1(H) ⊆ G × G is
closed, so that ∆G/H ⊆ G/H ×G/H is closed, that is, G/H is Hausdorff.

(2) Indeed, H is open⇔ the cosets gH are open⇔ all points of G/H are discrete.
(3) Since q is open, it sends a compact neighborhood of x ∈ G onto a compact

neighborhood of q(x) ∈ G/H.

Proposition 1.1.22 (First isomorphism Theorem). Let G and H be topological
groups and let f : G→ H be a continuous homomorphism. Then f = jf ′q:

G
q−→ G/Ker(f) f ′−→ Im(f) j−→ H,

where q is the quotient map, j is the inclusion, and f ′ is a continuous group iso-
morphism. If f is open or closed, then f ′ is an isomorphism of topological groups
(namely, a group isomorphism that is also a homeomorphism).

Proof. The first assertion is clear. If f is open or closed, then the same holds for f ′,
which implies that f ′ is a homeomorphism.

Example 1.1.23 (Second isomorphism theorem). Let G be a topological group,
let H ⊆ G be a normal subgroup and let L ⊆ G be a subgroup. Then the map
L → LH/H induces a continuous group isomorphism L/L ∩ H → LH/H. This is
not an isomorphism of topological groups in general. For example, if G = R, H = Z,
L = λZ, λ irrational, then L/L∩H = L is discrete, but (L+H)/H is dense in R/Z.

Remark 1.1.24 (Third isomorphism theorem). Let G be a topological group and
let H ⊆ L ⊆ G be subgroups such that H is a normal subgroup of G. Then the
map f : G/L→ (G/H)/(L/H) is a homeomorphism. In particular, if L is a normal
subgroup of G, then f is an isomorphism of topological groups.

We refer to [H] for a more detailed account of topological groups. See also [B1],
which discusses completeness [B1, Section III.3] and metrizability [B1, IX.3.1] among
other things.



6 CHAPTER 1. ADÈLES, IDÈLES

1.2 Global fields, Local fields

Valued fields
Definition 1.2.1. A topological ring is a ring R equipped with a topology such that
the maps

R×R→ R (x, y) 7→ x+ y

R×R→ R (x, y) 7→ xy

are continuous. A topological field is a field K equipped with a topology such that
the maps

K ×K → K (x, y) 7→ x+ y

K ×K → K (x, y) 7→ xy

K× → K× x 7→ x−1

are continuous.

Remark 1.2.2. The additive group of a topological ring is a topological group.
The additive group K and the multiplicative group K× of a topological field K are
topological groups.

Definition 1.2.3. An absolute value on a field K is a group homomorphism

K× → R×>0 x 7→ |x|,

extended by |0| = 0, satisfying the triangle inequality

|x+ y| ≤ |x|+ |y|

for x, y ∈ K. An absolute value on K is ultrametric (or non-Archimedean) if it
satisfies the stronger inequality

|x+ y| ≤ max{|x|, |y|}

for x, y ∈ K. A valued field (resp. ultrametric valued field) is a field equipped with
an absolute value (resp. ultrametric absolute value).

An absolute value on K defines a metric on K by d(x, y) = |x−y|. The topology
induced by this metric makes K a topological field.

Example 1.2.4. The trivial absolute value

|x| =

1 x ∈ K×

0 x = 0

defines the discrete topology on K.
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Remark 1.2.5. Let x 7→ |x| be an absolute value on K. For 0 < r ≤ 1, x 7→ |x|r
is an absolute value. This follows from the inequality (a + b)r ≤ ar + br for real
numbers a, b ≥ 0. Moreover, if |−| is ultrametric, then for all r > 0, |−|r is an
ultrametric absolute value.

Definition 1.2.6. Two absolute values on K are equivalent if they define the same
topology on K.

Proposition 1.2.7. Let x 7→ |x|1, x 7→ |x|2 be absolute values on a field K. The
following conditions are equivalent:
(1) There exists a real number r > 0 such that |x|1 = |x|r2.
(2) The two absolute values are equivalent.
(3) |x|1 < 1⇔ |x|2 < 1.

Moreover, if x 7→ |x|1 is nontrivial, then the following conditions are both equivalent
to the above conditions:
(4) The topology defined by x 7→ |x|1 is finer than the topology defined by x 7→ |x|2.
(5) |x|1 < 1⇒ |x|2 < 1.

Proof. We have
(1) +3 (2) +3

��

(4)

��
(3) +3 (5).

Indeed, the horizontal implications are trivial. For the vertical ones, it suffices to
note that |x|i < 1 ⇔ limn→+∞ x

n = 0 in the topology defined by |−|i. If |−|1 is
trivial, clearly (3) ⇒ (1). It remains to show (5) ⇒ (1), in the case when |−|1 is
nontrivial. In this case, there exists y ∈ K× such that |y|1 > 1. It follows by (5) that
|y|1 = |y|r2 for some r > 0. Let x ∈ K×. Then |x|1 = |y|a1 for some real number a. We
need to show |x|2 = |y|a2. The idea is to approximate a by rationals. For integersm,n
satisfying n > 0 and a < m/n, we have |x|1 < |y|m/n1 , namely, |xn/ym|1 < 1, which
implies by (5) that |xn/ym|2 < 1, namely |x|2 < |y|m/n2 . Similarly, for a > m/n,
|x|2 > |y|m/n2 . Thus |x|2 = |y|a2.

For a valued field K and a ∈ K, r ≥ 0, we consider the closed ball B≤r(a) = {x |
|x− a| ≤ r} and the open ball B<r(a) = {x | |x− a| ≤ r} of center a and radius r.

Ultrametric absolute values
Proposition 1.2.8. An absolute value |−| on K is ultrametric if and only if |−| is
bounded on the image of N in K. In particular, every absolute value on a field of
characteristic > 0 is ultrametric.

Proof. If the absolute value is ultrametric, then

|n · 1| = |1 + · · ·+ 1| ≤ |1| = 1.

Conversely, assume |n| ≤ C for n ∈ N. Then for a, b ∈ K,

|a+ b|n = |(a+ b)n| =
∣∣∣∣∣
n∑
i=0

(
n

i

)
aibn−i

∣∣∣∣∣ ≤
n∑
i=0

C|a|i|b|n−i ≤ C(n+ 1) max{|a|, |b|}n.
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Thus |a + b| ≤ C1/n(n + 1)1/n max{|a|, |b|}. Taking limit as n → +∞, we get
|a + b| ≤ max{|a|, |b|}. For the second assertion, it suffices to note that the image
of N in a field of characteristic > 0 is a finite set.

The ultrametric inequality implies that for |x| 6= |y|, we have |x+y| = max{|x|, |y|}.
Indeed, |y| = |(x + y) − x| ≤ max{|x|, |x + y|} implies |x + y| ≥ |x| and similarly
|x+ y| ≥ |y|.

Remark 1.2.9. Let K be an ultrametric valued field. Open balls are closed and
closed balls of positive radius are open. Any point of a ball is a center: b ∈ B≤r(a)
implies B≤r(a) = B≤r(b) and the same holds for open balls. The valuation ring
OK = B≤1(0) is an open subring of K and balls containing 0 are precisely the sub-
OK-modules of K. In particular, pK = B<1(0) is the unique maximal ideal of OK .
Balls containing 1 of radius < 1 and B<1(1) are subgroups of O×K .

An (additive) valuation on a field K is a homomorphism v : K× → R, extended
by v(0) = +∞, such that v(x + y) ≥ min{v(x), v(y)}. For any real number q > 1,
if we put |x| = q−v(x), then v is a valuation if and only if x 7→ |x| is an ultrametric
absolute value. A discrete valuation is a valuation v such that v(K×) ⊆ R is a
nontrivial discrete subgroup. We usually normalize discrete valuations by v(K×) =
Z. Elements π ∈ K such that v(π) = 1 are called uniformizers of K.

Example 1.2.10. Let K be the fraction field of a Dedekind domain OK . We
define a normalized discrete valuation vp on K for every maximal ideal p of OK by
xOK = ∏

p p
vp(x). Every nontrivial valuation on K, nonnegative on OK , is of the

form rvp for some r > 0 and some maximal ideal p.

Global fields
The ring of rational integers Z and the ring of polynomials k[T ] over a field k are both
principal ideal domains. Maximal ideals of Z are in bijection with rational primes.
There are infinitely many of them. Euclid gave the following proof in Elements: for
a nonempty finite set of primes S, 1 +∏

p∈S p has prime factors outside S. Maximal
ideals of k[T ] are in bijection with monic irreducible polynomials. Euclid’s argument
shows that there are infinitely many of them (trivial for k infinite). There are many
other analogies between Z and k[T ], as well as between their fraction fields Q and
k(T ), especially when k is a finite field.

Definition 1.2.11. A global field is either
(1) a number field, that is, a finite extension of Q, or
(2) a function field (of one variable over a finite field), that is, a finite extension

of Fp(T ).

Definition 1.2.12. A place of a global field K is an equivalence class of nontrivial
absolute values on K.

Remark 1.2.13. Let k be a field. The nontrivial valuations of k(T ), trivial on k,
are multiples of the following:
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(1) vP : k(T )× → Z for monic irreducible polynomials P , given byQ = c
∏
P P

vP (Q)

for c ∈ k×.
(2) v∞ : k(T )× → Z given by v∞(A/B) = deg(B)− deg(A), where A,B ∈ Fq[T ].

Indeed, if v(T ) ≥ 0, then v is nonnegative on Fq[T ] and we get (1) by Example
1.2.10. If v(T ) < 0, we get (2).

In particular, the places of Fq(T ) are given by the above valuations, since any
valuation on Fq is trivial. More generally, for any smooth projective curve C over a
finite field, the places of its function field are in bijection with closed points of C.

Remark 1.2.14. By Ostrowski’s theorem [B3, VI.6.3] or [N, Proposition II.3.7],
the places of Q are the following:
(1) Ultrametric places: given by the p-adic absolute values |−|p for rational primes

p.
(2) Archimedean place: given by the usual absolute value |−|∞.
More generally, the places of any number field K can be described as follows:

(1) Ultrametric places: given by vp for maximal ideals p of the ring of integers OK
of K.

(2) Archimedean places: given by |−|σ for embeddings σ : K → C. Here |x|σ =
|σ(x)|C, where |−|C denotes the usual absolute value on C. Two embeddings
σ and σ′ give the same place if and only if σ′ = σ̄.

The ultrametric case follows from Example 1.2.10 and let us sketch a proof in the
Archimedean case (2). For the first assertion, by Ostrowski’s theorem, it suffices
to show that any extension |−| of |−|∞ to K is given by |−|σ for some embedding
σ. For this let σ1 = σ̄1, . . . , σr1 = σ̄r1 , σr1+1 6= σ̄r1+1, . . . , σr1+r2 6= σ̄r1+r2 : K → C
be the embeddings. Consider the isomorphism K ⊗Q R ' Rr1 × Cr2 induced by
σ1, . . . , σr1+r2 . By the universal property of tensor product, the inclusion of K into
its completion K̂ with respect to |−| induce a homomorphism K ⊗Q R→ K̂, which
must factorize through, the projection from Rr1×Cr2 onto, say, its i-th factor. Then
|−| = |−|σi . The last assertion follows from the fact that the inclusion K → K⊗QR
has dense image.

Classification of complete Archimedean valued fields
Theorem 1.2.15 (Ostrowski). Every complete Archimedean valued field (K, |−|)
is isomorphic to (R, |−|rR) or (C, |−|rC) for some 0 < r ≤ 1, where |−|R and |−|C
denote the usual absolute values.

More generally every complete Archimedean valued division ring (K, |−|) is iso-
morphic to (R, |−|rR), (C, |−|rC), or (H, |−|rH) for some 0 < r ≤ 1.

Corollary 1.2.16. Every Archimedean valued field (K, |−|) is isomorphic to a sub-
field of (C, |−|rC) for some 0 < r ≤ 1.

Proof. Indeed, it suffices to apply the theorem to the completion of (K, |−|).

We will deduce Theorem 1.2.15 from the following theorem of Stanisław Mazur.

Theorem 1.2.17 (Mazur). The underlying algebra of a real normed division algebra
is isomorphic to R, C, or H.
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Corollary 1.2.18 (Gelfand-Mazur). A complex normed division algebra is isomor-
phic to C.

For a proof of Mazur’s theorem, see [B3, VI.6.4].

Proof of Theorem 1.2.15. Since the absolute value is Archimedean, we have char(K) =
0, namely, Q ⊆ K. By the classification of absolute values on Q, the restriction of
|−| to Q is |−|r∞ for r > 0. By triangle inequality, 2r = (1 + 1)r ≤ 1r + 1r = 2, so
that r ≤ 1. We claim that |−|1/r is an absolute value of K. The claim follows from a
general criterion for absolute values (Proposition 1.6.4). We give a more direct proof
of the claim as follows. It suffices to check the triangle inequality. For a, b ∈ K, and
n ≥ 1,

|a+ b|n = |(a+ b)n| ≤
n∑
i=0

(
n

i

)r
|a|i|b|n−i ≤

(
n∑
i=0

(
n

i

)
|a|i/r|b|(n−i)/r

)r
(n+ 1)1−r

= (|a|1/r + |b|1/r)nr(n+ 1)1−r

by Hölder’s inequality, so that

|a+ b|1/r ≤ (|a|1/r + |b|1/r)(n+ 1)(1−r)/nr.

Taking limit as n→ +∞, we get |a+ b|1/r ≤ |a|1/r + |b|1/r, as claimed.
Then, by the completeness of K, (K, |−|1/r) is an extension of (R, |−|R). Thus,

by Mazur’s theorem, K is isomorphic as a real algebra to R or C. Since K is a finite-
dimensional real vector space, the topology induced by |−| must be the Euclidean
topology, that is, |−| is equivalent to the usual absolute value. Since the two absolute
values coincide on R, they are equal.

Historically Theorem 1.2.15 predates Mazur’s theorem. We refer the reader to
[N, Theorem II.4.2] or [I, Section II.3.1] for a more direct proof of Theorem 1.2.15,
without using Mazur’s theorem.

Extension of absolute values
Theorem 1.2.19. Let L/K be a field extension of degree n and let |−|K be an
absolute value on K. Then there exists an absolute value |−|L extending |−|K.
Moreover, if |−|K is complete, then the extension is unique, complete, and given by
|x|L = |NmL/Kx|1/nK .

Note that the existence and uniqueness extend to the case of algebraic extensions.

Proof. We give some indications. In the Archimedean case, by Mazur’s Theorem
(K, |−|K) is a subfield of (C, |−|C) and anyK-embedding L→ C provides the desired
extension. In the ultrametric case, we may either argue using general valuation rings
[B3, VI.8.7], or reduce to the complete case and verify, using Hensel’s Lemma, that
|NmL/K−|1/nK is an ultrametric absolute value [I, Theorem I.4.4]. The uniqueness
and completeness follows from the lemma below. For the last assertion, let |−| be
the unique extension of |−|K to an algebraic closure of K. The norm NmL/Kx is a
product of conjugates x′ of x. By the uniqueness of |−|, we have |x′| = |x|. Thus
|NmL/Kx| = |x|n.
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Lemma 1.2.20. Any pair of norms on a finite-dimensional vector space over a
complete valued field are equivalent and complete.

See [N, Proposition II.4.9] or [T2, Lemma 8.5.3] for a proof.
Let (K, vK) be a complete discrete valuation field and let (L, vL) be a finite

extension. The ramification index is defined to be the cardinality of vL(L×)/vK(K×).
Let OK and OL be the valuation rings of K and L, respectively. Let kK and kL be
the residue fields of K and L, respectively.

Proposition 1.2.21. OL is a free OK-module with a basis given by αiπjL, 1 ≤ i ≤ f ,
0 ≤ j ≤ e − 1, where α1, . . . , αf ∈ OL are elements such that their images in kL
form a basis over kK (so that f = [kL : kK ]). In particular, [L : K] = ef .

See [T2, Proposition 9.1.4] for a proof.

Theorem 1.2.22. Let (K, v) be a valued field and let L be a finite separable ex-
tension of K. Then the diagonal embedding L → ∏

w|v Lw induces an isomorphism
L⊗K Kv '

∏
w|v Lw.

Here w runs through extensions of v to L and Kv denotes the completion of K
with respect to v and similarly for Lw.

Proof. Since L/K is a separable extension, we have L ⊗K Kv '
∏
Li, where each

Li is a finite extension of Kv, hence a complete valued field by Theorem 1.2.19.
Moreover, L is dense in L⊗K Kv, and hence in Li, so that Li = Lw for some w | v.
Similarly to the argument at the end of 1.2.14, the universal property of tensor
product implies that each Lw appears in the product and the density of L in L⊗Kv

implies that the Lw’s appearing in the product are pairwise distinct.

Corollary 1.2.23. For all x ∈ L, we have

trL/K(x) =
∑
w|v

trLw/Kv(x), NmL/K(x) =
∏
w|v

NmLw/Kv(x).

The theorem implies that the diagonal embedding L→ ∏
w|v Lw has dense image.

More generally, we have the following.

Theorem 1.2.24 (Approximation). Let K be a field and let |−|1, . . . , |−|n be pair-
wise nonequivalent nontrivial absolute values. Then the diagonal embedding K →∏
iKi, where Ki denotes the completion of K with respect to |−|i, has dense image.

We refer the reader to [B3, VI.7.3] or [N, II.3.4] for a proof. We will later prove
a stronger result in the case of a number field.

Local fields
Definition 1.2.25. A local field is a locally compact Hausdorff topological field
whose topology is not discrete.

Example 1.2.26. R and C are local fields.
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Example 1.2.27. A non trivial valuation field K is a local field if and only if it is
a complete discrete valuation field with finite residue field is a local field. Indeed,
local compactness implies completeness, which implies that the canonical mapOK →
lim←−r→0OK/B≤r(0) is an isomorphism. Note that K is locally compact if and only
if OK is compact. Since the quotient rings OK/B≤r(0) are discrete, this is further
equivalent to the finiteness of OK/B≤r(0), which is equivalent to the conditions that
the valuation is discrete and the residue field is finite.

The following are complete discrete valuation fields with finite residue field.
(1) The field of p-adic numbers Qp, equipped with the p-adic valuation vp, and

more generally finite extensions K of Qp, equipped with the valuation x 7→
vp(NmK/Qp(x)).

(2) The field of formal Laurent series Fq((T )) = {∑i�−∞ aiT
i | ai ∈ Fq} over a

finite field Fq, equipped with the valuation v(∑ aiT
i) = min{i | ai 6= 0}.

In particular, the completion of a global field at a place is a local field.

Theorem 1.2.28. A local field is isomorphic to either R, C, a finite extension of
Qp, or Fq((T )).

More generally, a local division ring is isomorphic to either R, C, H, a division
ring of finite rank over Qp, or a division ring of finite rank over its center Fq((T )).
We refer to [B3, Section VI.9] or [W, Chapter I] for a proof in this generality. We
will give a proof of the theorem in the characteristic 0 case later.

Corollary 1.2.29. Every local field is the completion of a global field at one place.

Proof. Indeed, R is a completion of Q, C is a completion of Q(i), and Fq((T )) is a
completion of Fq(T ). That every finite extension of Qp is a completion of a number
field is a consequence of Krasner’s lemma [T2, Corollary 8.6.3].

Product formula
Definition 1.2.30. For an ultrametric local field of residue field Fq, we define the
normalized absolute value by |x|v = q−v(x), where v is the normalized valuation.
For R, we define the normalized absolute value to be |−|R. For C, we define the
normalized absolute value to be |−|2C (which is not an absolute value).

Remark 1.2.31. Given a finite extension of local fields Lw/Kv of degree n, |−|w
extends |−|nv . This follows from the definition in the Archimedean case and from
n = ef in the ultrametric case. Thus, by Theorem 1.2.19, for all x ∈ Lw, we have
|x|w = |NmLw/Kvx|v.

Theorem 1.2.32. Let K be a global field. For x ∈ K×, we have ∏v|x|v = 1. Here
v runs through all places of K, and |−|v denotes the normalized absolute value on
Kv.

Note that |x|v = 1 for all but finitely many v.

Proof. The case of Q and Fq(T ) follows from the explicit description of the absolute
values. In general, K is a finite separable extension of K0 = Q or K0 = Fq(T ). We
have ∏v|x|v = ∏

v0

∏
v|v0|NmKv/(K0)v0x|v0 = ∏

v0|NmK/K0x|v0 = 1.
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1.3 Adèles
Note that infinite products of locally compact groups is not locally compact in
general. However, we can construct a locally compact group in the following case.
Let (Gv)v∈V be a family of locally compact groups. Assume that for all v ∈ Vf =
V − V∞, where V∞ ⊆ V is a finite subset, we are given a compact open (hence
closed) subgroup Hv ⊆ Gv.

Definition 1.3.1. The restricted product of the Gv with respect to the Hv is the
subgroup ∏′v∈V Gv →

∏
v∈V Gv consisting of elements (xv)v∈V , xv ∈ Gv such that

xv ∈ Hv for all but finitely many v. (Note that Hv is concealed in the notation.)
For a finite subset S ⊆ V containing V∞, we equip

GS =
∏
v∈S

Gv ×
∏

v∈V−S
Hv ⊆

∏′
Gv

with the product topology. We equip ∏′Gv with the finest topology such that the
inclusions GS ⊆

∏′Gv are continuous.

Note that ∏′Gv = ⋃
S GS. A fundamental system of neighborhoods of 1 is given

by ∏v∈V Nv, where Nv ⊆ Gv is a neighborhood of 1, and Nv = Hv for all but finitely
many v. For any S, GS is a locally compact group, and is an open subgroup of∏′Gv. Moreover, ∏′Gv is a locally compact group.

Note that the inclusion ∏′Gv ⊆
∏
Gv is continuous, but not a homeomorphism

onto its image in general. Moreover, replacing V∞ by a finite subset of V containing
V∞, or changing Hv for finitely many v, does not change the restricted product.

Remark 1.3.2. If the Gv are topological rings and the Hv are subrings, then GS

and the restricted product are topological rings.

Now let K be a number field. Let V be the set of places of K. Let V∞ be the set
of Archimedean places and let Vf be the set of ultrametric places. For v ∈ V , we
let Kv denote the completion of K at v. For v ∈ Vf , we let Ov denote the valuation
ring of Kv.

Definition 1.3.3. The adèle ring of K is the restricted product AK = ∏′
v∈V Kv with

respect to the Ov, v ∈ Vf . Elements of AK are called adèles (short for “additive
idèles”) of K.

Thus AK is a locally compact topological ring. For x ∈ K, the image of x in Kv

belongs to the valuation ring Ov for all but finitely many v. We thus get a diagonal
embedding of rings K → AK .

Theorem 1.3.4.
(1) K ⊆ AK is a discrete (hence closed) subring.
(2) The quotient group AK/K is compact.

Proof of (1). Consider the neighborhood U = ∏
v∈V∞ Uv ×

∏
v∈Vf Ov, where Uv =

B<1(0) ⊆ Kv. For x ∈ U , ∏x∈V |x|v < 1. By product formula, this implies x 6∈ K×.
Thus U ∩K = {0} and consequently K is discrete.
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We will show later that conversely (1) implies the product formula.
To prove (2), we need the following results on approximation. We let OK denote

the ring of integers of K.

Lemma 1.3.5. The subring OK ⊆
∏
v∈Vf Ov is dense.

Indeed, this follows from the Chinese remainder theorem.

Proposition 1.3.6. Let K∞ = ∏
v∈V∞ Kv. Then

AK = K +K∞ ×
∏
v∈Vf
Ov.

Proof. Let x ∈ AK . There exists a ∈ OK , a 6= 0 such that ax ∈ Ov for all v ∈ Vf .
Let S ⊆ Vf be the finite set of ultrametric places such that a 6∈ O×v . By the lemma,
for any ε > 0, there exists b ∈ OK such that |b − ax|v < ε for all v ∈ S. Note that
|b − ax|v ≤ 1 for all v ∈ Vf . For ε small enough, we then have | b

a
− x|v ≤ 1 for all

v ∈ Vf . Thus x = b
a

+ (x− b
a
) ∈ K +K∞ ×

∏
v∈Vf Ov.

Corollary 1.3.7. We have an isomorphism of topological groups

AK/K ' (K∞ ×
∏
v∈Vf
Ov)/OK .

Proof. By the proposition, the homomorphism K∞ ×
∏
v∈Vf Ov → AK/K is sur-

jective. Moreover, it is open. The kernel K ∩ (K∞ ×
∏
v∈Vf Ov) = OK , because⋂

v∈Vf Ov = OK . The assertion then follows from the isomorphism theorem.

Recall that OK ⊗Z R ' K ⊗Q R ' K∞ and equivalently OK is a lattice in K∞.
For a group G and a subgroup H, we say that a subset D ⊆ G is a fundamental

domain for H if the quotient map G→ G/H induces a bijection D ' G/H.

Proof of Theorem 1.3.4 (2). For a basis (a1, . . . , an) of OK , D = ∑n
i=1[−1

2 ,
1
2)ai ⊆

K∞ is a fundamental domain for OK . Thus D × ∏v∈Vf Ov ⊆ AK is a fundamental
domain for K. The map D̄ × ∏v∈Vf Ov → AK/K is a continuous surjection, and
D̄ ×∏v∈Vf Ov is compact. Therefore, AK/K is compact.

Note that by Corollary 1.3.7, we have a short exact sequence of topological groups

(1.3.1) 0→
∏
v∈Vf
Ov → AK/K → K∞/OK → 0,

where K∞/OK and ∏
v∈Vf Ov are compact. Thus the compactness of AK/K also

follows from the following general fact about topological groups.

Proposition 1.3.8. Let G be a topological group and let H be a subgroup. If H and
G/H are compact, then G is compact.

For a proof, see, for example, [H, p. 48].

Remark 1.3.9. Via the diagonal embedding, AK becomes a K-vector space. Thus
AK/K is a K-vector space, hence a torsion-free abelian group. As K∞/OK has
nonzero torsion elements, the extension (of abelian groups) (1.3.1) is non split.
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1.4 Haar measures
For a locally compact Hausdorff topological space X, we let Cc(X,R) denote the
vector space of continuous functions X → R with compact support.

Definition 1.4.1. A positive Radon measure on X is a positive linear functional
Λ: Cc(X,R)→ R, namely a linear functional such that Λ(f) ≥ 0 for all f ≥ 0 (here
f ≥ 0 means f(x) ≥ 0 for all x ∈ X).

Remark 1.4.2. We have Cc(X,R) = ⋃
K CK(X,R), where K runs through compact

subsets of X and CK(X,R) denotes continuous functions X → R with support in
K. We equip CK(X,R) ⊆ C(K,R) with the topology given by the maximum
norm, and we equip Cc(X,R) with the finest topology such that the inclusions
CK(X,R) ⊆ Cc(X,R) are continuous. Then a positive Radon measure on X is
a continuous linear functional Cc(X,R) → R (real Radon measure) by Urysohn’s
lemma.

Remark 1.4.3. Positive Radon measures onX are stable under addition. Moreover,
if Λ is a positive Radon measure on X, and g : X → R is a continuous function (not
necessarily with compact support), g ≥ 0, we define a positive Radon measure gΛ
by (gΛ)(f) = Λ(gf).

Remark 1.4.4. For any σ-algebra M in X containing all Borel subsets, and any
positive measure µ (namely, countably additive function M→ [0,∞]) satisfying
(1) µ(K) <∞ for every compact set K ⊆ X,

the linear functional f 7→
∫
X f dµ is a positive Radon measure. Conversely, the

Riesz representation theorem (see, for example, [R, 2.14]) states that for any positive
Radon measure Λ there exists a σ-algebra M in X containing all Borel subsets, and
a unique positive measure µ satisfying (1) above and such that:
• Λ(f) =

∫
X f dµ for every f ∈ Cc(X,R).

• µ is outer regular : µ(E) = inf{µ(V ) | E ⊆ V, V open} for every E ∈M.
• µ is inner regular on open sets: µ(E) = sup{µ(K) | K ⊆ E, K compact} for

every open subset E ⊆ X.
Moreover, µ satisfies condition (1) above, and is inner regular on σ-finite sets (count-
able union of sets Ei ∈M with µ(Ei) <∞). (In particular, µ is inner regular if X
is σ-compact, namely, a countable union of compact subsets.) Furthermore, there
exists a biggest M characterized by the following additional properties:
• µ is complete: if µ(E) = 0 for E ∈M and if A ⊆ E, then A ∈M.
• If E ⊆ X is such that E ∩ K ∈ M for every compact subset K ⊆ X, then
E ∈M.

We sometimes identify µ and Λ via the above correspondence. µ(X) ∈ [0,∞] is
sometimes called the volume of X.

Let G be locally compact group, let f ∈ Cc(X,R), and let Λ be a positive
Radon measure. For g ∈ G, we define the left translation of f by g, Lgf , by
(Lgf)(x) = f(g−1x) and the left translation of Λ by g, LgΛ, by (LgΛ)(f) = Λ(Lg−1f).
Correspondingly, LgM = {gE | E ∈M} and (Lgµ)(E) = µ(g−1E).

Definition 1.4.5. A left Haar measure on G is a nonzero positive Radon measure
µ that is left-invariant, namely, LgΛ = Λ for all g ∈ G.
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Similarly one defines right Haar measures. For abelian groups, left Haar measures
and right Haar measures are the same and are simply called Haar measures.

A positive scalar multiple of a left Haar measure is a left Haar measure.

Theorem 1.4.6 (Haar). For any locally compact group, there exists a left Haar
measure, unique up to scalar multiple.

See [B2, VII.1.2] or [H, Chapter III] for a proof. We will sketch a proof below in
the case of the additive group of a local field (assuming Theorem 1.2.28).

Proposition 1.4.7. Let µ be a left Haar measure on a locally compact group G.
(1) For any nonempty open subset U ⊆ G, µ(U) > 0 (may be ∞).
(2) For any function f ∈ Cc(G,R), f ≥ 0, f 6= 0 (f not identically zero), we have∫

f dµ > 0.

Proof. (1) Since µ 6= 0 is inner regular on open sets, there exists a compact subset
K ⊆ G such that µ(K) > 0. Since K ⊆ ⋃

g∈G gU , K is covered by finitely
many left-translates giU of U . It follows that µ(giU) > 0 for some i. We
conclude by µ(U) = µ(giU).

(2) Indeed, there exists ε > 0 such that the open subset U = f−1((ε,∞)) ⊆ G is
nonempty. Then

∫
f dµ ≥ εµ(U) > 0.

Example 1.4.8. For a discrete group G, the counting measure µ(E) = #E, E ⊆ G
is a left Haar measure (and a right Haar measure). We have

∫
f dµ = ∑

g∈G f(g). In
this case, the left Haar measure is clearly unique up to scalar.

Example 1.4.9. For G = Rn or G = K an ultrametric local field, let us sketch a
proof for the existence and uniqueness of Haar measure. For G = Rn, let Q0 = [0, 1)n
and let Ωm = {A−m(Q0 + a) | a ∈ Zn}, where A ≥ 2 is an integer. For G = K,
let Q0 = OK and let Ωm be the collection of translates of πmOK . Then for each
m, Ωm is a partition of G. Moreover, Q0 is the disjoint union of qm elements
of Ωm, where q = An for G = Rn and q = #k for G = K of residue field k.
Choose xQ ∈ Q for each Q ∈ Ωm. For f ∈ Cc(G,R), consider the Riemann sum
Λmf = q−m

∑
Q∈Ωm f(xQ) associated to the step function fm = ∑

Q∈Ωm f(xQ)1Q,
where 1Q denotes the characteristic function of Q. By uniform continuity, Λmf is a
Cauchy sequence. Let Λf = limm→∞ Λmf . It follows from the construction that Λ
is a Haar measure on G. For G = Rn, Λ is the Lebesgue measure.

Conversely, let µ is a Haar measure on G. Then µ(Q) = q−mµ(Q0) for each
Q ∈ Ωm. For f ∈ Cc(G,R), by uniform continuity,∫

f dµ = lim
m→∞

∫
fm dµ = lim

m→∞
µ(Q0)Λmf = µ(Q0)Λf,

which proves the uniqueness up to scalar multiple.

Note that for G = K in the previous example, the step functions fm are locally
constant and compactly-supported. Note also that locally constant functions on K
are continuous.
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Definition 1.4.10. LetK be an ultrametric local field. A Schwartz-Bruhat function
on K is a locally constant compactly-supported function on K.

Lemma 1.4.11. Let K be an ultrametric local field. A function is a Schwartz-
Bruhat function if and only if it is a finite sum ∑

i ci1Bi, where each ci is a constant
and each Bi is an open ball.

Proof. A finite sum of the above form is obviously a Schwartz-Bruhat function.
Conversely, let f be a Schwartz-Bruhat function. Each point a ∈ K admits an open
ball containing a on which f is constant. The support is covered by a finite family
of such balls (Bi). We may assume that there are no inclusions among the family.
Then the family is disjoint and f = ∑

i f(xi)1Bi , where xi ∈ Bi.

Modulus
Let G be a locally compact group, and let φ be an automorphism of G (as topological
group). For any left Haar measure µ on G, φ−1µ defined by (φ−1µ)(E) = µ(φ(E))
is a left Haar measure on G, and thus is a scalar multiple of µ.

Definition 1.4.12. The real number c > 0 such that φ−1µ = cµ is called the
modulus of φ and is denoted mod(φ).

In other words,

µ(φ(E)) = mod(φ)µ(E),
∫
f(φ−1(x)) dµ(x) = mod(φ)

∫
f(x) dµ(x).

Note that mod(φ) does not depend on the choice of µ. If ψ is another automor-
phism of G, then mod(φψ) = mod(φ)mod(ψ).

Proposition 1.4.13. If G is compact or discrete, then mod(φ) = 1.

Proof. We have

µ(G) = µ(φ(G)) = mod(φ)µ(G), µ({e}) = µ(φ({e})) = mod(φ)µ({e}).

For G compact, 0 < µ(G) <∞. For G discrete, 0 < µ({e}) <∞.

Example 1.4.14. For G = Rn, φ is a linear transformation mod(φ) = |det(φ)|.

Example 1.4.15. For G = K a local field, a ∈ K×, multiplication by a provides
an automorphism φa : K → K. We write mod(a) for mod(φa), so that µ(aE) =
mod(a)µ(E). We obtain thus a homomorphism mod: K× → R×>0, which can be
extended by mod(0) = 0. If K is ultrametric with residue field Fq, mod(a) = q−v(a),
where v is the normalized valuation. If K = R, mod(a) = |a|R. If K = C, mod(a) =
|a|2C. In other words, mod is the normalized absolute value on K. Note that for
K = C, mod is not an absolute value.

For f ∈ Cc(K×,R), f
mod extended by 0 7→ 0 belongs to Cc(K,R). We define a

positive Radon measure µ/mod on K× by f 7→
∫ f

mod dµ. We have∫ f(ax)
mod(x) dµ(x) = mod(a)

∫ f(ax)
mod(ax) dµ(x) =

∫ f(x)
mod(x) dµ.

Thus µ/mod is a Haar measure on K×.
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Products
Let X and Y be locally compact Hausdorff spaces. Let µ be a positive Radon
measure on X and let ν be a positive Radon measure on Y .

Proposition 1.4.16 (Fubini’s Theorem). For f ∈ Cc(X × Y,R), we have y 7→∫
f(x, y) dµ(x) ∈ Cc(Y,R), x 7→

∫
f(x, y) dν(y) ∈ Cc(X,R), and∫

dµ(x)
∫
f(x, y) dν(y) =

∫
dν(x)

∫
f(x, y) dµ(y).

We thus obtain a positive Radon measure on µ× ν, which we denote by µ× ν.
The first two assertions follows from uniform continuity of continuous functions

on compact spaces. The last assertion holds trivially for functions of the form f ⊗ g
given by (x, y) 7→ f(x)g(y), where f ∈ Cc(X,R) and g ∈ Cc(Y,R). The general case
follows from the fact that such functions form a dense subspace of Cc(X × Y,R).
We refer to [B2, III.4.1] (or [H, Section III.6] for details.

Remark 1.4.17. If X and Y are locally compact groups and µ and ν are left Haar
measures, then µ×ν is a left Haar measure on X×Y . In this case, the last assertion
of the proposition also follows from the fact that both sides of the equation define
left Haar measures on X × Y .

The above extends trivially to products of finitely many measures. For infinite
products, consider a family of compact Hausdorff spaces (Xi)i∈I , and for each i ∈ I,
a positive Radon measure µi on Xi. Then X = ∏

i∈I Xi is a compact Hausdorff
space. For any finite subset J ⊆ I, let XJ = ∏

j∈J Xj and let prJ : X → XJ be the
projection. We let µJ denote the positive Radon measure ∏j∈J µj defined above.

Proposition 1.4.18. Assume that ∏i∈I µi(Xi) converges (to a positive real number).
Then there exists a unique positive Radon measure µ on X such that for every finite
subset J ⊆ I and every fJ ∈ C(XJ ,R),∫

fJ ◦ prJ dµ =
∏

i∈I−J
µi(Xi)

∫
fJ dµJ .

We let ∏i∈I µi denote the measure µ in the proposition. If the Xi’s are compact
groups and the µi’s are left Haar measures, then ∏i∈I µ is a left Haar measure on
X.

Proof. Let F ⊆ C(X,R) be the space of functions of the form fJ ◦ prJ for some
finite subset J ⊆ I. Note that F is stable under addition. Indeed,

fJ ◦ prJ + fJ ′ ◦ prJ ′ = fJ∪J ′ ◦ prJ∪J ′ ,

where fJ∪J ′ = fJ ◦p+fJ ′ ◦p′, and p : XJ∪J ′ → XJ , p′ : XJ∪J ′ → XJ ′ are projections.
Similarly, F is stable under multiplication. Thus F is a real subalgebra of C(X,R).
Let x 6= y be distinct points in X. Then there exists i ∈ I such that xi 6= yi.
For any fi ∈ C(Xi,R) such that fi(xi) 6= fi(yi), fi ◦ pri separates x and y, where
pri = pr{i} : X → Xi. Therefore, by the theorem below, F is dense in C(X,R).
The equation in the proposition defines a positive linear functional Λ on F . The
assumption assures that Λ is continuous. Thus Λ extends uniquely to a positive
linear functional on C(X,R).
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Theorem 1.4.19 (Stone-Weierstrass). Let X be a compact Hausdorff space. Then
any real subalgebra of C(X,R) that separates points is dense.

For a proof, see [B1, X.4.2].

Remark 1.4.20. Let (Gv)v∈V , Hv ⊆ Gv, v ∈ Vf be as in the beginning of Section
1.3. Recall that the restricted product G = ∏′Gv = ⋃

GS, where GS = ∏
v∈S Gv ×∏

v∈V−S Hv, S runs through finite subsets of V containing V∞. Since GS ⊆ G is
open, extension by zero provides an inclusion Cc(GS,R) ⊆ Cc(G,R). We have
Cc(G,R) = ⋃

Cc(GS,R). For each v ∈ V , let µv be a positive Radon measure on
Gv. Assume that ∏v∈V−V∞ µv(Hv) converges. Then we have product measures µS
on GS, compatible with the inclusions Cc(GS,R) ⊆ Cc(GS′ ,R) for S ⊆ S ′. Thus we
obtain a positive Radon measure µ = ∏′

v∈V µv on G. Functions of the form fS⊗1HS ,
where fS ∈ Cc(

∏
v∈S Gv,R) and HS = ∏

v∈V−S Hv, form a dense subset of Cc(G,R).
If the µv’s are left Haar measures, then µ is a left Haar measure.

Example 1.4.21. Let K be an number field. For v ultrametric, we take the Haar
measure µKv normalized by µKv(Ov) = 1. We take µR to be the Lebesgue measure,
and µC to be twice the Lebesgue measure (via the isomorphism R × R ' C given
by (x, y) 7→ x+ yi). We obtain a Haar measure ∏′v∈V µKv on AK .

Quotients
Let G be a locally compact group and let H be a closed subgroup. Let ν be a left
Haar measure on H. For f ∈ Cc(G,R), the function x 7→

∫
f(xh) dh on G defines a

function of G/H, that we denote by f [.

Lemma 1.4.22. We have f [ ∈ Cc(G/H,R) and the map Cc(G,R) → Cc(G/H,R)
given by f 7→ f [ is surjective.

Proof. The first assertion follows from uniform continuity. For the second assertion,
let g ∈ Cc(G/H,R) and let K ⊆ G be a compact subset such that the support of
g is contained in KH. Let u ∈ Cc(G,R) be such that u ≥ 0 and u(x) > 0 for
x ∈ K. Then u[(y) > 0 for y ∈ KH/H. The function h = g/u[, extended by zero
outside KH/H, belongs to Cc(G/H). Let π : G → G/H be the projection. Then
f = u(h ◦ π) ∈ Cc(G,R) and f [ = g.

The following is an immediate consequence of the lemma.

Proposition 1.4.23. For a positive Radon measure λ on G/H,∫
f dλ] =

∫
f [ dλ

defines a positive Radon measure λ] on G. Conversely, given a positive Radon
measure µ on G, there exists at most one positive Radon measure λ on G/H such
that µ = λ].

In the situation of the proposition, λ is called the quotient measure of µ = λ] by
ν, and is denoted by µ/ν.
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Remark 1.4.24. Assume that H is a normal subgroup of G. If λ is a left Haar
measure on G/H, then µ in the above proposition is a left Haar measure on G.
Conversely, if µ is a Haar measure on G, then µ/ν exists and is a Haar measure on
G/H.

Example 1.4.25. If H ′ is a locally compact group such that G = H ×H ′, and ν ′
is a positive Radon measure on H ′, then (ν × ν ′)/ν = ν ′.

Proposition 1.4.26. Let H be a normal subgroup of a locally compact group G.
Let φ be an automorphism of G (as topological group) such that φ(H) = H and
let φH , φG/H be the induced automorphisms of H and of G/H. Then mod(φ) =
mod(φH)mod(φG/H).

Proof. Let µ, ν, λ be left Haar measures on G, H, G/H, respectively. Then∫
f(φ−1(x)) dµ(x) =

∫
dλ(ẋ)

∫
f(φ−1(xh)) dν(h)

= mod(φH)
∫
dλ(ẋ)

∫
f(φ−1(x)h) dν(h) = mod(φH)mod(φG/H)

∫
f(x) dµ(x),

where ẋ = xH.

Corollary 1.4.27. Let H be a discrete normal subgroup of a locally compact group
G such that G/H is compact. For any automorphism φ of G such that φ(H) = H,
mod(φ) = 1.

Proof. This follows from the above proposition and Proposition 1.4.13.

Definition 1.4.28. The content of an adèle x ∈ AK is defined to be |x| = ∏
v∈V |xv|v ≥

0, where |−|v denotes the normalized absolute value on Kv.

For x, y ∈ AK , we have |xy| = |x||y|. Note however that triangle inequality does
not hold. The function x 7→ |x| on AK is not continuous, since every neighborhood
of 1 ∈ AK contains an adèle of content 0.

Remark 1.4.29. For x ∈ A×K , |x| is the modulus of the automorphism AK → AK
given by y 7→ xy. Since AK/K is compact, Corollary 1.4.27 implies the product
formula: for x ∈ K×, |x| = 1. In other words, the product formula is equivalent to
the discreteness of K ⊆ AK .

Example 1.4.30. Let L = Ze1 ⊕ · · · ⊕ Zen ⊆ Rn be a lattice and let µ be the
quotient of the Lebesgue measure on Rn by the counting measure on L. Then
µ(Rn/L) = |det(e1, . . . , en)|.

Example 1.4.31. Let K be a number field. We consider the quotient of the Haar
measure on AK in Example 1.4.21 by the counting measure on K. We have

vol(AK/K) = vol(K∞/OK)vol(
∏
v∈Vf
Ov) = vol(K∞/OK) =

√
|∆K |,

where ∆K is the discriminant ofK. For the last identity, recall that ∆K = det(σi(αj))2,
where (α1, . . . , αn) is an integral basis of OK and σ1, . . . , σn are the embeddings of
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K into C. Let λ : K → K∞ = Rr1 × Cr2 ' Rn be the embedding induced by the
isomorphism C ' R2 given by taking real and imaginary parts. Under a suitable
ordering of the σi, we have

(σi(αj)ij =


Ir1 0 0 0
0 1 −i

1 i 0 0
0 0 . . . 0
0 0 0 1 −i

1 i

 = (λ(α1), . . . , λ(αn)),

so that det(σi(αj)) = (2i)r2 det(λ(α1), . . . , λ(αn)). Thus

vol(K∞/OK) = 2r2vol(Rn/λ(OK)) = |det(σi(αj))| =
√
|∆K |,

where Rn is equipped with the Lebesgue measure.

Application: Strong approximation
Let K be a number field.

Theorem 1.4.32 (Minkowski). For constants (cv)v∈V , cv ∈ |K×v |v, cv ≤ 1 for all
but finitely many v, satisfying∏

v∈V
cv > (2/π)r2

√
|∆K |,

there exists a ∈ K× such that |a|v ≤ cv for all v ∈ V . Here |−|v denotes the
normalized absolute value on Kv, and r2 is the number of complex places.

Proof. Let Bv = B≤cv(0) ⊆ Kv for v ∈ Vf , let Bv = B≤cv/2(0) ⊆ R for v real and
let Bv = {z ∈ C | |z| ≤ √cv/2} (where |−| denotes the usual absolute value) for v
complex. Let X = ∏

v∈V Bv ⊆ AK . Let µv be the normalized Haar measure on Kv

and let µ = ∏′
v∈V µv. Then µv(Bv) = cv for v ∈ Vf or v real, and µv(Bv) = π

2 cv for
v complex. Thus µ(X) = (π/2)r2 ∏v∈V cv > vol(AK/K). It follows that there exist
x, y ∈ X, x 6= y such that x− y ∈ K. It then suffices to take a = x− y.

Minkowski’s theorem is more frequently stated in the following form.

Corollary 1.4.33. Let I be a fractional ideal of OK. For constants (cv)v∈V∞ satis-
fying ∏

v∈V
cv > (2/π)r2

√
|∆K |Nm(I),

there exists a ∈ I, a 6= 0 such that |a|v ≤ cv for all v ∈ V∞.

Here the norm of an ideal is defined to be Nm(a) = #(OK/a) and this definition
extends to fractional ideals by multiplicativity.

The corollary is equivalent to the theorem. Indeed, for I = ∏
v p

mv
v it suffices to

take cv = q−mvv for v ∈ Vf .
We refer the reader to [N, Theorem I.5.3] for a more direct proof of Corollary

1.4.33.
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Corollary 1.4.34. Let v0 ∈ V . For positive constants (cv)v∈V−{v0}, cv = 1 for all
but finitely many 1, there exists a ∈ K× such that |a|v ≤ cv for all v 6= v0.

Proof. Indeed, we may assume that cv ∈ |K×v |v for all v 6= v0. In this case, we apply
the proposition by taking cv0 large enough.

Theorem 1.4.35 (Strong approximation). Let v0 ∈ V . Then the diagonal embed-
ding K → ∏′

v∈V−{v0}Kv has dense image. In other words, K + Kv0 is dense in
AK.

Corollary 1.4.36. AK/K is connected.

Proof. For v0 ∈ V∞, the theorem implies that the image ofKv0 in AK/K is dense.

Proof of Theorem 1.4.35. The assertion is equivalent to saying that for all x ∈ AK ,
and positive constants (εv)v∈V−{v0} such that εv = 1 for all but finitely many v,
there exists a ∈ K such that |a − xv|v ≤ εv for all v ∈ V − {v0}. We have seen in
the construction of fundamental domain (proof of Theorem 1.3.4) that there exist
positive constants (cv)v∈V , cv = 1 for all v ∈ Vf such that every y ∈ AK is of the
form y = b+ y′ with b ∈ K and |y′v|v ≤ cv for all v ∈ V . By Corollary 1.4.34, there
exist α ∈ K× such that |α|v ≤ εv/cv for all v 6= v0. Taking y = α−1x (extended to
an element of AK), we get x = αb+ αy′, with αb ∈ K and |αy′|v ≤ εv.

1.5 Idèles
Idèles were introduced by Chevalley first under the name “élément idéal” (ideal
element), then abbreviated by him to “idèle”.

Let K be a number field. We use the notation of 1.3. Note that O×v is compact
for v ∈ Vf .

Definition 1.5.1. The idèle group of K is the restricted product IK = ∏′
v∈V K

×
v

with respect to O×v for v ∈ Vf . Elements of IK are called idèles of K.

Remark 1.5.2. As groups IK = A×K . The inclusion map IK → AK is continuous,
but not a homeomorphism onto its image. The map IK → AK × AK carrying x to
(x, x−1) identifies IK with a subspace of AK × AK . In other words, the topology
on IK is the coarsest topology such that the inclusion IK → AK and the inversion
IK → IK are continuous.

The diagonal embedding K → AK induces the diagonal embedding K× → IK .

Lemma 1.5.3. K× ⊆ IK is a discrete subgroup.

Proof. This follows from the facts that K ⊆ AK is discrete and the topology of IK
is finer than the subspace topology induced from the topology of AK .

Images of the embedding K× → IK are called principal idèles of K and the
(locally compact) quotient group IK/K× is called the idèle class group.

Recall the content of x ∈ AK is defined to be |x| = ∏
v|xv|v. Note that x ∈ IK if

and only if xv ∈ K×v for all v and |xv|v = 1 for all but finitely many v. In this case
|x| is essentially a finite product.
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Lemma 1.5.4. For x ∈ AK, |x| > 0 if and only if x ∈ IK.
Proof. The “if” part is clear. Conversely, |x| > 0 trivially implies xv ∈ K×v . More-
over, for v ∈ Vf , |xv|v 6∈ (1/2, 1), so |x| > 0 also implies that |xv|v = 1 for all but
finitely many v.
Lemma 1.5.5. The map IK → R>0 carrying x to |x|, is an open homomorphism
admitting continuous sections.
Proof. The map is clearly a continuous homomorphism. The map R>0 → K×∞ ⊆ IK
carrying t to ( n

√
t, . . . , n

√
t), where n = [K : Q], is a continuous section. For v real

(resp. complex), the map R>0 → K×v ⊆ IK carrying t to t (resp.
√
t) is also a

continuous section. The openness follows from this.

We let I1K denote the kernel of the homomorphism |−| and equip it with the
subspace topology induced from the topology of IK . We thus obtain an isomorphism
of topological groups IK/I1K ' R>0. Moreover the continuous sections of |−| (not
unique for n > 1) induce isomorphisms of topological groups IK ' I1K × R>0.

By product formula, the image of the diagonal embedding K× → IK is contained
in I1K .
Theorem 1.5.6. The quotient I1K/K× is compact.
Lemma 1.5.7. Let c > 1. For all but finitely many v ∈ V , |K×v | ∩ (1, c) = ∅.
Proof. Indeed, the equality holds for all v ∈ Vf with residue field of cardinality
q ≥ c, and in particular, for v ∈ Vf above a rational prime p ≥ c.
Proposition 1.5.8. I1K ⊆ AK is a closed subset and the topology on I1K coincides
with the subspace topology induced from AK.
Proof. For x ∈ AK , consider the neighborhood US,ε(x) ⊆ AK , set of adèles y such
that |yv − xv|v ≤ ε for v ∈ S and |yv|v ≤ 1 for v ∈ V − S. Here ε > 0 and S ⊆ V is
a finite subset containing V∞ and such that |xv|v ≤ 1 for all v ∈ V − S.

For the first assertion, we need to show that for x 6∈ I1K , there exists such a
neighborhood that does not meet I1K . There are two cases.
(1) |x| < 1 (may be zero). Then there exists S satisfying the above and such

that ∏v∈S|xv|v < 1. It then suffices to take ε sufficiently small such that for
y ∈ US,ε(x), we have |y| = ∏

v∈S|yv|v < 1.
(2) |x| > 1. By Lemma 1.5.4, x ∈ IK . By Lemma 1.5.7, there exists a finite

subset S ⊆ V containing V∞ such that |xv|v = 1 for v ∈ V − S and such that
|K×v |v ∩ ( 1

2|x| , 1) = ∅ for v ∈ V − S. It then suffices to take ε sufficiently small
such that for y ∈ US,ε(x), we have 1 <

∏
v∈S|yv|v < 2∏v∈S|xv|v = 2|x|. It

follows that either |y| = ∏
v∈S|yv|v > 1, or |y| ≤ 1

2
∏
v∈S|yv|v < 1.

The topology on I1K is clearly finer than the topology induced from AK . To show
the converse, let x ∈ I1K and let W be a neighborhood of x in IK . We need to find
a neighborhood U of x in AK such that U ∩ I1K ⊆ W ∩ I1K . We may assume that W
is the set of idèles y such that |yv − xv|v < ε for v ∈ S and |yv|v = 1 for v ∈ V − S,
where S ⊆ V is a finite subset containing V∞ and such that |xv|v = 1 for v ∈ V −S.
We may further assume that ε is sufficiently small such that for z ∈ US,ε(x), we
have ∏v∈S|zv|v < 2∏v∈S|xv|v = 2. If, moreover, |z| = 1, then |zv|v > 1/2 for all
v ∈ Vf − S, so that |zv|v = 1 for such v. Thus US,ε(x) ∩ I1K = V ∩ I1K .
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Proof of Theorem 1.5.6. By the proposition, it suffices to find a compact B ⊆ AK
such that the map B∩ I1K → I1K/K× is surjective. By Theorem 1.4.32, there exists a
constant C such that for every idèle x ∈ IK satisfying |x| > C, there exists a ∈ K×
such that |a|v ≤ |xv|v for all v ∈ V . Choose such an x and let B be the set of adèles
y such that |yv|v ≤ |xv|v for all v ∈ V . Let z ∈ I1K . Then |z−1x| > C, so that there
exists a ∈ K× such that |a|v ≤ |z−1

v xv|v for all v ∈ V . Thus z = a−1(az), with
az ∈ B ∩ I1K , as required.

Idèles and ideals
Recall that every fractional ideal of OK can be uniquely factorized as a finite product∏
i p

mi
i , where the pi are distinct maximal ideals of OK . Fractional ideals of OK form

a free abelian group IK with basis given by the set of maximal ideals of OK . We
let PK denote the set of principal fractional ideals of OK , namely, fractional ideals
of the form xOK , where x ∈ K×. We let ClK = IK/PK denote the ideal class group
of K.

For every idèle (xv)v∈V ∈ IK , mv = v(xv) equals 0 for all but finitely many
v ∈ Vf , so that ∏v∈Vf p

mv
v is a fractional ideal. Here pv denotes the maximal ideal

corresponding to v. This defines a homomorphism IK → IK , which is clearly sur-
jective, and the kernel is an open subgroup UK = K×∞ ×

∏
v∈Vf O

×
v ⊆ IK . Thus we

get an isomorphism
IK/UK ' IK ,

which induces an isomorphism

IK/K×UK ' ClK .

Restricting to idèles of content 1, we get

I1K/K×U1
K ' ClK ,

where U1
K = UK∩I1K = K1

∞×
∏
v∈Vf O

×
v , and K1

∞ is the kernel of the homomorphism
K×∞ → R×>0 carrying (xv)v∈V∞ to ∏v∈V∞ |xv|v. Here we have used I1KUK = IK .

Theorem 1.5.9. The ideal class group ClK of any number field is a finite abelian
group.

Proof. Since U1
K is an open subgroup of I1K , the quotient is discrete. Since I1K/K×

is compact (Theorem 1.5.6), I1K/K×U1
K is also compact, hence finite.

The theorem holds more generally for ray class groups, defined as follows.

Definition 1.5.10. A modulus for K is a function m : V → N carrying v to mv

satisfying the following conditions:
• mv = 0 for v complex.
• mv = 0 or 1 for v real.
• mv = 0 for all but finitely many v.
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We can identify moduli with pairs (I, (mv)v∈VR), where I = ∏
v∈Vf p

mv
v is an ideal

of OK . Here VR denotes the set of real places of K.
For a modulus m, we let IK(m) ⊆ IK denote the subgroup of fractional ideals

generated by pv with mv = 0. We let PK(m) ⊆ PK denote the group of principal
fractional ideals xOK , x ∈ K× such that v(x− 1) ≥ mv for v ∈ Vf with mv > 0 and
σv(x) > 0 for real places v with mv = 1. Here σv denotes the embedding K → R
corresponding to v ∈ VR.

Definition 1.5.11. The ray class group of K for m is ClK(m) = IK(m)/PK(m).

Example 1.5.12. If m is constant of value 0, then ClK(m) = ClK .

Example 1.5.13. If m is the characteristic function of VR, then PK(m) = P+
K is

the set of principal fractional ideals generated by totally positive elements, namely
x ∈ K× such that σ(x) > 0 for all real embeddings σ : K → R. In this case,
ClK(m) = IK/P+

K is called the narrow class group of K.

Example 1.5.14. Let n > 1 be an integer. Then m = ((n), 1) is a modulus for
K = Q. In other words, mp = vp(n) and m∞ = 1. The map IQ(m) → (Z/nZ)×
carrying a

b
Z, a, b ∈ N>0, (a, n) = (b, n) = 1, to ā/b̄, where ā and b̄ denote the images

of a and b in Z/nZ, respectively, induces an isomorphism ClQ(m) ' (Z/nZ)×.

For a modulus m of K, we let IK,m ⊆ IK denote the open subgroup of idèles
(xv)v∈V such that v(xv − 1) ≥ mv for v ∈ Vf with mv ≥ 1 and xv > 0 for v ∈ VR
with mv = 1. Note that PK(m) is the group of principal fractional ideals xOK ,
x ∈ IK,m ∩K×. The homomorphism IK,m → IK(m) carrying (xv)v∈V to ∏v∈Vf p

mv
v

is surjective, and the kernel is UK,m = UK ∩ IK,m. In other words UF,m = ∏
v U

(mv)
v ,

where U (0)
v = F×v for v Archimedean, U (1)

v = R×>0 for v real, U (0)
v = Uv = O×v for v

finite, and U (n)
v = 1 + πnvOv for v finite and n ≥ 1. We get an isomorphism

IK,m/UK,m ' IK(m),

which induces an isomorphism

(1.5.1) IK/K×UK,m ' IK,m/(IK,m ∩K×)UK,m ' ClK(m).

Here we have used the equality K×IK,m = IK , which follows from the approximation
theorem. Restricting to idèles of content 1, we get an isomorphism

I1K/K×U1
K,m ' ClK(m),

where U1
K,m = UK,m ∩ I1K . By the compactness of I1K/K×, we get the following.

Theorem 1.5.15. The ray class group ClK(m) of any number field K for any mod-
ulus m is a finite abelian group.
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Dirichlet unit theorem
We let µK denote the group of roots of unity of K.

Lemma 1.5.16. Let C = ∏
v∈V Cv ⊆ IK, where Cv = {x ∈ K×v | |x|v = 1}. Then

µK = K× ∩ C is a finite cyclic group.

Proof. It is clear that µK ⊆ K× ∩ C. Since C ⊆ IK is compact and K× ⊆ IK is
discrete, K× ∩ C is finite. Thus every element of K× ∩ C has finite order, so that
K× ∩C ⊆ µK . We have shown that µK = K× ∩C is a finite group. Since there are
at most n roots of unity of order n, the exponent of µK is necessarily equal to the
order of µK , so that µK is a finite cyclic group.

We refer the reader to [T2, Lemma 4.2.1] for a proof without using idèles.

Definition 1.5.17. Let S ⊂ V be a finite set of places of K containing V∞. We
say that x ∈ K is an S-integer (resp. S-unit) if |x|v ≤ 1 (resp. |x|v = 1) for all
v ∈ V − S. We let OK,S denote the ring of S-integers of K. The group O×K,S is the
group of S-units of K.

Theorem 1.5.18. We have O×K,S = µK×L, where L is a free Abelian group of rank
#S − 1.

Since O×K = O×K,V∞ , we obtain the following.

Corollary 1.5.19. We have O×K = µK ×L, where L is a free Abelian group of rank
r1 + r2−1, r1 and r2 being the number of real and complex places of K, respectively.

Let AK,S = ∏
v∈SKv×

∏
v∈V−S Ov, IK,S = A×K,S = ∏

v∈SK
×
v ×

∏
v∈V−S O×v . Recall

that AK,S is an open subring of AK and IK,S is an open subgroup of IK . We have
OK,S = K ∩ AK,S, O×K,S = K× ∩ IK,S.

Proof of Theorem 1.5.18. Consider the continuous homomorphism λ : IK,S → RS
carrying (xv)v∈V to (log|xv|v)v∈S. We have Ker(λ) = C, λ(IK,S) = RV∞×∏v∈Vf log(qv)Z,
and λ induces an isomorphism of topological groups IK,S/C ' λ(IK,S). Let I1K,S =
IK,S ∩ I1K . Then λ(I1K,S) = λ(IK,S) ∩H, where H is the kernel of the map RS → R
carrying (xv)v∈S to ∑v∈S xv. Note that H is a Euclidean space of dimension #S−1.
Moreover λ(O×K,S) is discrete by the properness of λ. Indeed, λ−1([1

2 , 2]S) is com-
pact, hence has finite intersection with the discrete subgroup O×K,S of IK,S. Now
µK = IK,S ∩ O×K,S, so L = λ(O×K,S) ' O×K,S/µK . We get a short exact sequence

1→ C/µK → I1K,S/O×K,S → λ(I1K,S)/L→ 0.

Note that I1K,S/O×K,S = I1K,S/K× ∩ I1K,S is isomorphic to an open subgroup of
I1K/K×, hence is compact. It follows that λ(I1K,S)/L is compact. Since H/λ(I1K,S) '
RS/λ(I×K,S) ' (R/Z)S−V∞ is compact, so is H/L. Therefore, L is a lattice in
H, hence a free Abelian group of rank #S − 1. It follows that the extension
1→ µK → O×K,S → L→ 1 splits.
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Haar measures
Recall that for any Haar measure dx on Kv, dx/|x|v is a Haar measure on K×v . For
v ∈ Vf , the volume of O×v under dx/|x|v is 1− 1

qv
times the volume of Ov under dx.

Note that ∏v∈Vf (1−
1
qv

) = 0.
For v ∈ Vf , we take the Haar measure µK×v normalized by µK×v (O×v ) = 1. For

v ∈ V∞, we take µK×v = d×x = dx/|x|v, where dx is the Haar measure on Kv

normalized as in Example 1.4.21. We obtain a Haar measure ∏′v∈V µv on IK . This,
combined with the Haar measure dx/|x| on R×>0, induces a Haar measure I1K =
Ker(IK

|−|−→ R×>0). We equip K× with the counting measure.
We equip H = Ker(RV∞ Σ−→ R) with the Haar measure induced by the Lebesgue

measures on RV∞ and R. We have seen in the proof of the Dirichlet unit theorem
that L = {(log(xv))v∈V∞ | x ∈ O×K} is a lattice in H. We equip L with the counting
measure.

Definition 1.5.20. The regulator R of K is the volume of H/L.

Remark 1.5.21. (1) The Haar measure on H is 1/
√
r + 1 times the usual mea-

sure, where r + 1 = #V∞ = r1 + r2. It is also the measure induced via the
isomorphism H ⊆ RV∞ → Rr given by any of the r + 1 projections from the
Lebesgue measure on Rr.

(2) Let (ui)1≤i≤r be a basis ofO×K/µK . Consider the r×(r+1) matrixM = (|ui|vj),
where v1, . . . , vr+1 is an enumeration of V∞. Then R is the absolute value of
any r × r minor of M .

Proposition 1.5.22. We have

vol(I1K/K×) = 2r1(2π)r2hR/w,

where r1, r2 are the number of real and complex places of K, respectively, h is the
class number of K, R is the regulator of K, and w is the number of roots of unity
of K.

Proof. We have exact sequences

1→ U1
K/O×K → I1K/K× → ClK → 1,

1→ C/µK → U1
K/O×K → H/L→ 0.

Thus

vol(I1K/K×) = vol(U1
K/O×K)vol(ClK) = vol(C/µK)vol(H/L)vol(ClK)

= vol(C)hR/w =
∏
v∈V∞

vol(Cv)hR/w.

Consider the short exact sequence

1→ Cv → K×v
log(|−|v)−−−−−→ R→ 0.
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For v real, Cv = {±1}, dx/|x| = ±d log|x| is compatible with the counting measure
on Cv and the Lebesgue measure on R, so that vol(Cv) = 2. For v complex, Cv = S1,

d×z = 2dx ∧ dy
|z|2

= d(r2)
r2 ∧ dθ = d log(r2) ∧ dθ

for z = x + iy = reiθ, compatible with the measure dθ on Cv and the Lebesgue
measure on R, so that vol(Cv) = 2π.

1.6 Appendix: Classification of local fields of char-
acteristic 0

The goal of this section is to prove the following case of Theorem 1.2.28 (assuming
the existence of a Haar measure on K).

Theorem 1.6.1. A local field K of characteristic 0 is isomorphic to either R, C,
or a finite extension of Qp.

Generalized absolute values
Let |−| be an absolute value on a field K. For 0 < r ≤ 1, |−|r is an absolute value.
However, for r > 1, |−|r does not satisfy the triangle inequality in general. For
example, the normalized absolute value |−|C does not satisfy the triangle inequality.

Definition 1.6.2. A generalized absolute value on a field K is a homomorphism
f : K× → R×>0, extended by f(0) = 0, satisfying the inequality (UC):

f(x+ y) ≤ C max{f(x), f(y)},

x, y ∈ K, for some constant C > 0.

Taking x = 1, y = 0, we get C ≥ 1. For C = 1, (U1) is the ultrametric inequality.
If f is a generalized absolute value satisfying (UC), then f r is a generalized absolute
value satisfying (UCr).

Proposition 1.6.3. Let f : K× → R×>0 be a homomorphism extended by f(0) = 0.
Then f is a generalized absolute value on K if and only if f(1 + x) is bounded on
the set B≤1 = {x ∈ K | f(x) ≤ 1}. More precisely, f satisfies (UC) if and only if
f(1 + x) ≤ C for all x ∈ B≤1.

Proof. Taking y = 1 in (UC), we get f(1 + x) ≤ C max{f(1), f(x)} ≤ C for x ∈
B≤1. Conversely, assume f(1 + x) ≤ C for all x ∈ B≤1. To show (UC), we may
assume f(x) ≤ f(y), and y 6= 0, so that f(x + y) = f(y)f(1 + x

y
) ≤ Cf(y) =

C max{f(x), f(y)}.

Proposition 1.6.4. Let f : K× → R×>0 be a homomorphism extended by f(0) = 0.
The following conditions are equivalent.
(1) f is an absolute value on K.
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(2) f satisfies (U2).
(3) f is a generalized absolute value on K and there exists a constant A such that

f(n · 1) ≤ An for all n ∈ N.

Proof. (1) ⇒ (2). Indeed, f(x+ y) ≤ f(x) + f(y) ≤ 2 max{f(x), f(y)}.
(2)⇒ (3). By induction, (U2) implies f(x1 + · · ·+x2m) ≤ 2m max1≤i≤2m{f(xi)}.

For n > 0, let m be the smallest integer such that 2m ≥ n. Then f(n ·1) ≤ 2m < 2n.
(3)⇒ (1). By induction, (UC) implies f(x1+· · ·+x2m) ≤ Cm maxfrm[o]−−lei≤2m{f(xi)}.

Let n = 2m − 1. Then

f(x+ y)n = f((x+ y)n) = f

(
n∑
i=0

(
n

i

)
xiyn−i

)
≤ Cm max

0≤i≤n

{
f

((
n

i

)
xiyn−i

)}

≤ ACm
n∑
i=0

(
n

i

)
f(x)if(y)n−i = ACm(f(x) + f(y))n,

so that f(x+ y) ≤ n
√
ACm(f(x) + f(y)). Let m→ +∞. We get ≤ f(x) + f(y).

Corollary 1.6.5. Every generalized absolute value f on K has the form f(x) = |x|r,
where |−| is an absolute value on K and r > 0.

Proof. Indeed, for s > 0 sufficiently small, f s satisfies (U2), hence is an absolute
value by the proposition.

Modulus of a local field
Let K be a local field. For the moment we make no assumption on the characteristic
ofK. Let mod: K → R≥0 be the modulus ofK. By definition, for any Haar measure
µ on K, any measurable set E ⊆ K, and any a ∈ K, µ(aE) = mod(a)µ(E) (here
0 · ∞ = 0). The function mod induces a group homomorphism K× → R×>0.

Proposition 1.6.6. The function mod: K → R≥0 is continuous.

Proof. Let V be a compact neighborhood of 0 in K. Then µ(V ) ∈ R>0. Let a ∈ K.
By the outer regularity of µ, for any ε > 0, there exists an open subset U ⊇ aV
such that µ(U) ≤ µ(aV ) + ε. By the continuity of multiplication in K, there exists
a neighborhood W of a such that WV ⊆ U . For x ∈ W , µ(xV ) ≤ µ(U) ≤
µ(aV ) + ε. Thus mod(x) ≤ mod(a) + ε/µ(V ). This inequality shows that mod is
upper continuous, hence continuous at 0. For a ∈ K×, mod(a) = 1/mod(1/a). It
follows that mod is also lower continuous at any a ∈ K×.

Proposition 1.6.7. For r ≥ 0, B≤r = {x ∈ K | mod(x) ≤ r} is compact.

Let V be a compact neighborhood of 0 in K. By the continuity of mod, B≤r is
closed in K, so it suffices to show that B≤r is contained in a compact set of the form
aV , a ∈ K.

Lemma 1.6.8. There exists π ∈ K× such that πn → 0 as n→ +∞ and πV ⊆ V .
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Proof. Since 0 · V ⊆ V , there exists a neighborhood U of 0 such that UV ⊆ V . By
the continuity of mod, since K is not discrete, there exists π ∈ U ∩ V such that
0 < mod(π) < 1. Thus πV ⊆ V . By induction, πnV ⊆ V for n ≥ 0, so that πn ∈
πn−1V ⊆ V for n ≥ 1. Since V is compact, the sequence πn has a cluster point. For
any cluster point x of the sequence, mod(x) is a cluster point of mod(πn) = mod(π)n
by the continuity of mod, hence mod(x) = 0, which implies x = 0. Thus 0 is the
only cluster point of πn. In other words, πn → 0 as n→ +∞.

Proof of Proposition 1.6.7. Let π be as in the lemma. Let X be the closure of
V − πV in K. We have 0 6∈ X, so that ρ = minx∈X{mod(x)} > 0. Choose N ≥ 0
such that mod(π)Nr ≤ ρ. We claim that B≤r ⊆ π−NV . To see this, let a ∈ B≤r.
To show a ∈ π−NV , we may assume a 6∈ V . Since πna→ 0, there exists n ≥ 1 such
that πna ∈ V , but πn−1a 6∈ V . In other words, πna ∈ V − πV . Thus

mod(π)Nr ≤ ρ ≤ mod(πna) ≤ mod(π)nr,

so that n ≤ N . Thus a ∈ π−nV ⊆ π−NV .

Corollary 1.6.9. The subsets B≤r ⊆ K, r > 0 form a fundamental system of
neighborhoods of 0 in K. In particular, for a ∈ K, an → 0 as n→ +∞ if and only
if mod(a) < 1.

Proof. Let V be any neighborhood of 0 in K. We show that B≤r ⊆ V for some
r > 0. We may assume that V does not contain B≤R for some R > 0. Let X be the
closure of B≤R\V in K. We have 0 6∈ X, so that ρ = minx∈X{mod(x)} > 0. For
0 < r < ρ, B≤r ⊆ V .

Corollary 1.6.10. Any discrete subfield F of K is finite.

Proof. For any a ∈ F×, as a−n 6→ 0, we have mod(a) ≤ 1. Thus F ⊆ B≤1 is compact
and discrete, hence finite.

Proof of Theorem 1.6.1. By Propositions 1.6.6 and 1.6.7, x 7→ mod(1+x) is bounded
on B≤1. By Proposition 1.6.3, mod is a generalized absolute value. By Corollary
1.6.5, we obtain an absolute value on K, which defines the topology on K by Corol-
lary 1.6.9. By Corollary 1.6.10, the restriction of this absolute value to Q is nontriv-
ial, thus is equivalent to either |−|∞ or |−|p. Thus there exists an absolute value on
K extending |−|∞ or |−|p. Since K is complete, K as a valued field contains either
R or Qp. We conclude by the following.

Proposition 1.6.11. Let W be a locally compact normed vector space over a com-
plete valued field K with nontrivial absolute value |−|. Then the dimension of W is
finite.

Proof. Let V be a compact neighborhood of 0 in W . Let π ∈ K with 0 < |π| < 1.
Then there exist x1, . . . , xn ∈ W such that V ⊆ ⋃(xi + πV ). Let L = ∑

Kxi ⊆ W .
Then L is a finite-dimensional K-vector subspace of W , hence complete (Lemma
1.2.20), therefore closed. Let A be the image of V in W/L, which is a compact
neighborhood of 0 in W/L. We have A ⊆ πA. For any y ∈ W/L, πny → 0 as
n → +∞. Thus W/L ⊆ ⋃

π−nA = A, so that W/L = A is compact. Note that K
is not compact, so that W/L must be zero. It follows that W = L.
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One can show using Haar measures that any locally compact Hausdorff topolog-
ical vector space over a local field is finite-dimensional [W, Section I.2, Corollary 2
to Theorem 3].
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Chapter 2

Tate’s thesis

2.1 Pontryagin duality
Let G be a topological abelian group. We write the group law multiplicatively.

Definition 2.1.1. A unitary character of G is a continuous homomorphism G →
S1 = {z ∈ C | |z| = 1}. The Pontryagin dual of G is the abelian group Ĝ of unitary
characters of G with multiplication defined by (χχ′)(x) = χ(x)χ′(x), equipped with
the compact-open topology (also known as topology of compact convergence): A base
of the topology is given by W (K,U) = {χ ∈ Ĝ | χ(K) ⊆ U}, K ⊆ G compact,
U ⊆ S1 open.

The compact-open topology is finer than the topology of pointwise convergence
(namely, the weakest topology such that for all x ∈ G, the function χ 7→ χ(x)
is continuous on Ĝ). A fundamental system of neighborhoods of 1 ∈ Ĝ is given
by W (K,U) = {χ ∈ Ĝ | χ(K) ⊆ U}, K ⊂ G compact and U running through
neighborhoods of 1 ∈ S1. To analyze the topology of Ĝ, we consider the open neigh-
borhood N(ε) = e((− ε

3 ,
ε
3)) ⊆ S1 of 1, for 0 < ε ≤ 1. Here e(x) = exp(2πix). Note

that N(1) does not contain any nontrivial subgroup of S1. We have the following
refinement.

Lemma 2.1.2. Let m ≥ 1 be an integer and let 0 < ε ≤ 1. If x ∈ S1 is such that
x, x2, . . . , xm ∈ N(ε), then x ∈ N(ε/m).

It follows that for any subset X ⊆ G containing 1 ∈ G and any homomorphism
χ : G→ S1, not necessarily continuous, such that χ(X(m)) ⊆ N(ε), we have χ(X) ⊆
N(ε/m). Here X(m) = {x1 · · ·xm | x1, . . . , xm ∈ X} ⊆ G.

Proof. We proceed by induction. The case m = 1 is trivial. For m ≥ 2, we
have x ∈ N(ε/(m − 1)) by induction hypothesis, so that x = e(α), |α| < ε

3(m−1) .
Since xm ∈ N(ε), we have mα ∈ (− ε

3 + r, ε3 + r) for an integer r. In particular,
− ε

3 + r < mα < m ε
3(m−1) , so that r < 2m−1

3(m−1) ≤ 1. Similarly, r > −1. Thus r = 0,
α ∈ (− ε

3m ,
ε

3m), and x ∈ N(1/m).

Proposition 2.1.3. A group homomorphism χ : G→ S1 is continuous if and only
if χ−1(N(1)) is a neighborhood of 1 ∈ G.

33
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Proof. The “only if” part is trivial. Conversely, if χ−1(N(1)) is a neighborhood of
1 ∈ G, then for any integer m ≥ 1, there exists a neighborhood U of 1 ∈ G such
that U (m) ⊆ χ−1(N(1)), so that χ(U) ⊆ N(1/m) by the lemma.

Proposition 2.1.4. A fundamental system of neighborhoods of 1 ∈ Ĝ is given by
W (K,N(1)), K ⊆ G compact.

Proof. It suffices to show that for everyK andm ≥ 1,W (K ′, N(1)) ⊆ W (K,N(1/m))
for some compact subset K ′ ⊆ G. We may assume 1 ∈ K. By the lemma, we may
take K ′ = K(m).

Proposition 2.1.5. (1) Ĝ is Hausdorff.
(2) If G is discrete, then Ĝ is compact.
(3) If G is compact, then Ĝ is discrete.
(4) If G is locally compact, then Ĝ is locally compact.

Proof. (1) Indeed, {1} = ⋂
g∈G g

⊥, where g⊥ = {χ ∈ Ĝ | χ(g) = 1} is closed in Ĝ.
(2) Ĝ is a closed subgroup of the compact group (S1)G = ∏

g∈G S
1. Indeed, Ĝ =⋂

g,h∈G Vg,h, where Vg,h = {χ : G→ S1 | χ(g)χ(h) = χ(gh)} ⊆ (S1)G is closed.
(3) For any χ ∈ W (G,N(1)), χ(G) ⊆ N(1) is a subgroup of N(1), hence χ(G) =
{1}. Thus W (G,N(1)) = {1}.

(4) Let V be a compact neighborhood of 1 ∈ G. We show thatW = W (V,N(1/3))
is a compact neighborhood of 1 ∈ Ĝ. Here the bar denotes closure. Clearly
W ⊇ W (V,N(1/3)) is a neighborhood of 1 ∈ Ĝ. Let G0 be G equipped with
the discrete topology. Then Ĝ ⊆ Ĝ0. The latter is compact by (2). Let
W0 = {χ ∈ Ĝ0 | χ(V ) ⊆ N(1/3)}, so that W = W0 ∩ Ĝ. Note that every
χ ∈ W0 is continuous on G by Proposition 2.1.3, so that W = W0. As W0
is closed in Ĝ0, W0 is compact for the topology τ0 induced from Ĝ0. The
topology τ on W induced from Ĝ is finer than τ0, and it suffices to show the
converse. For χ ∈ W and K ⊆ G compact, let X = (χW (K,N(1))) ∩W . By
Proposition 2.1.4, it suffices to show that X is a τ0-neighborhood of χ. By
the compactness of K, there exists a finite subset F ⊆ G such that K ⊆ FV .
Then X0 = (χW (F,N(1/3)))∩W is a τ0-neighborhood of χ, and it suffices to
show that X0 ⊆ X. Let χ0 ∈ X0. Then χ0 = χµ for some µ ∈ Ĝ0 such that
µ(F ) ⊆ N(1/3). Since µ = χ−1χ0 ∈ W (2), µ(V ) ⊆ N(2/3). By Proposition
2.1.3, µ is continuous on G. Moreover, µ(K) ⊆ µ(F )µ(V ) ⊆ N(1/3)N(2/3) =
N(1). Thus µ ∈ X.

We say that an element a of an abelian group A is divisible, if for each integer
n ≥ 1, nx = a admits a solution in A. We say that A is divisible, if every a ∈ A is
divisible.

Remark 2.1.6. If G is divisible, then Ĝ is torsion-free. Indeed, if χ ∈ Ĝ[n], then
χ(G) ⊆ S1[n] is divisible, so that χ = 1.

Let f : G → G′ be a continuous homomorphism of topological abelian groups.
Composition with f induces a continuous homomorphism f̂ : Ĝ′ → Ĝ. Indeed,
f̂−1(W (K,U)) = W (f(K), U). For a sequence G f−→ G′

f ′−→ G′′ of continuous homo-
morphisms, (f ′ ◦ f)̂= f̂ ◦ f̂ ′.
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Proposition 2.1.7. Let H be a subgroup of G and let i : H → G be the inclusion.
Then

H⊥ = {χ ∈ Ĝ | χ(H) = {1}} = Ker(̂i : Ĝ→ Ĥ)

is a closed subgroup of Ĝ. Moreover, p̂, where p is the quotient map p : G→ G/H,
induces a continuous isomorphism (G/H)̂ ∼−→ H⊥, which is an isomorphism of
topological groups if G is locally compact.

Proof. For the first assertion is obvious. The map (G/H)̂ ∼−→ H⊥ is clearly a
continuous isomorphism. For every compact K ⊆ G/H, there exists a compact
K ′ ⊆ G such that K ⊆ p(K ′). Thus the map is a homeomorphism.

Example 2.1.8. The map Ẑ→ S1 carrying χ to χ(1) is an isomorphism of topo-
logical groups.

Example 2.1.9. For n ≥ 1, the map (Z/nZ)̂→ µn = S1[n] carrying χ to χ(1) is
an isomorphism of topological groups. Choosing a primitive n-root of unity ζn ∈ S1,
we obtain an isomorphism Z/nZ ∼−→ (Z/nZ)̂ carrying ξ to x 7→ ζξxn . It follows that
for every finite abelian group G, there exists a (noncanonical) isomorphism G ' Ĝ.

Let V be a finite-dimensional Fp-vector space. Then we have an isomorphism
HomFp(V,Fp) = V ∨

∼−→ V ̂ carrying φ to x 7→ ζφ(x)
p . For V = Fq, q = pf , compos-

ing with the isomorphism Fq
∼−→ V ∨ carrying ξ to x 7→ trFq/Fp(ξx), we obtain an

isomorphism Fq → Fq̂ carrying ξ to x 7→ ζ
trFq/Fp (ξx)
p .

Example 2.1.10. Consider the isomorphisms Z/pnZ ∼−→ (p−nZ/Z)̂ carrying ξ to
x 7→ e(ξx), where ξx ∈ p−nZ/Z. For m ≤ n, the isomorphisms are compatible
with the projection Z/pnZ→ Z/pmZ and the inclusion p−mZ/Z ⊆ p−nZ/Z for m ≤
n. Taking limit, we obtain an isomorphism of topological groups Zp ∼−→ (Qp/Zp)̂
carrying ξ to x 7→ e(ξx), where ξx ∈ Qp/Zp ⊆ Q/Z ⊆ R/Z. Note that Qp/Zp =
Z[p−1]/Z = ⋃

n p
−nZ/Z is discrete.

Example 2.1.11. The isomorphisms p−nZp ∼−→ (Qp/p
nZp)̂carrying ξ to x 7→ e(ξx)

are compatible with the inclusion p−mZp ⊆ p−nZp and the projection Qp/p
nZp →

Qp/p
mZp for m ≤ n. Note that Qp = ⋃

n p
−nZp. Moreover, for every unitary

character χ of Qp, χ(pnZp) ⊆ N(1) for some n, so that χ is trivial on pnZp. Taking
union, we obtain an isomorphism of topological groups Qp ' Qp̂ carrying ξ to
x 7→ e(λ(ξx)), where λ : Qp → Qp/Zp is the projection.

Example 2.1.12. Let V be a finite-dimensional Qp-vector space. Then we have an
isomorphism HomQp(V,Qp) = V ∨

∼−→ V̂ carrying φ to x 7→ e(λ(φ(x))). For V = K a
finite field extension of Qp, composing with the isomorphism K

∼−→ V ∨ carrying ξ to
trK/Qp(ξx), we obtain an isomorphism K

∼−→ K̂carrying ξ to x 7→ e(λ(trK/Qp(ξx))).

Example 2.1.13. Let V be a finite-dimensional real vector space. Then we have
an isomorphism HomR(V,R) = V ∨

∼−→ V̂ carrying φ to x 7→ e(φ(x)). For V = K is
either R or C, composing with the isomorphism K

∼−→ V ∨ carrying ξ to trK/R(ξx),
we obtain an isomorphism K

∼−→ K̂ carrying ξ to x 7→ e(trK/R(ξx)).

We have proved the following.
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Proposition 2.1.14. Let K be a local field of characteristic 0 and let ψ be a nonzero
additive character of K. Then the map K → K̂carrying ξ to ψξ is an isomorphism
of topological groups. Here ψξ is defined by ψξ(x) = ψ(ξx).

For g ∈ G, the map Ĝ → S1 carrying χ to χ(g) is a unitary character. We
obtain a homomorphism η : G → ˆ̂

G carrying g to χ 7→ χ(g), which is continuous
if G is locally compact. To see the continuity, let K ⊆ Ĝ be a compact subset,
and let W = {φ ∈ ˆ̂

G | φ(K) ⊆ N(1)}. Let V be a compact neighborhood of
1 ∈ G. Then there exists a finite subset F ⊂ K such that K ⊆ FW (V,N(1/2)).
Let U = V ∩ ⋂χ∈F χ−1(N(1/2)). Then η(U) ⊆ W .

Theorem 2.1.15 (Pontryagin). Let G be a locally compact abelian group. The map
η : G→ ˆ̂

G is an isomorphism of topological groups.

Corollary 2.1.16. Let H be a closed subgroup of G. Then the short exact sequence
1→ H

i−→ G
p−→ G/H → 1 induces a short exact sequence

1→ (G/H)̂ p̂−→ Ĝ
î−→ Ĥ → 1,

identifying Ĥ with the quotient of Ĝ by the closed subgroup H⊥.

Proof. We have seen that p̂ induces an isomorphism of topological groups (G/H)̂ ∼−→
H⊥ = Ker(̂i). It remains to show that î is a quotient map. Let L be the Pontryagin
dual of Ĝ/H⊥, so that L̂ = Ĝ/H⊥. We have î = ψ̂ ◦ φ̂, where Ĝ ψ̂−→ L̂

φ̂−→ Ĥ,
corresponding to H φ−→ L

ψ−→ G. Since ψ ◦ φ = i, ψ(L) ⊇ H. Since ψ̂ ◦ p̂ factors
through {1}, p ◦ ψ factors through {1}, so that ψ(L) ⊆ H. Thus ψ(L) = H, hence
ψ induces an isomorphism of topological groups L ∼−→ H. It follows that φ is an
isomorphism of topological groups. Therefore, φ̂ is an isomorphism of topological
groups.

Corollary 2.1.17. Let H be a subgroup of G. Then (H⊥)⊥ = H̄.

Proof. Since H⊥ = H̄⊥, we may assume that H is closed. Then the assertion follows
Corollary 2.1.16.

We refer the reader to [B4, Section II.1] for a proof of the Pontryagin duality.
The proof makes use of Fourier transformation. Let us recall the definition and a
few facts.

We fix a Haar measure dx on G. For 1 ≤ p < ∞, let Lp(G) be the completion
of Cc(G,C) with respect to the Lp-norm. For f ∈ L1(G), we define its Fourier
transform Ff : Ĝ → C by (Ff)(χ) =

∫
G f(x)χ(x) dx.1 Then Ff ∈ C(G,C) and

‖Ff‖∞ ≤ ‖f‖1. The convolution product f ∗ g for f, g ∈ L1(G) is defined by
(f ∗ g)(x) =

∫
G f(xy−1)g(y) dy. This makes L1(G) into a commutative Banach

algebra. We have F(f ∗ g) = F(f)F(g). In other words, for χ ∈ Ĝ, the map
L1(G)→ C, f 7→ (Ff)(χ) is a character of L1(G), in the following sense.

1Bourbaki [B4, Section II.1] calls F the Fourier cotransform and defines the Fourier transform
by χ 7→

∫
G
f(x)χ(x−1) dx.
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Remark 2.1.18. Let A be a (non-unital) commutative complex algebra. We define
a character of A to be a homomorphism A→ C of complex algebras. We let X(A)
denote the set of nonzero characters of A. We equip X(A) with the topology of
pointwise convergence. Then X(A) is a Hausdorff space. The Gelfand transform
Gf ∈ C(X(A),C) of f ∈ A is defined by (Gf)(χ) = χ(f). If A is a commutative
Banach algebra, every character is continuous of norm ≤ 1 [B4, I.3.1], so that
X(A) ∪ {0} is a closed subset of the closed unit ball B of A∗, the dual of the
Banach space A consisting of continuous linear functionals on A, equipped with the
topology of pointwise convergence (also known as the weak-* topology). By the
Banach-Alaoglu theorem, B is compact (indeed, B is a closed subset of the compact
set ∏f∈AB≤‖f‖(0), where B≤r(0) ⊆ C denotes the closed disc of radius r), hence
X(A) ∪ {0} is compact, so that X(A) is locally compact. Moreover, χ 7→ Ker(χ)
defines a bijection from X(A) to the set of maximal regular ideals of A (an ideal
I of A is regular if the quotient A/I admits a multiplicative identity 1). One can
show that χ 7→ (f 7→ (Ff)(χ)) defines a homeomorphism Ĝ

∼−→ X(L1(G)). Via this
homeomorphism Ff can be identified with Gf .

Theorem 2.1.19 (Plancherel). There exists a unique Haar measure dx̂ on Ĝ such
that

∫
Ĝ|Ff |2 dx̂ =

∫
G|f |2 dx for all f ∈ Cc(X,C). The map F : Cc(X,C) → L2(Ĝ)

extends uniquely to an isometry F : L2(G)→ L2(Ĝ).

The Haar measure dx̂ on Ĝ is called the dual measure of dx. Note that for c > 0,
the dual measure of c dx is c−1 dx̂.

Theorem 2.1.20 (Fourier inversion). Via the isomorphism η : G ∼−→ ˆ̂
G, dx can be

identified with dˆ̂x, and (FFf)(ηx) = f(x−1) for f ∈ L2(G) and x ∈ G.

Definition 2.1.21. A quasi-character of a topological abelian group G is a contin-
uous homomorphism G→ C×.

2.2 Local zeta integrals

Duality of the additive group

Let k be a local field of characteristic 0 and let ψ be a nontrivial additive character
of k. For every Haar measure dx on the additive group of k, the dual measure dx̂ can
be regarded as a Haar measure on k via the isomorphism k

∼−→ k̂ carrying ξ to ψξ.
There exists a unique Haar measure dx on k, depending only on ψ, that is self-dual,
namely dx = dx̂. Indeed, if dx̂ = c dx, then

√
c dx is self-dual. For a function f on

k, we write f̂ for Ff , regarded as a function on k by f̂(ξ) =
∫
k f(x)ψ(ξx) dx.

In the sequel we fix an additive character ψ by ψ(x) = e(−trk/R(x)) for k = R
or k = C and ψ(x) = e(λ(trK/Qp(x))) if k is p-adic. Let dx be the self-dual measure
determined by ψ. For k = R, dx is the usual Lebesgue measure. For k = C, dx
is twice the usual Lebesgue measure. If k is p-adic, let O be the ring of integers
of k. Recall that the different d of k is an ideal of O defined by the following
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condition: For x ∈ k, x ∈ d−1 if and only if trk/Qp(xy) ∈ Zp for all y ∈ O. We have∫
O dx = (Nd)−1/2, where Nd = #(O/d). 2

We let S(k) denote the space of Schwartz-Bruhat functions. In the Archimedean
case, this is the space of Schwartz functions. Recall that a Schwartz function on Rn
is a function such that supx∈Rn|xαDβf(x)| <∞ for all α, β ∈ Zn≥0. For 1 ≤ p <∞,
S(k) is dense in Lp(k,C).

Proposition 2.2.1. For f ∈ S(k), we have f̂ ∈ S(k).

In the Archimedean case all the above facts are classical and our proof of Theorem
2.2.8 below also implies that dx is as described above. We give proofs in the p-adic
case. The following lemma applies to all cases.

Lemma 2.2.2. Let a ∈ k, g(x) = f(x − a), h(x) = ψ(ax)f(x). Then ĝ(x) =
ψ(ax)f(x) and ĥ(x) = f̂(x+ a).

Proof. Indeed,

ĝ(x) =
∫
k
f(y − a)ψ(xy) dy =

∫
k
f(y)ψ(x(y + a)) dy = ψ(ax)f̂(x),

ĥ(x) =
∫
k
ψ(ay)f(y)ψ(xy) dx =

∫
k
f(y)ψ((x+ a)y) dy = f̂(x+ a).

Lemma 2.2.3. Let G be a compact abelian group and let dg be a Haar measure on
G. Let χ : G→ S1 be a character. Then

∫
G
χdg =

vol(G) χ = 1,
0 χ 6= 1.

Proof. The case χ = 1 is trivial. For every g ∈ G, χ(g)
∫
G χ(h) dh =

∫
G χ(gh) dh =∫

G χ(h) dh. The case χ 6= 1 follows.

Assume now that k is p-adic.

Lemma 2.2.4. Let a be a fractional ideal. Then 1̂a = (Nd)−1/2(Na)−11d−1a−1.

Proof. We have 1̂a(x) =
∫
a ψ(xy) dy. Note that x ∈ d−1a−1 if and only if y 7→ ψ(xy)

is a trivial character of a. The assertion then follows from the preceding lemma and
the fact that vol(a) = (Nd)−1/2(Na)−1.

By Lemma 1.4.11, the proposition reduces to the case f = 1B for some ball
B = a+ a. By Lemma 2.2.2, we reduce to Lemma 2.2.4.

The space S(k) is dense in Cc(k,C) = ⋃
K C(k,C) equipped with the topol-

ogy defined similarly to Remark 1.4.2, which is stronger than the Lp-topology for
1 ≤ p < ∞. Indeed, the density follows from the density of S(k) ∩ CK(k,C) in
CK(k,C), which is a consequence of uniform continuity. It follows that S(k) is
dense in Lp(k,C).

2In view of our convention for ψ, our convention for f̂ differs from that of Tate [T1] by a sign.
In the Archimedean case, our convention coincides with that of the classical Fourier transform.
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To show Fourier inversion, we are thus reduced to the case f ∈ S(k), and then
to f = 1B by Lemma 1.4.11, and finally to f = 1a by Lemma 2.2.2. In this case, we
have

ˆ̂
f(x) = (Nd)−1/2(Na)−11̂d−1a−1 = (Nd)−1/2(Na)−1(Nd)−1/2(N(d−1a−1))−11a = 1a.

Local zeta integrals
Let k be a local field of characteristic 0. We let X(k×) denote the abelian group of
quasi-characters of k× with group law defined by pointwise multiplication. We have
a short exact sequence

1→ C → k×
|−|−→ |k×| → 1.

Note that C is compact. We say χ is unramified if χ(C) = |1|. In this case χ
factors through |k×|, so that χ = |−|s for some s ∈ C. In the Archimedean case,
|k×| = R>0 so that s is unique. In the p-adic case, we have |k×| = |Np|Z so that
C/2πi log(Np)Z. Here p is the maximal ideal of O.

The sequence is split. In the p-adic case the splitting depends on the choice
of a uniformizer π. In all cases the sequence induces a split short exact sequence
1 → Xur(k×) → X(k×) → Ĉ → 1, which equips X(k×) with the structure of a
complex Lie group of dimension 1 (that does not depend on the choice of a splitting),
with Ĉ being the group of connected components.

For k = R, C = {±1}, so that every quasi-character can be uniquely written as
χ = |−|s or χ = sgn|−|s for s ∈ C. For k = C, C = S1, so that every quasi-character
can be uniquely written as χ = χn|−|s for n ∈ Z, s ∈ C, where χn is the unitary
character χn(z) = (z/|z|C)n. For k p-adic, C = O×, so that every quasi-character
can be uniquely written as χ = χ0|−|s, where χ0 is a unitary character satisfying
χ0(π) = 1, and s ∈ C/2πi log(Np)Z. Since the subgroups 1+pn, n ≥ 1 of O× form a
fundamental system of neighborhoods of 1, there exists n such that χ(1+pn) = {1}.
If χ is ramified, the conductor is defined to be pn, where n is the least integer such
that χ(1 + pn) = {1}. For χ unramified, we define the conductor to be O.Note that
Ĉ = ⋃

n(O×/(1 + pn))̂ is countable.
In all cases σ(χ) = Re(s) is well-defined.
For fix a Haar measure d×x = δ(k) dx/|x| on k× as follows. For k Archimedean,

we take δ(k) = 1. For k p-adic, we take δ(k) = Np
Np−1

dx
|x| , so that

∫
O× d

×x = (Nd)− 1
2 .

Definition 2.2.5. For f ∈ S(k) and χ ∈ X(k×), we define the local zeta integral by

ζ(f, χ) =
∫
k×
f(x)χ(x)d×x.

Lemma 2.2.6. ζ(f, χ) converges absolutely to a holomorphic function for σ(χ) > 0.

Proof. This follows from the fact that
∫
k× f(x)χ(x)d×x and

∫
k× f(x)χ(x) log(|x|)d×x

converge absolutely and uniformly on any compact in σ(χ) > 0.

Recall that the Gamma function is defined by Γ(s) =
∫∞

0 xs−1e−x dx, which
converges absolutely to a holomorphic function for Re(s) > 0. It extends to a
meromorphic function on C without zeroes.
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Definition 2.2.7. For a quasi-character χ of k×, we define the local L-factor L(χ)
as follows.
(1) For k = R,

L(|·|s) = ΓR(s), L(sgn|·|s) = ΓR(s+ 1),
where

ΓR(s) = π−
s
2 Γ
(
s

2

)
.

(2) For k = C,

L(χn|·|s) = ΓC
(
s+ |n|2

)
,

and
ΓC(s) = (2π)1−sΓ(s).

(3) Assume that k is p-adic. For χ = |·|s unramified,

L(|·|s) = 1
1− (Np)−s = 1

1− χ(π) ,

where π is a uniformizer of k, and for χ ramified,

L(χ) = 1.

We note that L(χ) is a meromorphic function on X(k×) with no poles for σ(χ) >
0 and no zeros for all χ.

Theorem 2.2.8. For any f ∈ S(k), the function χ 7→ ζ(f, χ) extends to a mero-
morphic function on the space of all quasi-characters, such that ζ(f, χ)/L(χ) is
holomorphic and satisfies the functional equation

ζ(f, χ)
L(χ) ε(χ) = ζ(f̂ , χ∨)

L(χ∨) ,

where χ∨ = χ−1|−|, and ε(χ) is a holomorphic function of χ with no zeros, inde-
pendent of f , given as follows.
(1) For k = R,

ε(|·|s) = 1, ε(sgn|·|s) = −i.
(2) For k = C,

ε(χn|·|s) = (−i)|n|,
where χn is the unitary character χn(z) = (z/|z|)n.

(3) If k is p-adic, then

ε(|·|s) = (Nd) 1
2−s, ε(χ0|·|s) = (N(df)) 1

2−sτ0(χ0),

where χ0 is unitary, ramified of conductor f satisfying χ0(π) = 1, and

τ0(χ0) = (N f)− 1
2
∑
x

χ0(x)ψ
(
x

πm

)
is the normalized Gauss sum, x running through a set of representatives of
O×/(1 + f), with df = pm.
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Moreover, for each connected component X of X(k×), there exists a f ∈ S(k) such
that ζ(f, χ) = L(χ) for χ ∈ X.

In some sense, L(χ) is the greatest common divisor of ζ(f, χ), f ∈ S(k). The
proof of the theorem relies on the following.

Lemma 2.2.9. For all f, g ∈ S(k) and χ ∈ X(k×) with 0 < σ(χ) < 1, we have

ζ(f, χ)ζ(ĝ, χ∨) = ζ(f̂ , χ∨)ζ(g, χ).

Proof. We have

ζ(f, χ)ζ(ĝ, χ∨) =
∫
k×

∫
k×
f(x)χ(x)ĝ(y)χ−1(y)|y| d×x d×y

(y 7→ xy) =
∫
k×

∫
k×
f(x)χ(x)ĝ(xy)χ−1(xy)|xy| d×x d×y

= δ(k)
∫
k×

(∫
k

∫
k
f(x)g(z)ψ(xyz) dx dz

)
χ(y−1)|y| dy,

which is symmetric in f and g.

Proof of Theorem 2.2.8. We will show for each connected component X of X(k×)
that there exists one choice of f such that ζ(f, χ) = L(χ) for χ ∈ X, σ(χ) > 0 and
ζ(f̂ , χ∨) = ε(χ)L(χ∨) holds for χ ∈ X, σ(χ) < 1. In particular, the functional equa-
tion holds for this f and ζ(f, χ) is not identically zero on any component. By the
lemma, for 0 < σ(χ) < 1, multiplying by ζ(g, χ) and dividing by ζ(f, χ), we see that
the functional equation holds for all f (more informally, ζ(f̂ , χ∨)/ζ(f, χ) is indepen-
dent of f). Since ζ(f, χ)/L(χ) is homomorphic for σ(χ) > 0 and ζ(f̂ , χ∨)/L(χ∨)
is holomorphic for σ(χ) < 1, ζ(f, χ)/L(χ) admits a holomorphic continuation to
X(k×).

(1) Assume k = R. For χ = |·|s, we take f(x) = e−πx
2 . Then

ζ(f, |·|s) =
∫
R×
e−πx

2 |x|s d×x = 2
∫ ∞

0
e−πx

2
xs−1 dx

(y = πx2) = π−
s
2

∫ ∞
0

e−yy
s
2−1 dy = ΓR(s) = L(|·|s).(2.2.1)

Moreover,
f̂(y) =

∫
R
e−πx

2−2πixy dx = e−πy
2
∫
R
e−π(x+yi)2

dx.

By contour integral and Gaussian integral,∫
R
e−π(x+yi)2

dx =
∫
R
e−πx

2
dx = 1.

Thus

(2.2.2) f̂ = f,

so that ζ(f̂ , χ∨) = ζ(f, χ∨) = L(χ∨).
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For χ = sgn|·|s, we take f(x) = xe−πx
2 . By (2.2.1), we have

ζ(f, χ) = 2
∫ ∞

0
e−πx

2
xs dx = ΓR(s+ 1) = L(χ).

Moreover, taking derivative in (2.2.2), we get −2πif̂ = −2πf , so that f̂ = −if .
Thus ζ(f̂ , χ∨) = ζ(−if, χ∨) = ε(χ)L(χ∨).

(2) Assume k = C. We take fn(z) = z̄ne−2πzz̄ for n ≥ 0 and fn(z) = z−ne−2πzz̄

for n ≤ 0. We have

ζ(fn, χn|·|s) =
∫
C×
fn(z)χn(z)(zz̄)s d×z

(dx dy = r dr dθ) =
∫ 2π

θ=0

∫ ∞
r=0

e−2πr2
r2s+|n|2r dr dθ

r2

= 4π
∫ ∞

0
e−2πr2

r2s+|n|−1 dr

(t = 2πr2) = (2π)1−(s+ |n|2 )
∫ ∞

0
e−tts+

|n|
2 −1 dt = L(χn|·|s).

We have

f̂0(z) =
∫
C
e−2πww̄e−2πi(zw+z̄w̄) dw

(z = x+ iy, w = u+ iv) = 2
∫ ∞
−∞

∫ ∞
−∞

e−2π(u2+v2)e−4πi(ux−vy) du dv

= 2e−2π(x2+y2)
∫ ∞
−∞

e−2π(u+ix)2
du
∫ ∞
−∞

e−2π(v−iy)2
dv

= f0(z).

Regarding z and z̄ as independent variables and taking derivatives with respect to
∂n

∂zn
and ∂n

∂z̄n
, we get (2πi)nf̂n = (2π)nf−n and (2πi)nf̂−n = (2π)nfn for n ≥ 0. Thus

for all n, f̂n = (−i)|n|f−n. For χ = χn|·|s, χ∨ = χ−n|·|1−s, so that

ζ(f̂n, χ∨) = ζ((−i)|n|f−n, χ∨) = ε(χ)L(χ∨).

(3) Assume that k is p-adic. For χ = |·|s unramified, we take f = (Nd) 1
2 1O.

Then f̂ = 1d−1 . We have

ζ(f, χ) = (Nd) 1
2

∫
O−{0}

|x|sd×x

(O − {0} =
∞∐
n=0

πnO×) = (Nd) 1
2

∞∑
n=0
|π|ns

∫
O×

d×x = 1
1− |π|ns = L(χ),

and

ζ(f̂ , χ∨) =
∫
d−1−{0}

|x|1−sd×x

(d−1 − {0} =
∞∐

n=−d
πnO×) =

∞∑
n=−d
|π|n(1−s)

∫
O×

d×x = (Nd)− 1
2
|π|−d(1−s)

1− |π|1−s

= (Nd) 1
2−sL(|·|1−s) = ε(χ)L(χ∨).
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For χ = χ0|·|s ramified of conductor f with χ0(π) = 1, we take f = c−111+f,
where c =

∫
1+f d

×x. Then ζ(f, χ) = 1 = L(χ) and f̂ = c−1(Nd)− 1
2 (N f)−1ψ1(df)−1 .

We have

ζ(ψ1(df)−1 , χ∨) =
∫

(df)−1−{0}
ψ(x)χ0(x)|x|1−sd×x =

∞∑
n=−m

|π|n(1−s)In,

where In =
∫
O× ψ(πnx)χ0(x)d×x. For n ≥ −d, we have πnx ∈ d−1 for x ∈ O×, so

that ψ(πnx) = 1 and In =
∫
O× χ0(x)d×x = 0. Assume −m ≤ n < −d. For y ∈

1 + p−nd−1, we have ψ(πnxy) = ψ(πnx). Thus, if S denotes a set of representatives
of O×/(1 + p−nd−1), we have

In =
∑
x∈S

χ0(x)ψ(πnx)
∫

1+p−nd−1
χ0(y) d×y.

For n > −m, 1 + p−nd−1 strictly contains 1 + f, or, in other words, χ0 is nontrivial
on 1 + p−nd−1, so that the integral is zero. For n = −m, we have

I−m =
∑
x∈S

χ0ψ(π−mx)
∫

1+f
d×y = c(N f) 1

2 τ0(χ0).

Therefore,
ζ(f̂ , χ∨) = (N(df)) 1

2−sτ0(χ0) = ε(χ)L(χ∨).

Remark 2.2.10. We have

(2.2.3) ε(χ)ε(χ∨) = χ(−1), ε(χ̄) = χ(−1)ε(χ).

Indeed, the first equality follows from

ζ(f, χ)
L(χ) ε(χ)ε(χ∨) = ζ(f̂ , χ∨)

L(χ∨) ε(χ∨) = ζ( ˆ̂
f, χ∨∨)
L(χ∨∨) = χ(−1)ζ(f, χ)

L(χ) ,

where we used ˆ̂
f(x) = f(−x) in the last equality. The second equality of (2.2.3) can

be shown similarly using the fact that ˆ̄f(x) = ¯̂
f(−x). The equalities (2.2.3) also

follow from the explicit formulas for ε. For σ(χ) = 1
2 , χ

∨ = χ̄, so that |ε(χ)| = 1.

2.3 Global zeta integrals
Let K be a number field.

Duality on AK
We fix a character ψ : AK → C× by ψ(x) = ∏

v∈V ψv(xv), where ψv is the additive
character of Kv in the previous section. For ξ ∈ AK , ψξ(x) = ψ(ξx) defines a
character ψξ : AK → C×.
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Proposition 2.3.1. The map AK → AK̂ carrying ξ to ψξ is an isomorphism of
topological groups.

Proposition 2.3.2. The character ψξ factorizes through AK/K if and only if ξ ∈ K.
In particular, ξ 7→ ψξ induces an isomorphism K → (AK/K) .̂

The local self-dual measures dxv on Kv with respect to ψv induce a self-dual
measure dx on AK with respect to ψ. The volume of the quotient AK/K with
respect to the self-dual measure on AK and the counting measure on K is 1. This is
consistent with our computation in Example 1.4.31 by the product formula |∆K | =∏
vNdv.
For a function on AK , we write f̂ for Ff , considered as a function on AK by

f̂(ξ) =
∫
AK f(x)ψ(ξx) dx. The space S(AK) of Schwartz functions on AK is the

space of finite linear combinations of functions of the form f = ⊗vfv, where each
fv ∈ S(Kv) and fv = 1Ov for all but finitely many v. Note that for f as above, we
have f̂ = ⊗vf̂v ∈ S(AK). We obtained the following proposition.

Proposition 2.3.3. The Fourier transform f 7→ f̂ preserves S(AK) and ˆ̂
f(x) =

f(−x) for f ∈ S(AK).

Proposition 2.3.4 (Poisson summation formula). For f ∈ S(AK), ∑x∈K f(x) con-
verges absolutely and ∑

x∈K
f(x) =

∑
ξ∈K

f̂(ξ).

Corollary 2.3.5. Let f ∈ S(AK) and x ∈ IK. Then

∑
ξ∈K

f(xξ) = 1
|x|

∑
ξ∈K

f̂

(
ξ

x

)
.

In the function field case, this formula implies the Riemann-Roch theorem. See
[RV, Section 7.2].

Proof. This is the Poisson summation formula applied to the function g ∈ S(AK)
given by g(y) = f(xy). Indeed, ĝ(y) = 1

|x| f̂
(
y
x

)
.

Global zeta integrals
A Hecke character of K is a quasi-character IK/K× → C×. We let X denote the
space of Hecke characters of K. We have a split exact sequence

1→ I1K/K× → IK/K×
|−|−→ R×>0 → 1,

which induces a split exact sequence 1→ Xur → X → (I1K/K×)̂→ 1. This equips
X with the structure of a complex Lie group of dimension 1, with (I1K/K×)̂being
the group of connected components. For any Hecke character χ, there exists a unique
real number σ(χ) such that |χ(x)| = |x|σ(χ).

The local Haar measures d×xv on K×v induce a Haar measure d×x on IK , which
is 1/|

√
∆K | times the measure used in Proposition 1.5.22.
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Definition 2.3.6. Let f ∈ S(AK) and let χ : IK/K× → C× be a Hecke character.
We define the global zeta integral by

ζ(f, χ) =
∫
IK
f(x)χ(x)d×x.

Lemma 2.3.7. The zeta integral ζ(f, χ) converges absolutely to a holomorphic func-
tion for σ(χ) > 1.

Theorem 2.3.8 (Tate, Iwasawa). Let f ∈ S(AK). The function χ 7→ ζ(f, χ)
extends to a meromorphic function on the space of all Hecke characters of K, holo-
morphic except for simple poles at χ = 1 and χ = |·|, satisfying the functional
equation

(2.3.1) ζ(f, χ) = ζ(f̂ , χ∨).

Moreover, the residues of ζ(f, χ) are −f(0)vol at χ = 1 and f̂(0)vol at χ = |·|. Here

vol = vol(I1K/K×) = 2r1(2π)r2hR
w
√
|∆K |

,

where r1, r2, h, R, and w are as in Proposition 1.5.22.

Proof. We have IK = I≤1
K ∪I

≥1
K , where I≤1

K and I≥1
K denote the sets of idèles of content

≤ 1 and ≥ 1, respectively. We have

ζ(f, χ) =
∫
IK
f(x)χ(x)d×x =

∫
I≤1
K

f(x)χ(x)d×x+
∫
I≥1
K

f(x)χ(x)d×x.

Moreover,∫
I≤1
K

f(x)χ(x)d× =
∫
I≤1
K /K×

∑
ξ∈K×

f(xξ)χ(x)d×x

(by Corollary 2.3.5) =
∫
I≤1
K /K×

1
|x|

∑
ξ∈K×

f̂( ξ
x

)χ(x)d×x+
∫
I≤1
K /K×

( 1
|x|
f̂(0)− f(0))χ(x)d×x

= A+B.

Putting y = 1/x, we get

A =
∫
I≥1
K /K×

∑
ξ∈K×

f̂(yξ)χ∨(y)d×y =
∫
I≥1
K

f̂(yξ)χ∨(y)d×y.

We choose a splitting IK/K× ' I1
K/K

× × R×>0 and write χ = χ0|−|s. Then

B =
∫
I1K/K×

χ0(x)d×x
∫ 1

0
(1
t
f̂(0)− f(0))ts−1dt =

vol( f̂(0)
s−1 −

f(0)
s

) χ = |−|s,
0 χ ramified.

In summary, we have

ζ(f, χ) =
∫
I≥1
K

f(x)χ(x)d×x+
∫
I≥1
K

f̂(x)χ∨(x)d×x+

vol( f̂(0)
s−1 −

f(0)
s

) χ = |−|s,
0 χ ramified.

The two integrals converge absolutely to holomorphic functions on X. The func-
tional equation follows.
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Definition 2.3.9. For a Hecke character χ of K, we define the Hecke L-function
by

L(χ) =
∏
v∈V

L(χv).

Let S be the finite set of places v ∈ Vf for which χv is ramified. Note that
L(s, χ) = L(χ|·|s) is a product of gamma factors and the Dirichlet series

Lf (s, χ) = Lf (χ|·|s) =
∏

v∈Vf−S

1
1− χv(πv)|πv|sv

=
∑
a

χ(a)(Na)−s,

where a runs through ideals of OK prime to S and χ(∏ pavv ) denotes ∏χv(πv)av .
This notation is justified by the fact that χv(πv) does not depend on the choice of
πv.

L(χ) converges absolutely to a holomorphic function without zeros for σ(χ) > 1.

Remark 2.3.10. We have seen in Theorem 2.2.8 that for each connected component
of X(K×v ), L(χv) = ζ(fv, χv) for some fv ∈ S(Kv). Moreover, fv = 1Ov for all but
finitely many v. Thus for each connected component of X, L(χ) = ζ(f, χ) with
f = ⊗

v∈V fv ∈ S(AK).

Example 2.3.11. We have

L(|·|s) = ZK(s) = ΓR(s)r1ΓC(s)r2ζK(s),

where
ζK(s) =

∏
p

1
1− (Np)−s =

∑
a⊆OK

(Na)−s

is the Dedekind zeta function of K.

Example 2.3.12. Let χ : (Z/NZ)× → C× be a Dirichlet character. There exists a
unique Hecke character χI : IQ/Q× → C× such that χI(pI) = χ(p) for all p - N , where
pI is the image of p under the embedding Qp → IQ. Note that for x ∈ R×>0 × Ẑ×,
χI(x) = χ̄(π(x)), where π : Ẑ× → (Z/NZ)× is the projection. Thus 1 = χI(−1) =
χI,R(−1)χ̄(−1), so that χI,R = sgna, where a = 0, 1 satisfies χ(−1) = (−1)a. Then

L(χI|·|s) = Λ(s, χ) = ΓR(s+ a)L(s, χ),

where
L(s, χ) =

∏
p

1
1− χ(p)p−s =

∞∑
n=1

χ(n)n−s

is the Dirichlet L-function. Here χ is extended to a function χ : Z/mZ → C where
m is the conductor of χ and χ(n) = 0 for n 6∈ (Z/mZ)×.

Corollary 2.3.13 (Hecke). Let K be a number field. The Hecke L-function L(χ)
extends to a meromorphic function on the space of Hecke characters, holomorphic
except for simple poles at χ = 1 and χ = |·|, satisfying the functional equation

L(χ) = ε(χ)L(χ∨)
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where
ε(χ) =

∏
v∈V

ε(χv)

in a holomorphic function without zeros, ε(χv) being defined in Theorem 2.2.8. In
particular, ZK(s) can be analytically continued to a meromorphic function on the
complex plane, holomorphic except for simple poles at s = 0 and s = 1, satisfying
the functional equation

ZK(s) = |∆K |
1
2−sZK(1− s).

Moreover, the residues of ZK(s) are −
√
|∆K |vol at s = 0 and vol at s = 1.

Note that ε(χv) = 1 for all but finitely many v. It follows from the functional
equation that L(χ) has no zeros for σ(χ) < 0.

Proof. Let f be as in Remark 2.3.10. The assertion on meromorphic continuation
follows from Theorem 2.3.8. The assertion on ε is obvious. By Theorem 2.2.8,

L(χ∨v )ε(χv) = ζ(f̂v, χ∨v ).

Taking product and applying (2.3.1), we get

L(χ∨)ε(χ) = ζ(f̂ , χ∨) = ζ(f, χ) = L(χ).

For the residues, it suffices to note that f(0) =
√
|∆K | and f̂(0) = 1.

Corollary 2.3.14. The Dedekind zeta function ζK(s) extends to a meromorphic
function on the complex place, holomorphic except for a simple pole at s = 1 with
residue vol. Moreover ζK(s) has a zero of order r = r1 + r2−1 at s = 0 with leading
term −hR/w.

Proof. Indeed, ΓR(1) = ΓC(1) = 1, ress=0ΓR(s) = 2, ress=0ΓC(s) = 2π.

Corollary 2.3.15. Let χ : (Z/NZ)× → C× be a primitive Dirichlet character of con-
ductor N > 1. Then Λ(s, χ) extends to an entire function, satisfying the functional
equation

Λ(s, χ) = (−i)aN−sτ(χ)Λ(1− s, χ̄),
where

τ(χ) =
∑

x∈(Z/NZ)×
χ(x)e(x/N)

is the Gauss sum.

Proof. We put N = ∏
p p

np . For p | N , we have χI,p = χp|·|tp with χp(p) = 1, so that
χI,p(p) = p−t. Moreover, 1 = χI(p) = χI,p(p)

∏
q|N/pnp χq(p). Thus

ε(χI,p|·|sp) = (pnp)−s−tτ(χp) = (pnp)−sτ(χp)
∏

q|N/pnp
χq(p)np ,

where
τ(χp) =

∑
x∈(Z/pnpZ)×

χp(x)e(x/pnp ).
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Therefore,
ε(χI|·|s) = (−i)aN−s

∏
p

χp(
N

pnp
)τ(χp).

For x ∈ Z/NZ, we write x = ∑
p
N
pnp
xp. Then

τ(χ) =
∑

x∈(Z/NZ)×
χ(x)e(x/N) =

∑
xp∈(Z/pnpZ)×

χ(
∑ N

pnp
xp)e(

∑
xp/p

np)

=
∑

xp∈(Z/pnpZ)×

∏
p

χp(
N

pnp
xp)e(xp/pnp) =

∏
p

χp(
N

pnp
)τ(χp).

Class number formula
Let K be an abelian extension of Q. Let G = Gal(K/Q). In the next chapter, as
a consequence of class field theory, we will prove the Kronecker-Weber Theorem,
which says that K is contained in a cyclotomic field Q(ζN). Recall that we have an
isomorphism (Z/NZ)× ' Gal(Q(ζN)/Q) carrying a to ζN 7→ ζaN . Via this isomor-
phism, characters of the quotient G of Gal(Q(ζN)/Q) can be viewed as Dirichlet
characters.

Proposition 2.3.16. We have ζK(s) = ∏
χ∈Ĝ L(s, χ).

Proof. It suffices to show that for every rational p, we have∏
p|p

(1− (Np)−s) =
∏
χ∈Ĝ

(1− χ(p)p−s),

where p runs through prime ideals of OK above p.
The left-hand side is (1 − p−fs)g, where g is the number of primes above p and

f is the degree of the residue field extension.
Let N = pkm with p - m. Note that Q(ζm) is the maximal sub-extension of

Q(ζN)/Q in which p is unramified. Let K0 = K ∩Q(ζm). Then K0 is the maximal
sub-extension of K/Q in which p is unramified. For χ ∈ Ĝ, we have χ(p) 6= 0 if
and only if χ is a Dirichlet character of modulo m, or equivalently, if it χ factorizes
through G0 := Gal(K0/Q). Thus∏

χ∈Ĝ

(1− χ(p)p−s) =
∏
χ∈Ĝ0

(1− χ(p)p−s).

The decomposition group Dp < G0 is generated by the Frobenius σp, which is the
image of p under the isomorphism (Z/mZ)× ' Gal(Q(ζm)/Q). We have a short
exact sequence 0→ Ĝ0/Dp → Ĝ0 → D̂p → 0. Since [G0 : Dp] = g, each character of
Dp lifts to g characters of G0, so that we have∏

χ∈Ĝ0

(1− χ(p)p−s) =
∏
χ∈D̂p

(1− χ(σp)p−s)g =
∏
ξ

(1− ξp−s)g = (1− p−fs)g,

where ξ runs through the f -th roots of unity.
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Corollary 2.3.17. We have

2r1(2π)r2hR
w
√
|∆K |

=
∏
χ∈Ĝ
χ 6=1

L(1, χ).

Proof. This follows from the proposition by taking residue at s = 1. Indeed, by
Corollary 2.3.14, the residue of ζK(s) at s = 1 is the left hand side and the residue
of L(s, 1) = ζ(s) at s = 1 is 1.

The value L(1, χ) can be expressed explicitly.

Proposition 2.3.18. Let χ : (Z/NZ)× → C× be a primitive Dirichlet character of
conductor N > 1. Then

L(1, χ) =

−
1

τ(χ̄)
∑
a∈(Z/NZ)× χ̄(a) log|1− ζaN | χ(−1) = 1,

− πi
Nτ(χ̄)

∑N−1
a=1 χ̄(a)a χ(−1) = −1,

where
τ(χ̄) =

∑
a∈(Z/NZ)×

χ̄(a)ζaN

is the Gauss sum.

Proof. For N - a, the sum

∞∑
n=1

ζanN
ns

=
∞∑
m=1

N∑
b=1

ζabN
mN + bs

=
∞∑
m=1

N∑
b=1

ζabN ( 1
mN + bs

− 1
mN +N s )

converges (conditionally) to a homomorphic function on Re(s) > 0. We have

∑
a∈(Z/NZ)×

χ̄(a)
∞∑
n=1

ζanN
ns

=
∞∑
n=1

1
ns

 ∑
a∈(Z/NZ)×

χ̄(a)ζanN

 = τ(χ̄)
∞∑
n=1

χ(n)
ns

= τ(χ̄)L(s, χ).

Here we used the fact ∑a∈(Z/NZ) χ̄(a)ζanN = 0 for (n,N) > 1. Letting s→ 1+, we get

∑
a∈(Z/NZ)×

χ̄(a)
∞∑
n=1

ζanN
n

= τ(χ̄)L(1, χ).

Note that for 1 ≤ a ≤ N − 1, we have
∞∑
n=1

ζanN
n

= − log(1− ζaN) = − log|1− ζaN | − πi(
a

N
− 1

2).

Thus
−τ(χ̄)L(1, χ) =

∑
a∈(Z/NZ)×

χ̄(a) log|1− ζaN |+
πi

N

N−1∑
a=1

χ̄(a)a.

The first (resp. second) term of the right-hand side vanishes if χ(−1) = −1 (resp.
χ(−1) = 1).
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Chapter 3

Class field theory

3.1 Main statements
Theorem 3.1.1. Let F be a local field of characteristic zero. Then E 7→ NE/F (E×)
induces a bijection from the set of isomorphism classes of finite abelian extensions
of F to the set of open subgroups of F× of finite indices. Moreover, for each E, we
have a canonical isomorphism

rE/F : Gal(E/F ) ∼−→ F×/NE/F (E×).

Note that subgroups of F× of finite exponents are automatically open (exercise).
This fails however for local fields of positive characteristic.

Theorem 3.1.2. Let F be a number field. Then E 7→ NE/F (IE)F×/F× induces
a bijection from the set of isomorphism classes of finite abelian extensions of F to
the set of open subgroups of IF/F×. Moreover, for each E, we have a canonical
isomorphism

rE/F : Gal(E/F ) ' IF/F×NE/F (IE).

By the compactness of I1F/F×, open subgroups of IF/F× are of finite indices.
Equivalently, E 7→ F×NE/F (IE) induces a bijection to the set of open subgroups of
IF (of finite indices) containing F×.

The local and global theories are compatible.

Absolute Galois groups
Let G be a Hausdorff topological group. The abelianization Gab of G is the maximal
Hausdorff quotient group, or equivalently, the quotient of G by the closure of [G,G].
The profinite completion Ĝ of G is the limit limG/H of finite discrete quotients of
G, where H runs through open subgroups of G of finite indices. For any field F of
separable closure F̄ , the abelianization of the absolute Galois group Gal(F̄ /F ) of
F can be identified with Gal(F ab/F ), where F ab is the maximal abelian extension
of F .

Corollary 3.1.3. Let F be a local field of characteristic zero. Then we have a
canonical isomorphism

Gal(F ab/F ) ' F̂×.

51
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If F is a finite extension of Qp, we have split short exact sequences

1 // UF // F×

��

vF // Z //

��

0

1 // UF // F̂× // Ẑ // 0.

Corollary 3.1.4. Let F be a number field. Then we have a canonical isomorphism

Gal(F ab/F ) ' ÎF/F×.

The profinite completion of C = IF/F× can be identified with the quotient C/D,
where D denotes the identity component of C.

Local class field theory
For Archimedean local fields, the statement is trivial. Indeed, the only nontrivial
extension in this case is C/R and Gal(C/R) ' {±1} ' R×/NC/R(C×).

Let F be a finite extension of Qp. We let kF denote the residue field of F . Let
πF be a uniformizer of F . We have F× = πZF × UF , where UF = O×F .

For any integer f ≥ 1, there exists an unramified extension E of F of degree f ,
unique up to isomorphisms. Recall that E is a cyclic extension of F . Indeed, E is
the splitting field of the polynomial XqfF −1 over F , where qF = #kF . The canonical
map Gal(E/F )→ Gal(kE/kF ) is an isomorphism and Gal(kE/kF ) is a cyclic group
of order f generated by the Frobenius substitution x 7→ xqF . The corresponding
element of Gal(E/F ) is also called the Frobenius substitution and denoted FrobE/F .
Note that πF is also a uniformizer of E. Thus E× = πZF ×UE. Since NE/F (UE) = UF
(exercise), NE/F (E×) = πfZF × UF . Therefore, F×/NE/F (E×) is a cyclic group of
order f generated by the image of πF , which does not depend on the choice of πF .

More generally, for a finite extension E of F , NE/F (E×) is an open subgroup of
F× (exercise) of finite index. We have a morphism of short exact sequences

1 // UE //

NE/F
��

E×
vE //

��

Z
×f
��

// 0

1 // UF // F×
vF // Z // 0.

where f = [kE : kF ]. Indeed, vE(NE/F (πE)) = d = [E : F ], so that vF (NE/F (πE)) =
f . By the snake lemma, we obtain a short exact sequence

1→ UF/NE/F (UE)→ F×/NE/F (E×) vF−→ Z/fZ→ 0.

If E/F is a Galois extension, we have a short exact sequence

1→ I → Gal(E/F )→ Gal(kE/kF )→ 1,

where I is the inertia group.
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Theorem 3.1.5 (Reciprocity). There exists a unique way to define, for every finite
Galois extension E/F of local fields of characteristic zero, an isomorphism

rE/F : Gal(E/F )ab ∼−→ F×/NE/F (E×),

satisfying the following properties.
(1) (Normalization) For E/F unramified and F non-Archimedean, rE/F (FrobE/F ) =

πFNE/F (E×).
(2) (Functoriality) For finite Galois extensions E/F and E ′/F ′ and an embedding

τ : E ↪→ E ′ such that τ(F ) ⊆ F ′, the diagram

Gal(E ′/F ′)ab
∼

rE′/F ′//

��

F ′×/NE′/F ′(E ′×)
NF ′/F
��

Gal(E/F )ab rE/F

∼
// F×/NE/F (E×)

commutes. Here the left vertical arrow is induced by the homomorphism Gal(E ′/F ′)→
Gal(E/F ) given by restriction by τ .

Notation 3.1.6. For x ∈ F×, the norm residue symbol is defined to be

(x,E/F ) = r−1
E/F (xNE/F (E×)).

Example 3.1.7. The following three special cases of Property (2) above will be of
use.
(a) Assume that τ : E ∼−→ E ′ is an isomorphism of local fields, and F ′ = τ(F ).

Then the diagram

Gal(E/F )ab
∼

rE/F //

'
��

F×/NE/F (E×)
τ'
��

Gal(E ′/F ′)ab rE′/F ′

∼
// F ′×/NE′/F ′(E ′×)

commutes. Here the left vertical arrow is induced by the isomorphism

Gal(E/F ) ∼−→ Gal(E ′/F ′) σ 7→ τστ−1.

(b) Case E = E ′, τ = idE. Then Gal(E/F ′) ⊆ Gal(E/F ) and the following
diagram commutes

Gal(E/F ′)ab
∼

rE/F ′//

��

F ′×/NE/F ′(E×)
NF ′/F
��

Gal(E/F )ab rE/F

∼
// F×/NE/F (E×).

(c) Case where F = F ′ and τ is an inclusion E ⊆ E ′. Then the diagram

Gal(E ′/F )ab
∼

rE′/F//

��

F×/NE′/F (E ′×)

��
Gal(E/F )ab rE/F

∼
// F×/NE/F (E×)
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commutes. Here the left vertical arrow is induced by the surjection Gal(E ′/F )→
Gal(E/F ) given by restriction, and the right vertical arrow is induced by idF .
The vertical arrows are surjections.

Proof of the uniqueness in Theorem 3.1.5. The Archimedean case is trivial. In the
non-Archimedean case, let σ ∈ G = Gal(E/F ). We want to show that rE/F (σ[G,G])
is uniquely determined by (1) and (2). Let E ′ be a finite unramified extension of E.
Then E ′/F is a Galois extension and we have a morphism of short exact sequences
of groups

1 // I // Gal(E ′/F ) //

��

Gal(kE′/kF ) //

��

1

1 // I // Gal(E/F ) // Gal(kE/kF ) // 1.

It follows that Gal(E ′/F ) ' Gal(kE′/kF ) ×Gal(kE/kF ) Gal(E/F ). The order of the
image σ̄ ∈ Gal(kE/kF ) of σ divides the orderm of σ. We may choose E ′ so that there
exists a lifting σ̄′ ∈ Gal(kE′/kF ) of σ̄ of order m. Then σ′ = (σ̄′, σ) ∈ Gal(E ′/F )
has order m, so that E ′ is unramified over E ′σ′ = {x ∈ E ′ | σ′(x) = x}. By (2),
rE/F (σ[G,G]) = NE′σ′/F (rE′/E′σ′ (σ′)), where rE′/E′σ′ (σ′) is determined by (1).

Let F be a local field of characteristic zero. For a finite extension E/F , we let
NE = NE/F (E×) ⊆ F×. For an extension E ′ of E such that E ′/F is a finite abelian
extension, NE ⊇ NE′ . Theorem 3.1.5 has the following consequence.

Corollary 3.1.8. Let E and E ′ be finite abelian extensions of F . Then

NEE′ = NE ∩NE′ .

Recall that for Galois extensions K and K ′ of F ,

Gal(KK ′/F ) = Gal(K/F )×Gal(K∩K′/F ) Gal(K ′/F ).

Thus KK ′/F is abelian if and only if K/F and K ′/F are both abelian.

Proof. This follows from the above description of the Galois group as a fiber product
and the functoriality of reciprocity. More precisely, we have NEE′ ⊆ NE ∩ NE′ .
Conversely, for x ∈ NE ∩ NE′ , we want to show that its image x̄ ∈ F×/NEE′ is
trivial. We have a commutative diagram

Gal(E/F )
'rE/F

��

Gal(EE ′/F )
'rEE′/F
��

//oo Gal(E ′/F )
'rE′/F
��

F×/NE F×/NEE′ //oo F×/NE′ .

Let σ = r−1
EE′/F (x̄). Then the restriction σE of σ to E is the identity, because

rE/F (σE) = 1. Similarly, the restriction σE′ of σ to E ′ is the identity. It follows that
σ = idEE′ , so that x̄ = 1.

Corollary 3.1.9. For E and E ′ as above, NE ⊇ NE′ if and only if E ′ is an extension
of E. Moreover, NE = NE′ if and only if E/F and E ′/F are isomorphic.
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Proof. The “if” part if the first assertion is trivial. Conversely, NE ⊇ NE′ implies
NEE′ = NE ∩ NE′ = NE′ , which implies [EE ′ : F ] = [E ′ : F ], which implies
EE ′ = E ′, which means that E ′ is an extension of E. The second assertion follows
from the first one.

Remark 3.1.10. For any finite extension E/F of finite extensions of Qp, if F ′/F
is the maximal unramified sub-extension, then kF ′ = kE, so that NF ′ = UFNE.
Indeed, we have NF ′ ⊇ UFNE, and both groups have index f = [kE : kF ] in F×.

Thus, by Corollary 3.1.9, a finite abelian extension E/F of finite extensions of
Qp is unramified if and only if NE ⊇ UF . More generally, for E/F finite abelian, the
compatibility of rE/F and rF ′/F provides an isomorphism of short exact sequences

(3.1.1) 1 // I //

'
��

Gal(E/F ) //

' rE/F

��

Gal(kE/kF ) //

'
��

1

1 // UF/NE/F (UF ) // F×/NE/F (E×) vF // Z/fZ // 0,

where the vertical arrow on the right carries Frobenius to the class of 1.

Example 3.1.11 (Cyclotomic extensions of Qp). Let F = Qp. Let m = pdn,
(p, n) = 1. We have Qp(ζm) = Qp(ζpd)Qp(ζn), so that NQp(ζm) = NQp(ζn) ∩ NQp(ζ

pd
).

Note that Qp(ζpd) is totally ramified of degree φ(pd) over Qp, and NQp(ζdp ) = pZ(1 +
pdZp) for d ≥ 1 (exercise). Moreover, Qp(ζn) is unramified of degree α over Qp,
where α is the order of p modulo n, so that NQ(ζn) = pαZZ×p . Note that every open
subgroup of Q×p of finite index contains NQp(ζm) for some m. By Corollary 3.1.9, we
obtain the following.

Theorem 3.1.12. Every finite abelian extension of Qp is contained in Qp(ζm) for
some m.

Corollary 3.1.9 implies that the map E 7→ NE is injective. The surjectivity can
be stated as follows.

Theorem 3.1.13 (Existence). Let F be a local field of characteristic zero. Ev-
ery open subgroup of finite index of F× is of the form NE for some finite abelian
extension E of F .

Corollary 3.1.14. For finite abelian extensions E and E ′ of F ,

NE∩E′ = NENE′ .

Proof. Clearly NE∩E′ ⊇ NENE′ . By the existence theorem, there exists K such that
NENE′ = NK . Then K is an extension of E∩E ′. But NK ⊇ NE and NK ⊇ NE′ , so
that E and E ′ are extensions ofK. Therefore, K ' E∩E ′, so thatNK = NE∩E′ .

Remark 3.1.15. Taking limit in (3.1.1), we obtain an isomorphism of short exact
sequences

(3.1.2) 1 // Gal(F ab/F ur) //

'
��

Gal(F ab/F ) //

'
��

Gal(kF/kF )
'
��

// 1

1 // UF // F̂× // Ẑ // 0,
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where F ur is the maximal unramified extension of F , and the vertical arrow on the
right carries Frobenius to 1.

Global class field theory
Let F be a number field. Let E be a finite extension of F . For any place v of F ,

(3.1.3) Fv ⊗F E '
∏
w|v
Ew.

We have

(3.1.4) AF ⊗F E ' AE.

Trace and norm maps trE/F : E → F , NE/F : E× → F× induce via (3.1.4) trE/F : AE →
AF , NE/F : IE → IF , fitting into the commutative diagrams

E //

trE/F
��

AE
trE/F
��

E× //

NE/F
��

IE
NE/F
��

F // AF F× // IF ,

where the horizontal arrows are diagonal embeddings. We have

(trE/F (x))v =
∑
w|v

trEw/Fv(xw), (NE/F (x))v =
∏
w|v
NEw/Fv(xw).

Note that NE/F (IE) ⊇ ∏v Uv, v running through finite places of F unramified in E,
thus NE/F (IE) is an open subgroup of IF . It follows that F×NE/F (IE) is an open
subgroup of IF (of finite index) containing F×.

Let E be a finite Galois extension of F of group G. Then G acts on the set of
places w of E: |x|σ(w) := |σ−1(x)|w. Note that w|F = σw|F . Let v = w|F . The
decomposition group D(w/v) ⊆ G is by definition the stabilizer of w. We have
D(w/v) ' Gal(Ew/Fv) and D(σw/v) = σD(w/v)σ−1. The isomorphisms (3.1.3)
and (3.1.4) are G-equivariant. On the right hand side, G acts as follows. For σ ∈ G,
(σx)σw = σwxw, where σw : Ew → Eσw. Comparing G-invariants on both sides, we
see that G acts transitively on the set of places of E above v. If v is a finite place
unramified in E, then we have FrobEw/Fv ∈ G, whose conjugacy class Frobv does
not depend on w.

Let E be a finite Galois extension of F . For a place v of F and a place w of E
above v, the homomorphism

(3.1.5) F×v → F×v /NEw/Fv(E×w ) (−,Ew/Fv)−−−−−−→
∼

Gal(Ew/Fv)ab → Gal(E/F )ab

does not depend on the choice of w. Moreover, if v is a finite place unramified in
E/F and xv ∈ UFv , its image in Gal(E/F )ab is trivial. We thus obtain a continuous
homomorphism

(3.1.6) IF → Gal(E/F )ab,

trivial onNE/F (IE), such that the composition with the inclusion F×v → IF is (3.1.5).
We let (x,E/F ) denote the image of x under (3.1.6) and we call it the norm residue
symbol.
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Theorem 3.1.16 (Artin reciprocity). Let E/F be a finite Galois extension of num-
ber fields. The homomorphism (3.1.6) is trivial on F× and induces an isomorphism

IF/F×NE/F (IE) ∼−→ Gal(E/F )ab.

Remark 3.1.17. (1) It follows from the functoriality of local reciprocity that
Artin reciprocity also satisfies functoriality.

(2) Note that the map (3.1.6) is uniquely determined by the fact that it is a
continuous homomorphism trivial on F× and Uv, and sending πv to the image
of Frobv, for all (or all but finitely many) unramified finite places v of F .

For a finite extension E of F , we write NE = F×NE/F (IE). Corollary 3.1.8 holds
with the same proof. More precisely, for E/F and E ′/F abelian, NEE′ = NE ∩NE′ ,
so that E ′ is an extension of E if and only if NE′ ⊇ NE. In particular, E/F and
E ′/F are isomorphic if and only if NE = NE′ .

Remark 3.1.18. For E/F abelian, the map Gal(Ew/Fv) → Gal(E/F ) is injec-
tive. In this case, the first assertion of Theorem 3.1.16 can be stated as follows:
for x ∈ F×, ∏v(x,Ew/Fv) = 1, where v runs through all places of v. Moreover,
this implies, for every place v of F , the injectivity of the map F×v /NEw/Fv(E×w ) →
IF/F×NE/F (IE). In other words,

F×v ∩ F×NE/F (IE) = NEw/Fv(E×w ).

It follows that a finite place v of F is unramified in E if and only if NE ⊇ UFv .

Theorem 3.1.19 (Existence). Let F be a number field. Every open subgroup of IF
(of finite index) containing F× is of the form NE for some finite abelian extension
E of F .

E is called the class field of NE.
Corollary 3.1.14 holds with the same proof. More precisely, for finite abelian

extensions E/F and E ′/F , we have NE∩E′ = NENE′ .

Ideal-theoretic formulation
We can reformulate global class field theory in terms of ideals via the isomorphism
(1.5.1). Let F be a number field and let E be a finite Galois extension of F . Let m
be a modulus for F such that v is unramified in E for every finite place satisfying
m(v) = 0. We consider the homomorphism

(3.1.7) IF (m)→ Gal(E/F )ab

carrying pv for m(v) = 0 to the image of Frobw/v, for a place w of E above v. We
let

(
E/F
a

)
denote the image of a under this homomorphism and we call it the Artin

symbol. We let IE(m) ⊆ IE denote the subgroup of fractional ideals generated by
pw such that m(w|F ) = 0. The homomorphism (3.1.7) is trivial on NE/F (IE(m)).
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Theorem 3.1.20 (Artin reciprocity). Let E/F be a finite Galois extension of num-
ber fields. There exists a modulus m for F such that v is unramified in E for every
finite place satisfying m(v) = 0, and such that (3.1.7) is trivial on PF (m) and in-
duces an isomorphism

IF (m)/PF (m)NE/F (IE(m)) ∼−→ Gal(E/F )ab.

Proof. Note that for m = (a, (mv)v), we may equip E with the modulus m′ =
(aOE, (mw|F )w). Since the isomorphism (1.5.1) is compatible with NE/F , we have

IF (m)/PF (m)NE/F (IE(m)) ' IF/F×UF,mNE/F (IE).

The open subgroup NE/F (IE) of IF contains UF,m form big enough, and we conclude
by Theorem 3.1.16.

Definition 3.1.21. Let m be a modulus for F . The ray class field of F modulo m,
denoted by Fm, is the class field of F×UF,m. The Hilbert class field HF is the ray
class field modulo m = (OF , 0) (in other words, m constant of value 0).

Artin reciprocity provides isomorphisms

ClF (m) ∼−→ Gal(Fm/F ), ClF
∼−→ Gal(HF/F ).

Recall that UF,m = ∏
v U

(mv)
v , where U (0)

v = F×v for v Archimedean, U (1)
v = R×>0

for v real, U (0)
v = Uv for v finite, and U (n)

v = 1 + πnvOv for v finite and n ≥ 1. For
m ≤ m′ (namely mv ≤ m′v for all places v of F ), UF,m ⊇ UF,m′ , so that Fm′ is an
extension of Fm.

Theorem 3.1.22. Every finite abelian extension E of F is contained in a ray class
field Fm. Moreover, there exists a smallest modulus f for F such that E is contained
in F f.

Proof. Indeed, E is contained in Fm if and only if UF,m ⊆ NE. The first assertion
then follows from the fact that every open subgroup of IF contains UF,m for some
m. The second assertion is obvious, with fv being the least integer n such that
U

(n)
Fv ⊆ NE.

Definition 3.1.23. Let E/F be a finite abelian extension. The smallest modulus f
such that E is contained in F f is called the conductor of E/F .

For E/F finite abelian, the conclusion of Theorem 3.1.20 holds for every m ≥ f.
By Remark 3.1.18, we have the following.

Proposition 3.1.24. Let E/F be a finite abelian extension of conductor f. Then
for every place v of F , fv is the least integer n such that U (n)

Fv ⊆ NEw/Fv(E×w ), where
w is a place of E above v. In particular, v ramifies in E if and only if fv > 0.

For Archimedean places, we use the convention that C is ramified over R. For a
real place v of F , fv = 0 if and only if v splits in w.

One can show that the finite part of f(E/F ) divides the discriminant d(E/F ).
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Corollary 3.1.25. The Hilbert class field HF is the maximal unramified abelian
extension of F .

The proof of the following theorem uses transfer, and will be given later.

Theorem 3.1.26 (Principal ideal). For every ideal a of OF , aOHF is principal.

Remark 3.1.27. Let m be a modulus for F . By the above, a place v of F is
ramified in Fm if and only if mv > 0. Now let v be a finite place with mv = 0, hence
unramified. By Artin reciprocity, the degree f(w/v) of the residue field extension
of a place w of Fm above v equals the order of pv in the ray class group ClF (m). In
particular, pv splits in Fm if and only if pv ∈ PF (m).

We note that f(Fm/F ) ≤ m. Equality does not always hold, because it may
happen that Fm = Fm′ for m � m′, as shown by the following.

Example 3.1.28. Let F = Q and let n ≥ 1 be an integer. We consider the modulus
m = ((n), 1) for Q. We have NQ(ζn) ⊇ Q×UQ,m, where UQ,m = R×>0

∏
p-n Z×p

∏
p|n(1 +

pvp(n)Zp). Thus Q(ζn) ⊆ Qm. Since Gal(Q(ζn)/Q) ' (Z/nZ)× ' ClQ(m), we get
Qm = Q(ζn). Note that Q = Q(ζ1) = Q(ζ2).

Since any modulus is of the form ((n), 0) or ((n), 1), Theorem 3.1.22 in this case
takes the following form.

Theorem 3.1.29 (Kronecker-Weber). Every finite abelian extension of Q is con-
tained in Q(ζn) for some n.

The problem of explicit construction of abelian extensions of number fields is
known as Kronecker’s Jugendtraum or Hilbert’s 12th problem. The theory of com-
plex multiplication solves this for imaginary quadratic fields and more generally CM
fields. The problem for more general number fields remains open.

Let us give a direct proof of the Kronecker-Weber theorem for quadratic fields.

Proposition 3.1.30. Let m 6= 0, 1 be a square-free integer and let n = |∆|, where
∆ is the discriminant of Q(

√
m). Then Q(

√
m) ⊆ Q(ζn).

Recall

∆ =

m m ≡ 1 mod 4
4m m ≡ 2, 3 mod 4.

Proof. We write ∆ = 2rm′ with m′ odd. We define a primitive Dirichlet char-
acter χ : (Z/nZ)× → {±1} by χ(a) = χ2(a)∏p|m′

(
a
p

)
(note that any primitive

Dirichlet character of order 2 has this form), where p runs through odd primes
and χ2 : (Z/2rZ)× → {±1} is a primitive Dirichlet character defined as follows. For
m ≡ 1 mod 4, we have r = 0 and χ2 is trivial. For m ≡ 3 mod 4, we have r = 2
and χ2 is the unique isomorphism θ : (Z/4Z)× ∼−→ {±1}. We have θ(a) = (−1)a−1

2 .
For m even, we have r = 3 and we take

χ2(a) =

1 a ≡ 1, 1−m mod 8
−1 otherwise.
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In all cases χ2(−1) = θ(m′), so that χ(−1) = χ2(−1)∏p|m′
(
−1
p

)
= θ(m′)∏p|m′ θ(p) =

θ(m′|m′|) = sgn(m). Consider the Gauss sum G(χ) = ∑
a∈(Z/nZ)× χ(a)ζan. Since

n = G(χ)G(χ) = χ(−1)G(χ)2, we have G(χ)2 = m or 4m. Thus

Q(
√
m) = Q(G(χ)) ⊆ Q(ζn).

The character χ in the proof is determined by the commutative diagram

(Z/nZ)×

χ

��

∼ // Gal(Q(ζn)/Q)

��
{±1} ∼ // Gal(Q(

√
m)/Q),

where the upper horizontal arrow carries a to σa defined by σa(ζn) = ζan and the
vertical arrow on the right is the restriction. Recall that the simple case where n is
prime implies quadratic reciprocity.

Theorem 3.1.31 (Quadratic reciprocity). Let p and q be distinct odd primes. Then(
p
q

)(
q
p

)
= (−1) p−1

2
q−1

2 .

Proof. Take m = p∗ = (−1) p−1
2 p ≡ 1 (mod 4), so that n = p. Then

(
p∗

q

)
= 1 ⇐⇒

p∗ has a square root in Qq ⇐⇒ q splits in Q(
√
p∗) ⇐⇒ the restriction σq|Q(

√
m)

(which is the Frobenius element at q) is trivial ⇐⇒ χ(q) = 1 ⇐⇒
(
q
p

)
= 1.

Remark 3.1.32. The character χ(a) in the proof of Proposition 3.1.30 can be
identified with the Kronecker symbol

(
∆
a

)
. Indeed, χ is the unique primitive Dirichlet

character (Z/nZ)× → C× such that χ(−1) = sgn(m).

3.2 The power reciprocity law

First cohomology of groups
Let G be a group. By a (left) G-module, we mean an abelian group equipped with
a (left) G-action, or equivalently, a (left) Z[G]-module. The functor carrying an
abelian group A to A equipped with trivial G-action admits a right adjoint (−)G and
a left adjoint (−)G, which can be described as follows. For a G-moduleM ,MG is the
maximal G-invariant subgroup of M , which is the set of G-invariant elements of M .
Moreover,MG is the group of G-coinvariants ofM , namely the maximal G-invariant
quotient group of M . Note that MG = M/IGM , where IG = Ker(Z[G] → Z) (the
map given ∑g∈G agg 7→

∑
ag) is the augmentation ideal. In other words, MG is the

cokernel of the map

(3.2.1)
⊕
g∈G

M →M (mg)g∈G 7→
∑
g∈G

gmg −mg.
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Definition 3.2.1. A crossed homomorphism is a map f : G→M such that f(gh) =
f(g) + gf(h) for all g, h ∈ G. For m ∈M , let d0(m) : G→M be the g 7→ gm−m,
which is clearly a crossed homomorphism. Indeed, ghm−m = (gm−m)+g(hm−m).
A crossed homomorphism of the form d0(m) for some m ∈ M is called a principal
crossed homomorphism. We let Z1(G,M) and B1(G,M) denote the abelian groups
of crossed homomorphisms and principal crossed homomorphisms, respectively. We
define the first cohomology of G with coefficients in M to be

H1(G,M) = Z1(G,M)/B1(G,M).

Note that MG and H1(G,M) are cohomology groups of the sequence

0→M
d0
−→ Map(G,M) d1

−→ Map(G2,M),

where d1(f) : (g, h) 7→ f(g) + gf(h) − f(gh). Indeed, we have MG = Ker(d0), and
H1(G,M) = Ker(d1)/Im(d0), with Ker(d1) = Z1(G,M), Im(d0) = B1(G,M).

The functor H1(G,−) commutes with arbitrary products. If G is a finite group,
H1(G,−) also commutes with filtered colimits.

Proposition 3.2.2. Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence of
G-modules. Then we have exact sequences

M ′
G →MG →M ′′

G → 0,
0→M ′G →MG →M ′′G → H1(G,M ′)→ H1(G,M)→ H1(G,M ′′).

Proof. The first exact sequence follows from snake lemma applied to the diagram

0 //⊕
g∈GM

′ //

��

⊕
g∈GM //

��

⊕
g∈GM

′′ //

��

0

0 //M ′ //M //M ′′ // 0

with exact rows, where the vertical arrows are (3.2.1). Applying the snake lemma
to a similar diagram with vertical arrows given by d1, we obtain a diagram

0 //M ′ //

d0
��

M //

d0
��

M ′′ //

d0
��

0

0 // Z1(G,M ′) // Z1(G,M) // Z1(G,M ′′)

with exact rows. Applying the snake lemma to the diagram, we obtain the long
exact sequence.

Example 3.2.3. If M is a trivial G-module, then B1(G,M) = 0 and H1(G,M) =
Z1(G,M) = Hom(G,M) = Hom(Gab,M).

Theorem 3.2.4. Let E/F be a finite Galois extension of arbitrary fields of Galois
group G. Then H1(G,E×) = 1.
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Kummer theory
Let F be a field and let E be a finite Galois extension of F of group G. Let n ≥ 1
and let µn,E be the group of n-th roots of unity in E. We have a G-equivariant short
exact sequence

1→ µn,E → E×
(−)n−−→ E×n → 1,

which induces the long exact sequence

1→ µn,F → F×
(−)n−−→ E×n ∩ F× → H1(G, µn,E)→ H1(G,E×) = 1.

We get an isomorphism E×n ∩ F×/F×n ∼−→ H1(G, µn,E) carrying the class of xn to
the class of g 7→ gx/x. Assume now that µn,E = µn,F . Then G acts trivially on
µn,E, so that H1(G, µn,E) = Hom(G, µn,E).

Theorem 3.2.5 (Kummer). Let n ≥ 1 be an integer and let F be a field containing
n distinct n-th roots of unity. Then we have a bijection from the set of isomorphism
classes of finite abelian extensions of F of exponent dividing n, to the set of subgroups
of F× containing F×n as a subgroup of finite index, carrying E to E×n ∩ F×, with
inverse carrying ∆ to F ( n

√
∆). If ∆ is the image of E under the above bijection,

then the pairing Gal(E/F )×∆/F×n → µn carrying (g, y) to g n
√
y/ n
√
y is perfect and

[E : F ] = [∆ : F×n].

Proof. The second assertion follows from the computation preceding the theorem
and (Pontryagin) duality of finite abelian groups of exponent n.

Let F×n < ∆ < F× such that [∆ : F×n] < ∞. It is easy to check that
E∆ = F ( n

√
∆) is a finite abelian extension of F of exponent dividing n. Taking a

composition series, we see that [E∆ : F ] ≤ [∆ : F×n]. We have ∆E∆ = E×n∆ ∩F× ⊇ ∆
and [∆E∆ : F×n] = [E∆ : F ] ≤ [∆ : F×n], which implies that ∆E∆ = ∆ and
[E∆ : F ] = [∆ : F×n].

Let E be a finite abelian extensions of F of exponent dividing n and ∆E =
E×n ∩ F×. We have E∆E

= F ( n
√

∆E) ⊆ E and [E∆E
: F ] = [∆E : F×n] = [E : F ],

which implies that E∆E
= E.

We can remove the finiteness assumptions by passing to limits.

Corollary 3.2.6. We have a bijection from the set of isomorphism classes of abelian
extensions of F of exponent dividing n to the set of subgroups of F× containing F×n,
carrying E to E×n ∩ F×, with inverse carrying ∆ to F ( n

√
∆). If ∆ is the image of

E under the above bijection, then the pairing Gal(E/F ) × ∆/F×n → µn carrying
(g, y) to g n

√
y/ n
√
y identifies Gal(E/F ) with the Pontryagin dual of the discrete group

∆/F×n.

Corollary 3.2.7. If E 7→ ∆ and E ′ 7→ ∆′ under the bijection above, then E ∩E ′ 7→
∆ ∩∆′ and EE ′ 7→ ∆∆′.

Proof. The first assertion is trivial. The second assertion follows from the construc-
tion of the inverse of the bijection.
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Hilbert symbol
Let F be a local field of characteristic zero containing all n-th roots of unity. Let
E = F ( n

√
F×) be the maximal abelian extension of F of exponent dividing n. Since

F×n has finite index in F×, E/F is a finite extension.
Proposition 3.2.8. We have NE/FE

× = F×n.
Proof. Let NE = NE/FE

×. By reciprocity F×/NE ' Gal(E/F ) has exponent n, so
that NE ⊇ F×n. Moreover, [F× : NE] = [E : F ] = [F× : F×n] by Kummer theory.
Therefore, NE = F×n.

Via reciprocity F×/F×n ∼−→ Gal(E/F ), the pairing in Kummer theory takes the
following form.
Definition 3.2.9 (Hilbert symbol). The n-th Hilbert symbol over F is the perfect
pairing

F×/F×n × F×/F×n → µn

given by (x, y) n
√
y = (x,E/F ) n

√
y, where (x,E/F ) ∈ Gal(E/F ) is the norm residue

symbol.
By the functoriality of norm residue symbol, we have

(x, y) n
√
y = (x, F ( n

√
y)/F ) n

√
y.

Note that (x, y) determines (x, F ( n
√
y)/F ). Thus (x, y) = 1 if and only if x ∈

NF ( n√y)/F (F ( n
√
y)×).

By definition, Hilbert symbol is bimultiplicative: (xx′, y) = (x, y)(x′, y) and
(x, yy′) = (x, y)(x, y′).
Proposition 3.2.10. (1) For y ∈ F× and z ∈ F such that zn − y 6= 0, we have

(zn − y, y) = 1. In particular, (1− y, y) = 1 (if y 6= 1) and (−y, y) = 1.
(2) (skew-symmetry) For x, y ∈ F×, we have (x, y) = (y, x)−1.

Proof. (1) The conjugates of n
√
y over F are ζmjn

n
√
y for some m | n. Thus

zn − y =
n−1∏
i=0

(z − ζ in n
√
y) = NF ( n√y)/F

m−1∏
i=0

(z − ζ in n
√
y),

so that (zn−y, y) = 1 by definition. The second assertion follows immediately z = 0
and z = 1.

(2) By (1), we have

(x, y)(y, x) = (x, y)(y, x)(−x, x)(−y, y) = (−xy, x)(−xy, y) = (−xy, xy) = 1.

For F = C we have (x, y) = 1.
For F = R, the assumption that R contains all n-th roots of unity implies

that n = 1 or n = 2. If n − 1, we have (x, y) = 1. If n = 2, we have (x, y) =
max{sgn(x), sgn(y)}.

Assume that F is non-Archimedean of residue field Fq of characteristic p - n.
Note that F×q is a cyclic group of order q− 1 and µn,Fq is a subgroup of order n. We
have µn = µn,F

∼−→ µn,Fq .
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Definition 3.2.11 (n-th power residue symbol). For x ∈ UF , we let
(
x
F

)
∈ µn

denote the n-th root of unity congruent to x(q−1)/n modulo the maximal ideal pF of
OF .

Note that
(
x
F

)
= 1 if and only if x is an n-th power modulo pF .

Proposition 3.2.12. For x, y ∈ F×, we have

(x, y) =
(

(−1)ijyix−j
F

)
,

where i = vF (x) and j = vF (y).

Proof. Since both sides are bimultiplicative, we are reduced to two cases: (a) x ∈ UF
or y ∈ UF ; (b) x = π, y = −π for some uniformizer π. Case (b) is trivial. For
case (a), since both sides are skew-symmetric, we may assume that y ∈ UF . The
extension F ( n

√
y)/F is unramified by Hensel’s lemma. Then (x, F ( n

√
y)/F ) = Frobi.

Since Frob( n
√
y)/ n
√
y ≡ n

√
yq−1 ≡

(
y
F

)
mod pF , we have Frob( n

√
y)/ n
√
y =

(
y
F

)
, so

that (x, y) = (x, F ( n
√
y)/F ) n

√
y/ n
√
y =

(
yi

F

)
.

Corollary 3.2.13. Let π be a uniformizer. Then for all y ∈ UF , we have (π, y) =(
y
F

)
.

Notation 3.2.14. We define
(
x
y

)
for x, y ∈ F× satisfying x ∈ UF or y ∈ UF as

follows. For x ∈ UF , we put
(
x
y

)
=
(
x
F

)vF (y)
. For y ∈ UF , we put

(
x
y

)
= 1.

Corollary 3.2.15. For x, y ∈ F× satisfying x ∈ UF or y ∈ UF , we have (x, y) =(
x
y

)−1(y
x

)
.

The determination of the Hilbert symbol for p | n is more subtle. We consider
the special case F = Q2 and n = 2, which will be used to deduce Gauss’s quadratic
reciprocity from the product formula (Corollary 3.2.20 below).

Proposition 3.2.16. Let F = Q2 and n = 2. Then for x, y ∈ 1 + 2Z2, we have

(x, y) = (−1)x−1
2

y−1
2 , (x, 2) = (2, x) = (−1)

x2−1
8 , (2, 2) = 1.

We adopt the convention that (−1)a = 1 for a ∈ 2Z2 and (−1)a = −1 for
a ∈ 1 + 2Z2.

Proof. Note that (1 + 2Z2)2 = 1 + 8Z2, and 1 + 2Z2/1 + 8Z2 is generated by −1
and 5. For z ∈ Q×2 , (z,−1) = 1 if and only if z is a norm for Q2(

√
−1)/Q2, or

in other words, z = a2 + b2 for a, b ∈ Q2. We have 2 = 1 + 1 and 5 = 1 + 22, so
that (2,−1) = (5,−1) = 1. It follows that (−1,−1) = −1; otherwise (z,−1) = 1
for all z, which would imply −1 ∈ (Q×2 )2. Moreover (2, 2) = (5, 5) = 1. Finally
(2, 5) = −1; otherwise (2, z) = 1 for all z, which would imply 2 ∈ (Q×2 )2.
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The power reciprocity law
Let F be a number field containing all n-th roots of unity.

Theorem 3.2.17. For x, y ∈ F×, we have ∏v(x, y)v = 1, where v runs through all
places of F .

Note that for all but finitely many places v, we have x, y ∈ Uv, so that (x, y)v = 1.

Proof. This follows immediately from Artin reciprocity ∏v(x, Fv( n
√
y)/Fv) = 1.

Notation 3.2.18. Let y ∈ F× be prime to n and let x ∈ F× be prime to y. We
write (

x

y

)
=

∏
v∈V−S

(
x

y

)
v

=
∏

v∈V−S
v(x)=0

(
x

v

)v(y)

,

where S denotes the set of places that are either Archimedean or dividing n.

Note that
(
x
uy

)
=
(
x
y

)
for all u ∈ O×F .

Applying the theorem and Corollary 3.2.15, we get the following.

Corollary 3.2.19. Let y ∈ F× be prime to n. For x ∈ F× prime to y and n, we
have (

x

y

)(
y

x

)−1

=
∏
v∈S

(x, y)v.

For x ∈ F× which is a unit outside S, we have(
x

y

)
=
∏
v∈S

(x, y)v.

For F = Q and n = 2, the above notation extends the Jacobi symbol. Applying
the corollary and Proposition 3.2.16, we obtain Gauss’s quadratic reciprocity.

Corollary 3.2.20. Let F = Q and n = 2. Let x and y be relatively prime odd
integers. Then(

x

y

)(
y

x

)
= max{sgn(x), sgn(y)}(−1)x−1

2 (−1)
y−1

2 ,

(
2
x

)
= (−1)x

2−1
8 .

Remark 3.2.21. The Hilbert symbol can be interpreted as a cup product. Let F
be a field of characteristic not dividing n. We have F×/F×n ∼−→ H1(GF , µn), where
GF = Gal(F̄ /F ). Cup product provides a bimultiplicative map

F×/F×n × F×/F×n → H2(GF , µ
⊗2
n )

called the Galois symbol, satisfying the Steinberg identity (x, 1 − x) = 1 for x 6=
0, 1. (Recall that K2(F ) can be defined as the quotient F× ⊗ F× by the subgroup
generated by x ⊗ (1 − x), x 6= 0, 1. The Galois symbol induces a homomorphism
K2(F )/nK2(F )→ H2(GF , µ

⊗2
n ), which is in fact an isomorphism by the Merkurjev-

Suslin Theorem.)
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For any fieldK of separable closureKsep, the Brauer group BrK = H2(GK , (Ksep)×)
is defined. We have BrF [n] = H2(GF , µn). If F contains µn, then H2(GF , µ

⊗2
n ) '

µn⊗BrF [n]. If F is a local field containing µn, then the Hilbert symbol is the Galois
symbol composed with the injection µn ⊗ BrF → µn ⊗ Q/Z ' µn induced by inv
(see below).

Remark 3.2.22. For any non-Archimedean local field K, Hasse invariant provides
an isomorphism inv : BrK ∼−→ Q/Z. Moreover, we have inv : BrR ∼−→ 1

2Z/Z and
inv : BrC ∼−→ 0. For a global field K, the Brauer group fits into a short exact sequence

0→ BrK →
⊕
v

BrKv
∑

invv−−−−→ Q/Z→ 0.

The fact that the composition of the two nontrivial arrows above is zero implies the
product formula of Hilbert symbols.

The norm residue symbol can also be interpreted as a cup product. For any local
field K, the cup product

K× ×H2(GK ,Z)→ H2(GK , (Ksep)×) = BrK inv−→ Q/Z

carries (a, χ) to χ((a,Ksep/K)). Here we used the isomorphism Hom(GK ,Q/Z) =
H1(GK ,Q/Z) ∼−→ H2(GK ,Z). A similar interpretation holds for global fields K,
after replacing K× by IK/K×.

3.3 The first inequality
Let F be a number field, and let SF be the set of maximal ideals of OF .

Definition 3.3.1. Let S ⊆ SF be a subset. The arithmetic density (or natural
density) of S is the limit

lim
X→∞

#{p ∈ S | Np ≤ X}
#{p ∈ SF | Np ≤ X}

if the limit exists. The analytic density of a subset is the limit

δ(S) = lim
s→1+

∑
p∈S(Np)−s∑
p∈SF (Np)−s

if the limit exists.

The sums in the definition of analytic density converges, since ∑p∈SF (Np)−s
converges absolutely for Re(s) > 1.

Remark 3.3.2. One can show that if S has arithmetic density δ, then it has analytic
density δ. However, the set of rational primes whose first decimal digit is 1 has
analytic density log10(2) but no arithmetic density.

We will only use analytic density. The results of this section also holds for
arithmetic density, but additional arguments are needed to prove this.
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Remark 3.3.3. (1) If S = S ′∐S ′′, then δ(S) = δ(S ′) + δ(S ′′) (if two of the three
exist then so does the third one).

(2) If S ⊆ S ′ ⊆ S ′′ and δ(S) = δ(S ′′) = δ, then δ(S ′) = δ.

Proposition 3.3.4. We have ∑p∈SF (Np)−s = log( 1
s−1) +O(1) as s→ 1+.

Proof. For Re(s) > 1,
log ζF (s) =

∑
p∈SF

∑
n≥1

1
n

(Np)−ns.

Since ζF (s) has a simple pole at s = 1, it suffices to show that
∑
p∈SF

∑
n≥2

1
n

(Np)−ns

converges absolutely in a neighborhood of s = 1. Indeed, for σ > 1
2 ,∑

p∈SF

∑
n≥2

1
n

(Np)−nσ < 2
∑
p∈SF

∑
m≥1

1
2m(Np)−2mσ = log ζF (2σ) <∞,

where we have set n = 2m and n = 2m+ 1.

Corollary 3.3.5. A finite subset of SF has analytic density zero.

Proposition 3.3.6. Let S be the set of maximal ideals of F whose norms are not
primes. Then S has analytic density zero.

Proof. Let d = [F : Q]. For each rational prime p, there are at most d maximal
ideals of F above p. Thus, for σ > 1/2,∑

p∈S
(Np)−σ ≤ d

∑
p

p−2σ <∞.

Theorem 3.3.7. Let E/F be a finite Galois extension of number fields of degree d.
Let S be the set of maximal ideals of F that split in E. Then δ(S) = 1/d.

Proof. Let T be the set of maximal ideals q of SE such that q ∩ F ∈ S. Then∑
q∈T (Nq)−s = d

∑
p∈S(Nq)−s. It thus suffices to show that δ(T ) = 1. Note that

SE − T ⊆ T ′ ∪ T ′′, where T ′ is the set of maximal ideals of E whose norms are
not primes, and T ′′ is the finite set of maximal ideals of E, ramified over F . Since
δ(T ′) = δ(T ′′) = 0, δ(T ) = 1.

Corollary 3.3.8. Let E/F be a finite Galois extension of number fields and let
S ⊆ SF be a finite set of maximal ideals containing all the ramified maximal ideals.
Then the Artin homomorphism (3.1.7)

ISF → Gal(E/F )ab

is surjective. Here ISF denotes the group of fractional ideals of F generated by max-
imal ideals not in S.
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Proof. Let G = Gal(E/F ) and let H ⊆ G be the pullback of the image of the
Artin homomorphism. For any prime p ∈ SF − S, the conjugacy class of Frobq/p is
contained in H, so that Frob(q|

EH
)/p = 1, hence p splits in EH . Here q ∈ SE is a

lifting of p. Therefore 1
[EH :F ] = δ(SF − S) = 1, so that EH = F , H = G.

Theorem 3.3.9 (The first inequality). Let E/F be a finite Galois extension of
number fields. Then

(3.3.1) #(IF/F×NE/F (IE)) ≤ #Gal(E/F ).

Historically this inequality was proven earlier than the second inequality, using
analytic methods as in these notes. However, it is possible to deduce (3.3.1) (or
more precisely that the left-hand side divides the right-hand side) from the second
inequality without analytic methods. For this reason, some authors, notably Artin
and Tate [AT], call (3.3.1) the second inequality.

Proof. Let H = IF/F×NE/F (IE). A character χ : H → C× induces a Hecke charac-
ter on F , that we still denote by χ. For Re(s) > 1, we have

logLf (s, χ) =
∑

p∈SF−Sχ

∑
n≥1

1
n
χ(πp)n(Np)−ns,

where Sχ is the set of maximal ideals of OF such that χp is ramified. As before,∑
p∈SF−Sχ

∑
n≥2

1
n
χ(πp)(Np)−ns converges absolutely for Re(s) > 1/2. By the mero-

morphic continuation of Lf (s, χ), we have

(3.3.2)
∑

p∈SF−S
χ(πp)(Np)−s = −αχ log 1

s− 1 +O(1)

as s 7→ 1+. Here S is the set of maximal ideals of OF ramified in E and αχ is the
order of Lf (s, χ) at s = 1. We have α1 = −1 and αχ ≥ 0 for χ 6= 1. Summing over
all χ, we get

#H
∑
p∈T

(Np)−s = (1−
∑
χ 6=1

αχ) log 1
s− 1 +O(1),

where T ⊆ SF − S is the set of maximal ideals p such that πp ∈ F×NE/F (IE). Note
that every maximal ideal of OF split in E belongs to T . Thus, by Theorem 3.3.7,

1
[E : F ] ≤ δ(T ) = 1

#H (1−
∑
χ 6=1

αχ).

It follows that αχ = 0 for all χ 6= 1 and #H ≤ [E : F ].

Remark 3.3.10. The proof shows that Lf (χ, 1) 6= 0 for χ 6= 1. In fact, this holds
more generally for every unitary Hecke character χ : IF/F× → C× [RV, Theorem
7.28].

Theorem 3.3.7 has the following generalization.
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Theorem 3.3.11 (Chebotarev’s density). Let E/F be a finite Galois extension of
number fields of group G. Let C ⊆ G be a conjugacy class. Then the set S of
maximal ideals p of OF , unramified in E, such that Frobq/p ∈ C, where q is a
maximal ideal of OE above p, has analytic density #C/#G.

For F = Q and E = Q(ζm), we have an isomorphism Gal(Q(ζm)/Q) ∼−→ (Z/mZ)×
carrying the automorphism defined by ζm 7→ ζ im to the class of i. Moreover, a prime p
ramifies in Q(ζm) if and only if p | m/(2,m), and for p - m, the image of Frobp,Q(ζm)/Q
in (Z/mZ)× is the class of p. Chebotarev’s density theorem thus takes the following
form.

Corollary 3.3.12 (Dirichlet’s density theorem). For (n,m) = 1, the set of primes
congruent to n modulo m has analytic density 1/φ(m).

Proof of Chebotarev’s theorem, assuming Artin reciprocity for cyclic extensions. Let
σ ∈ C and let K = E〈σ〉. We assume the existence of a bijection

H = IK/K×NE/K(IE) ∼−→ Gal(E/K) ' 〈σ〉,

carrying the class of π′p to Frobq,K/E for all but finitely many maximal ideals p′ of K.
A character χ of 〈σ〉 induces a character χH of H.

Let S ′ ⊆ SK be the set of maximal ideals p′ such that p′∩OF is unramified in E
and Frobp′,K/E = σ. We have

#〈σ〉
∑
p′∈S′

(Np′)−s =
∑

p′∈SK−S

∑
χ

χ(σ)−1χ(Frobp′)(Np′)−s

=
∑
χ

χ(σ)−1 ∑
p′∈SK−S

χH(π′p)(Np′)−s +O(1) = log( 1
s− 1) +O(1)

as s→ 1+ by the proof of Theorem 3.3.9. Here S ⊆ SK denotes the set of maximal
ideals p′ such that p′∩OF is ramified in E, and χ runs through characters 〈σ〉 → C×.

Let T ⊆ SE be the set of maximal ideals q such that p = q ∩ OF is unramified
in E and Frobq/p = σ. The map T → S ′, q 7→ p′ = q ∩ OK is a bijection. Indeed,
D(q/p′) = 〈σ〉 = Gal(E/K). The map T → S, q 7→ p = q ∩ OF is surjective. For
τ ∈ G, Frobτq/p = τFrobq/pτ

−1 = τστ−1, so that τq ∈ T if and only if τ belongs
to the centralizer CentG(σ). Moreover, τq = q if and only if τ ∈ D(q/p) = 〈σ〉.
Therefore, the fibers of the map T → S have cardinality #CentG(σ)/#〈σ〉. Since
f(q/p) = f(q/p′) = #〈σ〉, we have

∑
p∈S

(Np)−s = #〈σ〉
#CentG(σ)

∑
p′∈S′

(Np′)−s = 1
#CentG(σ) log 1

s− 1 +O(1).

Therefore, δ(S) = 1/#CentG(σ) = #C/#G.

3.4 Cohomology of groups

Induced modules
Let φ : H → G be group homomorphism. For a G-module A, we let resGHA denote
the underlying H-module. The functor resGH admits a left adjoint indGH and a right
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adjoint coindGH , which can be described as follows. For an H-module B, we have

coindGHB = HomZ[H](Z[G], B), indGHB = Z[G]⊗Z[H] B,

with theG-module structure given respectively by right and left multiplication. Note
that coindGHB can be identified with the set of maps f : G → B such that f(hg) =
hf(g) for all h ∈ H, with the G-module structure given by (gf)(g′) = f(g′g). The
adjunctions

HomZ[H](resGHA,B) ' HomZ[G](A, coindGHB),
HomZ[H](B, resGHA) ' HomZ[G](indGHB,A)

are called Frobenius reciprocity. From the sequence H → G→ {1}, we get

BH ' (coindGHB)G, BH ' (indGHB)G.

If H is a subgroup of G, then coindGH is an exact functor (with exact left adjoint),
so that

(3.4.1) H1(G, coindGHB) ' H1(H,B).

This holds for all Hn, and is known as Shapiro’s lemma. The map (3.4.1) is the
composition

H1(G, coindGHB)→ H1(H, resGHcoindGHB)→ H1(H,B),

where the second map is induced by adjunction. The restriction map res : H1(G,A)→
H1(H, resGHA) can be identified with the map induced by the adjunction map A→
coindGHresGHA composed with the (3.4.1).

Lemma 3.4.1. Assume H has finite index in G, then the homomorphism of G-
modules α : indGHB → coindGHB carrying g ⊗ b to

g′ 7→

g′gb g′ ∈ gH
0 otherwise

is an isomorphism.

Proof. The inverse is given by β(f) = ∑
g∈G/H g ⊗ f(g−1), where g runs through a

set of representatives of G/H.

The map cor : H1(H,A)→ H1(G,A) induced by the adjunction map indGHresGHA→
A, β, and the inverse of (3.4.1) is called the corestriction map. The composite

A→ coindGHresGHA
β−→
∼

indGHresGHA→ A

is multiplication by [G : H]. It follows that the composite

H1(G,A) res−→ H1(H, resGHA) cor−→ H1(G,A)

is multiplication by [G : H]. Taking H = {1}, we see that H1(G,A) is killed by
#G.
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Example 3.4.2. Let H be a subgroup of G. Then indGHZ = Z[G/H]. Here H acts
trivially on Z and G acts on Z[G/H] by left multiplication.

Example 3.4.3. Let E/F be a finite Galois extension of arbitrary fields of group
G. By the normal basis theorem, there exists x ∈ E such that E = ⊕g∈Gg(x)F . In
other words, E ' indG{1}F . Therefore, H1(G,E) ' H1({1}, F ) = 1.

Example 3.4.4. Let E/F be a finite Galois extension of number fields of group G.
Let v be a place of E and let w0 be a place of E above v. Let D = D(w0/v) ⊆ G be
the decomposition group. Then ∏w|v E

×
w ' indGDE×w0 and, if v is ultrametric, then∏

w|v Uw ' indGDUw0 .

Proposition 3.4.5. Let E/F be a finite Galois extension of number fields of group G.
Then IGE = IF and H1(G, IE) = 1.

Proof. The first assertion follows from the example above. For a finite set of places
S of F containing the set S∞ of Archimedean places, we let SE denote the set
of places above E, and we write IE,S = IE,SE = ∏

w∈SE E
×
w ×

∏
w 6∈SE UEw . We

have IE = ∪SIE,S. Let w0 be a place of E above v and let H = D(w0 | v).
We have H1(G,∏w|v E

×
w ) ' H1(H,E×w0) = 1. For v ultrametric and unramified

in E, we have H1(G,∏w|v Uw) ' H1(H,Uw0) = 1 by the following lemma. Thus
H1(G, IE,S) = 1 for any S ⊇ S∞ containing all places ramified in E. It follows that
H1(G, IE) = 0.

Lemma 3.4.6. For any finite extension L/K of group H of ultrametric local fields
of ramification index e, we have H1(H,UL) = Z/eZ.

Proof. The short exact sequence of H-modules

1→ UL → L×
w−→ Z→ 0

induces an exact sequence

K×
w−→ Z→ H1(H,UL)→ H1(H,L×) = 1.

Thus H1(H,UL) ' Z/w(K×) = Z/eZ.

Tate cohomology of finite groups
Let G be a finite group. For a G-module M , we define the norm map N : M → M
by Nm = ∑

g∈G gm. We have IGM ⊆ Ker(N) and Im(N) ⊆MG.

Definition 3.4.7. The i-th Tate cohomology groups, i = −1, 0, 1 are defined by

Ĥ−1(G,M) = Ker(N)/IGM, Ĥ0(G,M) = MG/Im(N), Ĥ1(G,M) = H1(G,M).

In other words, Ĥ−1(G,M) and Ĥ0(G,M) are respectively the kernel and cok-
ernel of the map MG →MG induced by N .

Note that for Ĥ i(G,M) = Ker(di)/Im(di−1), i = −1, 0, 1, are the cohomology
groups of the complex⊕

g∈G
M

d−2
−−→M

d−1
−−→M

d0
−→ Map(G,M) d1

−→ Map(G2,M),
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where d−2 is the map (3.2.1) and d−1 = N .
The functors Ĥ i(G,−), i = −1, 0, 1, commute with arbitrary products and fil-

tered colimits (hence arbitrary coproducts). Applying the snake lemma as before,
we obtain the following.

Proposition 3.4.8. Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence of
G-modules. Then we have a long exact sequence

Ĥ−1(G,M ′)→ Ĥ−1(G,M)→ Ĥ−1(G,M ′′)→ Ĥ0(G,M)
→ Ĥ0(G,M)→ Ĥ0(G,M ′′)→ Ĥ1(G,M ′)→ Ĥ1(G,M)→ Ĥ1(G,M ′′).

Example 3.4.9. For a trivial G-module M , Ĥ−1(G,M) = Ker(#G : M →M) and
Ĥ0(G,M) = Coker(#G : M → M). In particular, Ĥ i({1},M) = 0 for i = −1, 0, 1,
and Ĥ−1(G,Z) = H1(G,Z) = 0, where G acts trivially on Z.

Example 3.4.10. Let E/F be a finite Galois extension of arbitrary fields of groupG.
Then Ĥ0(G,E×) = F×/NE/FE

×.

Example 3.4.11. Let E/F be a finite Galois extension of number fields of group G.
Then Ĥ0(G, IE) = IF/NE/F (IE).

Proposition 3.4.12. Let E/F be a finite Galois extension of number fields of
group G. Then (IE/E×)G ' IF/F× and Ĥ0(G, IE/E×) ' IF/F×NE/F (IE).

Proof. The long exact sequences associated to the short exact sequence ofG-modules
1→ E× → IE → IE/E× → 1 are

1→ F× → IF → (IE/E×)G → H1(G,E×) = 1
F×/NE/F (E×)→ IF/NE/F (IE)→ Ĥ0(G, IE/E×)→ Ĥ1(G,E×) = 1.

Remark 3.4.13. For a subgroup H of G, and an H-module B, Ĥ i(H,B) '
Ĥ i(G, indGHB) for i = −1, 0, 1. Indeed, for A = indGHB, via the isomorphisms
AG ' BH and AG ' BH , the maps NG : AG → AG and BH : BH → BH can be
identified: NG(b) = ∑

g∈G/H gNH(b).

Cohomology of finite cyclic groups
Let G be a finite cyclic group. Let g be a generator of G. Then IG = (1 − g), so
that

Ĥ−1(G,M) = Ker(N)/Im(1− g), Ĥ0(G,M) = Ker(1− g)/Im(N)

are cohomology groups of the sequence

M
N ++

M.
1−g
jj
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Moreover, the map Z1(G,M)→M carrying f to f(g) induces an isomorphism

H1(G,M) ∼−→ Ĥ−1(G,M),

functorial in M .
Theorem 3.2.4 has the following consequence.

Corollary 3.4.14 (Hilbert 90). Let E/F be a finite cyclic extension of arbitrary
fields of Galois group G and let g be a generator of G. Then, for x ∈ E×, NE/F (x) =
1 if and only if x = gy/y for some y ∈ E×.

Proof. Indeed, by the theorem, Ĥ−1(G,E×) ' H1(G,E×) = 1, so that Ker(N) =
Im(1− g).

Proposition 3.4.8 takes the following form.

Proposition 3.4.15 (Hexagon). Let 0 → M ′ → M → M ′′ → 0 be a short exact
sequence of G-modules. Then we have an exact sequence

Ĥ0(G,M ′) // Ĥ0(G,M) // Ĥ0(G,M ′′)

��

Ĥ−1(G,M ′′)

OO

Ĥ−1(G,M)oo Ĥ−1(G,M ′).oo

Definition 3.4.16. The Herbrand quotient of a G-module M is

Q(M) = QG(M) = #Ĥ0(G,M)/#Ĥ−1(G,M)

if it exists.

Corollary 3.4.17. Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence of
G-modules. Then Q(M) = Q(M ′)Q(M ′′) (if two of the Herbrand quotients exist,
then so does the third one).

Remark 3.4.18. If the underlying set of M is finite, then Q(M) = 1.

Example 3.4.19. Q(Z) = #G, where G acts trivially on Z.

Proposition 3.4.20. Let V be a finite-dimensional real vector space equipped with
an action of G by linear automorphisms. Let L and L′ be two G-stable lattices of V .
If Q(L) is well-defined, then Q(L′) is as well and Q(L) = Q(L′).

Proof. By a general result on linear representations of finite groups [S, Section 12.1],
we have L ⊗Z Q ' L′ ⊗Z Q. (This also follows from the Zariski density of V =
EndQ[G](L⊗Q, L′⊗Q) in V ⊗QR, since automorphisms form a Zariski open subset.)
Thus we may assume that L and L′ are commensurable: L⊗Z Q = L′ ⊗Z Q. Then
since L ∩ L′ has finite indices in L and L′, we have Q(L) = Q(L ∩ L′) = Q(L′).
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3.5 The second inequality
Let E/F be a finite cyclic extension of number fields.

Theorem 3.5.1 (The second inequality). We have

#(IF/F×NE/F (IE)) ≥ #Gal(E/F ).

In fact, equality holds by the first inequality.
Let G = Gal(E/F ). Recall Ĥ0(G, IE/E×) ' IF/F×NE/F (IE).

Theorem 3.5.2. The Herbrand quotient Q(IE/E×) = [E : F ].

This implies the second inequality: #Ĥ0 = Q#Ĥ−1 ≥ Q = [E : F ]. Moreover,
equality holds by the first inequality, so that Ĥ−1(G, IE/E×) = 1, where G =
Gal(E/F ). This can be extended to Galois extensions as follows, which will not be
used in the rest of these notes.

Corollary 3.5.3. Let E/F by a finite Galois extension of number fields of group G.
We have H1(G, IE/E×) = 1.

Of course this implies H1(G, IE) = 1.

Proof. Let Gp be a p-Sylow of G. If H1(Gp, IE/E×) = 1, then H1(G, IE/E×) is
killed by [G : Gp]. That this holds for all p implies H1(G, IE/E×) = 1. Thus we
may assume that G is a p-group. We proceed by induction on #G. Let H be a
nontrivial normal subgroup of G. Then by the following lemma, we have an exact
sequence

1→ H1(G/H, IK/K×)→ H1(G, IE/E×)→ H1(H, IE/E×),

where K = EH . We conclude by the induction hypothesis applied to G/H and
to H.

Lemma 3.5.4. Let G be a group and let H be a normal subgroup. Let A be a
G-module. Then we have an exact sequence

1→ H1(G/H,AH) inf−→ H1(G,A) res−→ H1(H,A),

where inf is the inflation map induced by the map Z1(G/H,AH)→ Z1(G,A) carry-
ing f to the composite G→ G/H

f−→ AH → A.

Proof. This is a routine verification. One can also derive it from the general exact
sequence

0→ (R1Ψ)R0Φ→ R1(ΨΦ)→ R0ΨR1Φ

for derived functors of the composition of two additive functors between abelian
categories with enough injectives. We take Φ = coindGG/H and Ψ = (−)G/H .

In the cyclic case, Ĥ−1(G, IE/E×) = 1 implies the following local-global principle.
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Theorem 3.5.5 (Hasse’s norm theorem). Let E/F by a finite cyclic extension of
number fields. Let a ∈ F× such that for each place v of F , a is a local norm,
namely, for one, or equivalently, for every place w above v, a = NEw/Fv(xw) for
some xw ∈ E×w . Then a is a global norm, namely, there exists y ∈ E× such that
a = NE/F (y).

Proof. The short exact sequence 1 → E× → IE → IE/E× → 1 induces the long
exact sequence

Ĥ−1(G, IE/E×)→ F×/NE/FE
× φ−→ IF/NE/F IE.

Since Ĥ−1(G, IE/E×) = 1, φ is injective. By assumption φ(ā) = 1, so that ā = 1.

Remark 3.5.6. The second inequality holds for general finite abelian extensions.
On the other hand, Theorem 3.5.5 does not hold for general finite abelian extensions
(exercise).

Proof of the second inequality
We now proceed to prove Theorem 3.5.2. We use the notation IE,S from the proof
of Proposition 3.4.5. Note that IE/E×IE,S∞ ' ClE and the image of IE,S in ClE is
generated by the prime ideals above places of S − S∞. Since ClE is finite, we may
take S such that the map IE,S → IE/E× is a surjection. We have a short exact
sequence

1→ O×E,S → IE,S → IE/E× → 1,

where O×E,S = E× ∩ IE,S. We will compute Q(IE,S) and Q(O×E,S).
Let v be a place of F and let w0 be a place of E above v. Let H = D(w0/v).

Then Ĥ i(G,∏w|v E
×
w ) = Ĥ i(H,E×w0) and QG(∏w|v E

×
w ) = QH(E×w0) = #H, by the

following proposition. If v is non-Archimedean, then QG(∏w|v Uw) = QH(Uw0) = 1.
If, moreover, v is unramified in E, then Ĥ i(G,∏w|v Uw) ' Ĥ i(H,Uw0) = 1 by Lemma
3.4.6. Thus

QG(IE,S) =
∏
v∈S

[Ew0 : Fv].

Proposition 3.5.7. For any finite cyclic extension L/K of group H of local fields
of characteristic 0, then #Ĥ0(H,L×) = QH(L×) = #H. If moreover, K is non-
Archimedean, then QH(UL) = 1.

Proof. Since Ĥ−1(H,L×) = 1, #Ĥ0(H,L×) = QH(L×). The Archimedean case is
then obvious. Assume that K is ultrametric. We have an H-equivariant short exact
sequence 1 → UL → L×

vL−→ Z → 1, so that QH(L×) = QH(UL)QH(Z). Since
QH(Z) = #H, it suffices to show QH(UL) = 1.

The series exp(x) = ∑
n≥0 x

n/n! and log(1 + x) = ∑
n≥1(−1)n+1xn/n converge

for vL(x) > vL(p)/(p − 1) and vL(x) > 0, respectively. They induce H-equivariant
isomorphisms between ma

L and 1+ma
L for some a ≥ 1. By the normal basis theorem,

there exists α ∈ L such that h(α), α ∈ H form a linear basis for L/K. We may
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assume that α ∈ ma
L. Then M = ⊕

h∈H OKh(α) ' indH{1}OK is an H-submodule of
ma
L of finite index. Therefore,

QH(UL) = QH(1 + ma
L) = QH(ma

L) = QH(M) = Q{1}(OK) = 1.

To compute QG(O×E,S), consider the G-equivariant homomorphism λ : O×E,S →
V = RSE carrying (xw)w to (log|xw|w)w∈SE . Here G acts on V via its action on SE.
Then Ker(λ) = µE is a finite group and L = λ(O×E,S) is a lattice in the hyperplane∑
w∈SE aw = 0. Let e = (1, . . . , 1) ∈ V G. Then L ⊕ Ze is a G-stable lattice of V .

Another G-stable lattice of V is ZSE . By Proposition 3.4.20,

#GQG(L) = QG(L)QG(Z) = QG(L⊕ Ze) = QG(ZSE)
=
∏
v∈S

QD(w0/v)(Z) =
∏
v∈S

#D(w0/v).

Thus QG(O×E,S) = QG(L) = ∏
v[Ew0 : Fv]/[E : F ]. Therefore,

QG(I×E/E×) = QG(IE,S)/QG(O×E,S) = [E : F ].

Hasse-Minkowski Theorem
Let V be a finite-dimensional vector space over a field K. Recall that a quadratic
form on V is a map f : V → K such that f(ax) = a2f(x) for all a ∈ K and x ∈ V
and (x, y) 7→ f(x + y) − f(x) − f(y) is a (symmetric) bilinear form. Assume that
the characteristic of K is different from 2. We put x.y = 1

2(f(x+ y)− f(x)− f(y)),
so that Q(x) = x.x.

Let a ∈ K. We say that a quadratic form f represents a if there exists nonzero
x ∈ V such that f(x) = a. Quadratic spaces (V, f) such that f represents 0 (resp.
f = 0) is called isotropic (resp. totally isotropic). (Some authors use “isotropic” for
f = 0.)

Theorem 3.5.8. Let F be a number field. Then a quadratic form f over F repre-
sents 0 if and only if the quadratic form fv over Fv induced by f represents 0 for
every place v of F .

The case F = Q is due to Minkowski and the general case is due to Hasse.

Corollary 3.5.9. Let F be a number field and let a ∈ F . Then a quadratic form
f over F represents a if and only if the quadratic form fv over Fv induced by f
represents a for every place v of F .

This follows from the theorem and a general result on quadratic forms. See
Corollary 3.5.11 below.

Proposition 3.5.10. Let f be an isotropic nondegenerate quadratic form over a
field K of characteristic 6= 2. Then f has the form f(X, Y,W1, . . . ,Wn) = XY +
g(W1, . . . ,Wn). In particular, f represents every a ∈ K.
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Proof. Let x 6= 0 be an isotropic vector. Since f is nondegenerate, there exists z ∈ V
such that x.z = 1. Then y = z − 1

2(z.z)x is an isotropic vector and x.y = 1. Then
f has the desired form under the basis which is the union of {x, y} and a basis of
(xK + yK)⊥.

Corollary 3.5.11. Let g be a nondegenerate quadratic form and let a ∈ K. Then
g represents a if and only if g(Y1, . . . , Yn)− aX2 represents 0.

Proof. The “only if” part is trivial by taking X = 1. For the “if” part, assume
g(y)−ax2 = 0. If x = 0, then g represents 0, hence g represents a by the proposition.
If x 6= 0, then we may assume x = 1 so that g(y) = a.

The “only if” part of Theorem 3.5.8 is trivial. For the “if” part, we have f =
a1X

2
1 + · · ·+ anX

2
n, ai ∈ F× under an orthogonal basis. We may assume a1 = 1 and

f is nondegenerate.

Remark 3.5.12. Let K be a field of characteristic 6= 2 and a ∈ K×. Then X2−aY 2

represents 0 if and only if a is a square in K.

For n = 2, f = X2 − aY 2. Since fv represents 0, a is a square in Fv. Thus
NF (

√
a)/F (IF (

√
a)) = IF . By the second inequality, [F (

√
a) : F ] ≤ 1, so that a is a

square. One may also use a density argument instead of the second inequality.
For n = 3, the theorem follows from the following algebraic result and Hasse’s

norm theorem.

Lemma 3.5.13. Let K be a field of characteristic 6= 2 and a, b ∈ K×. Then
X2 − aY 2 − bZ2 represents 0 if and only if a ∈ NK(

√
b)/K(K(

√
b)×).

Proof. If b = β2 is a square, both conditions are automatic, with (β, 0, 1) being an
isotropic vector. Assume that b is not a square. For the “only if” part, note that if
a = NK(

√
b)/K(x−

√
bz) = x2 − bz2, then (x, 1, z) is an isotropic vector. For the “if”

part, if x2 − ay2 − bz2 = 0, then y 6= 0, so that a = (x/y)2 − b(z/y)2 is a norm.

Remark 3.5.14. If K = Fv is a local field of characteristic 0, the last condition
means that the Hilbert symbol (a, b)v = 1. Thus if f is a quadratic form in 3
variables over a number field F , then f represents 0 in Fv for all but a finite and
even number of places v. It follows that if f is a quadratic form of at least 3 variables
over F , then f represents 0 in Fv for all but finitely many places v. Indeed, we may
assume f nondegenerate, and if f(X1, . . . , Xn) = g(X1, . . . , X3) + h(X4, . . . , Xn)
with g representing 0 in Fv, then f represents every element of Fv, and so does f .

For n = 4, the theorem follows from the following algebraic result either by
reducing to the case n = 3 or by Hasse’s norm theorem.

Proposition 3.5.15. Let K be a field of characteristic 6= 2 and a, b, c ∈ K×. The
following conditions are equivalent:
(1) X2 − bY 2 − cZ2 + acW 2 represents 0 in K;
(2) c ∈ NK(

√
a)/K(K(

√
a)×)NK(

√
b)/K(K(

√
b)×);

(3) c ∈ NL/K(
√
ab)L

×, where L = K(
√
a,
√
b);
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(4) X2 − bY 2 − cZ2 represents 0 in K(
√
ab).

Proof. If a or b is a square in K, then the conditions are all automatic. Assume
that neither a nor b is a square. In this case (1) and (2) are clearly equivalent.
By the lemma, (3) and (4) are equivalent, because L = K(

√
ab,
√
b). If ab is a

square in K, then L = K(
√
a) = K(

√
b), and (2) and (3) are clearly equivalent.

Assume that ab is not a square in K. Then L/K is a biquadratic extension. Let
Gal(L/K(

√
b)) = {1, g} and Gal(L/K(

√
a)) = {1, h}. Then Gal(L/K(

√
ab)) =

{1, gh}. Note that (2) means that there exists x ∈ K(
√
a)× and y ∈ K(

√
b)× such

that c = x(gx)y(hy) = xy((gh)(xy)). Thus (2) implies (3). Conversely, assume (3).
We have c = z(ghz) for some z ∈ L×. Take u = gz/z = gz(hgz)/c. Then hu = u,
namely u ∈ K(

√
a). Moreover, u(gu) = 1, and by Hilbert 90, we have u = gx/x

for some x ∈ K(
√
a). Let y = z/x. Then gy/y = 1, namely y ∈ K(

√
b), and

c = xy((gh)(xy)), which is (2).

For n ≥ 5, we proceed by induction. Let f(X1, . . . , Xn) = aX2
1 + bX2

2 −
g(X3, . . . , Xn). Since g has at least 3 variables, g represents 0 in Fv for all places v
outside a finite set S by Remark 3.5.14. For such v, g represents every element of
Fv. For each v ∈ S, there exist by assumption x1,v, x2,v ∈ Fv such that g represents
cv = ax2

1,v + bx2
2,v in Fv. By weak approximation, there exist x1, x2 ∈ K such that

c = ax2
1 + bx2

2 ∈ cv(F×v )2. Then g represents c in Fv for all v. Thus g represents c in
F by induction hypothesis. It follows that f represents 0 in F .

Remark 3.5.16. One can show that a quadratic form over a local field of charac-
teristic 0 in at least 5 variables represents 0 unless the field is R and the form is
definite. It follows then from the Hasse-Minkowski theorem that a quadratic form
f over a number field F in at least 5 variables represents 0 unless there exists a real
place of F at which f is definite.

A field K is called Ck if every homogeneous polynomial over K of degree d in
more than dk variables has a nontrivial zero. Thus a field is C0 if and only if it is
algebraically closed. Artin conjectured that p-adic fields are C2, namely that every
homogeneous polynomial of degree d over such fields in more than d2 variables has
a nontrivial zero. Lewis proved the case d = 3 but Terjanian disproved the general
case. On the other hand the field Fq((T )) is C2, and model theory implies the Ax-
Kochen theorem: every homogeneous polynomial over a p-adic field K in more than
d2 variables has a nontrivial zero for p large enough (depending on d and [K : Qp]).

Remark 3.5.17. Theorem 3.5.8 fails for homogeneous polynomials of degree ≥ 3.
For example, Selmer showed that C : 3X3 + 4Y 3 + 5Z3 = 0 has a nontrivial solution
in each Qp but not in Q. This example gives a nontrivial element (of order 3) of
the Tate-Shafarevich group of the elliptic curve E : X3 + Y 3 + 60Z3 = 0 over Q. In
general, the Jacobian of C : aX3 +bY 3 +cZ3 = 0 over a field F of characteristic zero
is E : X3 + Y 3 + dZ3 = 0 with [1 : −1 : 0] as the origin, where a, b, c ∈ F×, d = abc.
Choosing α3 = a, β3 = b, we get an isomorphism f : CF̄ → EF̄ carrying [x : y : z] to
[αx : βy : α−1β−1z]. For σ ∈ GF = Gal(F̄ /F ),

(σf)[x : y : z] = [ζαx : ζβy : ζ−1
α ζ−1

β z] = f [x : y : z] + [ζβ/ζα : −1 : 0].
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Here ζα = σ(α)/α, ζβ = σ(β)/β are cube roots of unity. Thus the substraction map
C × C → E carrying (P,Q) to f(P ) − f(Q) is defined over F . Any genus 1 curve
C is a torsor under its Jacobian E with substraction C ×C → E carrying (P,Q) to
the class of the divisor P −Q.

The Tate-Shafarevich group of an abelian variety A over a number field F is

X(A/F ) :=
⋂
v

Ker(H1(GF , A)→ H1(GFv , A)).

The Weil-Châtelet group WC(A/F ) is the group of isomorphism classes of A-torsors.
It can be identified with H1(GF , A), an A-torsorM corresponding to the class of the
crossed homomorphism σ 7→ σP −P , where P ∈M(F̄ ). An A-torsor is trivial if and
only if it has rational point. Thus X(A/F ) measures the failure of the local-global
principle for the existence of rational points on A-torsors. The Tate-Sharafevich
conjecture states that X(A/F ) is finite.

Remark 3.5.18. For homogeneous polynomials f in two variables of degree ≥ 2
over a number field, a density argument shows that if f has a nontrivial zero in Fv for
all but finitely many v, then f is reducible in F (exercise) and, if deg(f) ≤ 4, then
f has a nontrivial zero in F . Indeed, if f is a product of two irreducible quadratic
polynomials, then the density of places v of F such that f has a nontrivial zero in
Fv is at most 3/4. For d ≥ 5, there are homogeneous polynomials of degree d in
two variables over Q that have nontrivial zeroes in Qp for all p and in R but not
in Q: (X2 + 3Y 2)m(X3 − 19Y 3) (if p ≡ 1 mod 3 the first factor has a nontrivial
zero, otherwise the second factor does), (X2 + Y 2)m(X2 − 17Y 2)(X2 + 17Y 2).

In particular, for n ≤ 4, if a ∈ F is an n-th power in Fv for all but finitely
many v, then a is an n-th power in F . This also holds for more general n-th powers,
with a few exceptional cases, as follows.

Let F be a number field. Let ηr = ζ2r + ζ−1
2r . Then

η2
r+1 = 2 + ηr, ζ2r+1ηr+1 = ζ2r + 1,

so that there exists a unique integer s ≥ 2 such that ηs ∈ F but ηs+1 /∈ F .

Theorem 3.5.19 (Grunwald-Wang). Let S be a finite set of places of F , and let
P (n, S) ⊆ F× be the subgroup consisting of a ∈ F× such that a is an n-th power in
Fv for all v /∈ S. Then P (n, S) = F×n, except under the following conditions:
(1) 2s+1 | n.
(2) −1, 2 + ηs, and −(2 + ηs) are non-squares in F .
(3) S ⊇ S0, where S0 is the set of places v | 2 such that −1, 2 + ηs, and −(2 + ηs)

are non-squares in Fv.
Under these conditions, P (n, S) = F×n ∪ ηns+1F

×n.

We refer to [AT, Chapter X] for a proof.
For F = Q, we have s = 2 and condition (2) is satisfied. Moreover, S0 = {2},

so the theorem implies that if a ∈ Q is an n-th power in Q2 and in Qp for all but
finitely many p, then a in an n-th power in Q. One cannot omit Q2 if 8 | n:

16 = (1 + i)8 = (1− i)8 = (
√

2)2 = (
√
−2)8
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is an 8-th power in R and in Qp for all p odd (because at least one of −1, 2, and −2
is a square in Qp), but 16 is not an 8-th power in Q2 or Q.

For F = Q(
√
d) with d a square-free integer satisfying d ≡ −1 mod 8 and

d 6= −1 (for example d = 7), we have s = 2 and condition (2) is satisfied. Since −d
is a square in Q2, −1 is a square in Q2(

√
d) and S0 = ∅. The number 16 is an 8-th

power in every Fv, but not an 8-th power in F .

3.6 Artin reciprocity
Let E/F be a finite Galois extension of number fields and let S be a finite set
of maximal ideals of OF containing those ramified in E. We have homomorphisms
ISF → IF/F×NE/F (IE) and ASE/F : ISF → Gab (3.1.7), where G = Gal(E/F ), carrying
p to the class of πp and Frobp,E/F , respectively. Note that ISF → IF/F×NE/F (IE) is
a surjection. We will prove the following form of Artin reciprocity.

Theorem 3.6.1. The Artin homomorphism ASE/F factorizes into

ISF → IF/F×NE/F (IE) ∼−→ Gab.

Remark 3.6.2. The Artin map is functorial in the following sense: For finite Galois
extensions of number fields E/F and E ′/F ′ and a homomorphism τ : E → E ′ such
that τ(F ) ⊆ F ′, the diagram

ISF ′F ′

AE′/F ′//

NF ′/F
��

Gal(E ′/F ′)ab

��
ISF

AE/F // Gal(E/F )ab

commutes. Here the right vertical arrow is induced by the homomorphism Gal(E ′/F ′)→
Gal(E/F ) given by restriction by τ . Indeed,

(
E′/F ′

p′

)
|F =

(
E/F
p

)f
, where f = f(p′/p)

is the degree of the residue field extension.
It follows that the reciprocity isomorphism also satisfies functoriality: The dia-

gram
IF ′/F ′×NE′/F ′(IE′) ∼ //

NF ′/F
��

Gal(E ′/F ′)ab

��
IF/F×NE/F (IE) ∼ // Gal(E/F )ab

commutes.

In the rest of this section we assume that E/F is an abelian extension. The
general case will follow from the existence theorem (Remark 3.7.7).

Remark 3.6.3. It suffices to show that there exists a modulus m for F such that
S = supp(m) ∩ Vf and such that ASE/F is trivial on PF (m). Indeed, since ASE/F is
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trivial on NE/F (IE(m)), this implies that AmE/F factorizes into

IF (m) //

��

IF (m)/PF (m)NE/F (IE(m))
'
��

IF/F×NE/F (IF ) ψ // IF/F×UF,mNE/F (IF ) φ // G.

By the surjectivity of ASE/F (Corollary 3.3.8), ψφ is a surjection. By the first in-
equality,

#IF/F×NE/F (IF ) ≤ #G.
Therefore, ψφ is an isomorphism.

We omit the superscript from the notation and write AE/F when no confusion
arises.

Example 3.6.4. Let F = Q, E = Q(ζn), m = ((n), 1). Then AQ(ζn)/Q : ImQ → G =
(Z/nZ)× carries p to p mod n for primes p - n, hence is trivial on PQ(m).

Remark 3.6.5. We have the following reductions.
(1) Let K/F be a finite extension. Then we have a commutative diagram

ISKK
A
SK
EK/K//

NK/F
��

Gal(EK/K)� _

��
ISF

AS
E/F // Gal(E/F ).

Since NE/F (PK(mK)) ⊆ PF (m), if AE/F is trivial on PF (m), then AEK/K is
trivial on PK(mK). Here mK = (aOK , (mw|F )w) for m = (a, (mv)v).

(2) Let F ⊆ E ′ ⊆ E. Then ASE′/F is the composite

ISF
AS
E/F−−−→ Gal(E/F )→ Gal(E ′/F ).

Thus if AE/F is trivial on PF (m), then AE′/F is trivial on PF (m) as well.
(3) Let G = ∏

iGi. Then the i-th component of ASE/F is ASEi/F , where Ei =
E
∏
j 6=iGj . Thus if ASEi/F is trivial on PF (mi), then ASE/F is trivial on PF (m),

where mv = maximi,v.
By (1), (2) and Example 3.6.4, AE/F is trivial on PF (m) for m = (nOF , 1) if
E ⊆ F (ζn).

By (3), we may assume that E/F is a cyclic extension. For v /∈ S, Uv ⊆
NE/F (IE). Thus we can take m so that UF,m ⊆ NE/F (IE). By the second inequality,
#IF/F×NE/F (IF ) = #G, so that Ker(AmE/F ) and PF (m)NE/F (IE(mE)) have the
same index in IF (m). Therefore, Ker(AmE/F ) ⊇ PF (m)NE/F (IE(mE)) if and only
if Ker(AmE/F ) ⊆ PF (m)NE/F (IE(mE)). Let a = pα1

1 · · · pαrr ∈ Ker(AmE/F ). We want
a ∈ PF (m)NE/F (IE(mE)). The strategy, roughly speaking, is to reduce to the
known case of an extension contained in a cyclotomic extension, by the commutative
diagram in (1) applied backwards. The actual proof will consist of constructing one
Ki for each pi. We need the following lemma.
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Lemma 3.6.6. Let E/F be a finite cyclic extension of number fields of degree d.
Let p be a maximal ideal of OF and let t be a rational integer in p. Then there exist
an integer n prime to t and τ ∈ Gal(F (ζn)/F ) of order a multiple of d such that
E ∩Q(ζn) = Q, Frobp,F (ζn)/F has order a multiple of d, and 〈Frobp,F (ζn)/F 〉 ∩ 〈τ〉 =
{1}.

Note that (n, t) = 1 implies that the prime factors of t are unramified in Q(ζn),
so that p is unramified in F (ζn). Moreover, E ∩Q(ζn) = Q implies E ∩ F (ζn) = F ,
F ∩Q(ζn) = Q,

Gal(E(ζn)/E) ' Gal(F (ζn)/F ) ' Gal(Q(ζn)/Q) ' (Z/nZ)×,

and Gal(E(ζn)/F ) ' Gal(E/F )×Gal(F (ζn)/F ).
The proof of Lemma 3.6.6 makes use of the following technical lemma, which we

leave as an exercise.

Lemma 3.6.7. Let a > 1, d > 0 be integers and let s be a multiple of a. Then there
exist an integer n prime to s and b ∈ (Z/nZ)× of order a multiple of d, such that
the image ā of a in (Z/nZ)× has order a multiple of d, and 〈ā〉 ∩ 〈b〉 = {1}.

Proof of Lemma 3.6.6. We apply the lemma to a = Np and s the product of at with
all rational primes ramified in E. Since no rational prime ramifies in E ∩Q(ζn), we
have E∩Q(ζn) = Q. (Recall that Q has no nontrivial extension unramified at every
p by the bound

√
|∆K | ≥ (π4 )d/2dd/d! [N, Proposition III.2.14] for every number field

K of degree d.) Then Frobp,F (ζn)/F corresponds to ā. We take τ ∈ Gal(F (ζn)/F ) to
be the element corresponding to b.

Applying Lemma 3.6.6 successively to p1, . . . , pr, we obtain pairwise coprime
integers n1, . . . , nr, prime to p1, . . . , pr and to maximal ideals in the support of m,
and τi ∈ Gal(F (ζni)/F ). Let g be a generator of G and let Ki ⊆ E(ζni) be the
subfield fixed by (g, τi) and Frobpi,E(ζni )/F = (Frobpi,E/F ,Frobpi,F (ζni )/F ). Note that
pi splits in Ki. We have E(ζni) = Ki(ζni), so that EKi is contained in Ki(ζni).
Indeed, for h = (g, τi)α(Frobpi,E/F ,Frobpi,F (ζni )/F )β ∈ Gal(E(ζni)/Ki), if h fixes ζni ,
then ταi Frobβpi,F (ζni )/F

= 1, so that ταi = Frobβpi,F (ζni )/F
= 1. It follows that α and β

are multiples of d, so that h = 1.
Let K = K1 · · ·Kr. We have E ∩ K = F , so that Gal(EK/K) ∼−→ Gal(E/F ).

Indeed Gal(E(ζn1 , . . . , ζnr)/F ) ' Gal(E/F )× (Z/n1Z)×× · · · × (Z/nrZ)×. Since K
is fixed by (g, τ1, . . . , τr), E ∩K is fixed by g.

Let AE/F (pαii ) = gβi , βi ∈ Z. Then 1 = AE/F (a) = g
∑

i
βi . We may assume∑

i βi = 0. We have a commutative diagram

IS
′
K

K

NK/F
��

AEK/K// Gal(EK/K)

'
��

IS′F
AE/F // Gal(E/F ).

Here S ′ ⊇ S) and contains all maximal ideals dividing one of the ni’s. Let g̃ be
the generator of Gal(EK/K) of image g. By the surjectivity of AEK/K , there exists
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b̃ ∈ ISKK such that AEK/K(b̃) = g̃. Then AE/F (b) = g, where b = NK/F (b̃). Since
pi splits in Ki, it is a norm from Ki to F , so that there exists ci ∈ I

SKi
Ki

such that
NKi/F (ci) = pαii b−βi , so that AE/F (NKi/F (ci)) = 1. By the analogue of the above
diagram for Ki, we get AEKi/Ki(ci) = 1. Since EKi is contained in Ki(ζni), there
exists µi ≥ mKi and di ∈ IEKi(µi), xi ∈ PKi(µi) such that ci = (xi)NEKi/Ki(di).
Therefore,

a =
∏
i

pαii b−βi =
∏
i

NKi/F (ci) =
∏
i

(NKi/F (xi))NEKi/F (di) = (y)NE/F (e),

where y = ∏
iNKi/F (xi) ∈ PF (m), and e = ∏

iNEKi/E(di) ∈ IE(m).
This finishes the proof of Artin reciprocity for abelian extensions.

3.7 Existence theorem
Let F be a number field. We say that an open subgroup of IF containing F× is
normic if it is of the form NE = F×NE/F (IE) for some finite abelian extending
E/F . The goal of this section is to prove Theorem 3.1.19, namely that every open
subgroup of IF containing F× is normic. The strategy of the proof is to reduce to a
Kummer extension, where the class field can be constructed directly.

Lemma 3.7.1. If N is normic and N ′ ⊃ N , then N ′ is normic.

Proof. We have N = NE, E/F finite abelian. This induces a commutative diagram

I×F/NE

��

∼ // Gal(E/F )

��
I×F/N ′

∼ // Gal(E ′/F ),

where F ⊆ E ′ ⊆ E. It is clear that the lower horizontal arrow is the Artin isomor-
phism for E ′.

Lemma 3.7.2. Let K/F be a finite abelian extension and let N be an open subgroup
of IF containing F×. If N ′ = N−1

K/F (N ) ⊆ IK is normic, then N is normic.

Proof. We have F = F0 ⊆ F1 ⊆ · · · ⊆ Fn = K such that each Fi+1/Fi is cyclic. We
may assume that K/F is acyclic.

We have N ′ = NL/K , L/K finite abelian. Let us show that L/F is a Galois
extension. Let σ be an F -embedding of L into a separable closure of K. Then
σK = K and σN ′ = N ′. But by functoriality, σNL/K = NσL/K . Thus L = σL.

Next we show that L/F is an abelian extension. We use the fact that for an exact
sequence of groups 1→ A→ G→ C → 1 with A abelian and C cyclic, G is abelian
if and only if the action of C on A by conjugation is trivial. For τ ∈ Gal(L/F ), we
have a commutative diagram

IK/NL/K ∼ //

τ

��

Gal(L/K)

��
IK/NL/K ∼ // Gal(L/K),
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where the right vertical arrow is conjugation by τ . For x ∈ IK , NK/F (τx) = NK/F (x),
so that τx/x ∈ N ′. Thus the left vertical arrow is the identity. It follows that the
right vertical arrow is the identity. This finishes the proof that L/F is abelian.

We have N ⊇ F×NK/F (N ′) = F×NL/F (IL) = NL. Therefore, N is normic by
the preceding lemma.

Remark 3.7.3. It suffices to show that any open subgroup N ⊆ IF of exponent n
containing F× is normic under the assumption that F contains all n-th roots of unity.
Indeed, let K = F (ζn), which is an abelian extension of F . Then IK/N−1

K/F (N ) →
IF/N is an injection, so that the exponent ofN−1

K/F (N ) has exponent dividing n. The
assertion then follows from the preceding lemma. (By a more elaborate reduction
we may even assume n is a prime, but this does not make the proof simpler.)

Now let F be a number field containing all n-th roots of unity and let N be an
open subgroup of IF of exponent dividing n containing F×. Then N contains F×nv
for all places v of F . Moreover, there exists a finite set of places S of F containing
all Archimedean places such that Uv ∈ N for all v not in S. Since the class group
ClF is finite, we may enlarge S so that IF = F×IF,S. We may further enlarge S
such that S contains all places dividing n. Since N ⊇ F×

∏
v∈S F

×n
v

∏
v 6∈S Uv, the

existence theorem follows from the following theorem.

Theorem 3.7.4. Let F be a number field containing the n-th roots of unity and
let S be a finite set of places of F containing all Archimedean places and all places
dividing n such that IF = F×IF,S. Let N = F×

∏
v∈S F

×n
v

∏
v 6∈S Uv. Then N = NE,

where E = F ( n

√
O×F,S).

Note that E/F is a finite extension. Indeed,

[E : F ] = #(O×F,SF×n/F×n) = #(O×F,S/O×F,S ∩ F×n) = #(O×F,S/O×nF,S) = n#S.

Here in the last equality we have used the fact that OF,S is the product of µF with
a free abelian group of rank #S − 1.

Proof. By Artin reciprocity, NE ⊇ F×nv for all places v of F . Moreover, for x ∈ O×F,S
and v 6∈ S, F ( n

√
x)/F is unramified at v. Thus E/F is unramified at v so that

NE ⊇ Uv for v 6∈ S. Therefore, NE ⊇ N . It suffices to show #(IF/N ) = #(IF/NE).
We have seen

#(IF/NE) = [E : F ] = n#S.

To compute #(IF/N ), we use the short exact sequence

1→ O×F,S/O×nF,S
φ−→
∏
v∈S

F×v /
∏
v∈S

F×nv
ψ−→ IF/N → 1.

The exactness at the middle term is clear. For the surjectivity of ψ, we use IF =
F×IF,S. The injectivity of φ is equivalent to O×F,S ∩

∏
v∈S F

×n
v = O×nF,S. It is clear

that O×F,S ∩
∏
v∈S F

×p
v ⊇ O×nF,S. Conversely, for x ∈ O×F,S ∩

∏
v∈S F

×n
v , v splits in

K = F ( n
√
x) for v ∈ S and v is unramified in K for v 6∈ S. It follows that

NK ⊇ F×IF,S = IF , so that NK = IF , which is equivalent to K = F , namely,
x ∈ F×n. Therefore, x ∈ O×nF,S.
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Since S contains all places dividing n, ∏v∈S|n|v = 1 by product formula, so that
#(∏v∈S F

×
v /

∏
v∈S F

×n
v ) = n2#S by the following lemma. It follows that

#(IF/N ) = #(
∏
v∈S

F×v /
∏
v∈S

F×nv )/#(O×F,S/O×nF,S) = n#S.

Lemma 3.7.5. Let K be a local field of characteristic zero containing all n-th roots
of unity. Then #(K×/K×n) = n2/|n|. Here |·| is the normalized absolute value.

Proof. For K = C, the equation becomes 1 = 1. For K = R, we have n ≤ 2, so that
the equation becomes 1 = 1 or 2 = 2. Assume that K is ultrametric. Consider the
trivial action of G = Z/nZ on K×. Then

Ĥ0(G,K×) = K×/K×n, Ĥ−1(G,K×) = {x ∈ K× | xn = 1}.

Thus
#(K×/K×n)/n = Q(K×) = Q(UK)Q(Z) = nQ(UK).

Finally, exp and log induce isomorphisms between ma
K and 1 + ma

K for some a ≥ 1,
so that

Q(UK) = Q(1 + ma) = Q(ma) = Q(OK) = #(OK/nOK) = 1/|n|.

Here we used Ĥ0(G,OK) = OK/nOK and Ĥ−1(G,OK) = 0.

Corollary 3.7.6. Let E/F be a finite extension of number fields and let K/F be
the maximal abelian sub-extension. Then NE = NK.

Proof. By the existence theorem, NE = NK′ , K ′/F finite abelian. Since NK′ =
NE ⊆ NK , K ′ is an extension of K. Every place v of F that admits w | v in E with
D(w/v) = 1 satisfies F×v ⊆ NE = NK′ . If, in addition, v is unramified in K ′, then v
splits in K ′ because Frobv ∈ Gal(K ′/F ) is trivial. (By the compatibility with local
reciprocity that we will prove in the next section, the additional condition that v is
unramified in K ′ is in fact automatic.) It follows, by Chebotarev’s density theorem,
that E is an extension of K ′ (exercise). Therefore, by the assumption on K, we
have K ' K ′ and NK = NK′ = NE.

Remark 3.7.7. Let E/F be a finite Galois extension of group G, and let K/F
be the maximal abelian sub-extension as in the corollary. Then Gal(K/F ) can be
identified with Gab. The corollary, combined with Artin reciprocity for the abelian
extension K/F , implies the general case of Artin reciprocity for E/F .

Transfer
Given a group G and a subgroup H of finite index, the transfer homomorphism
Ver: Gab → Hab is defined as follows. Let G = ∐

r∈RHr. For g ∈ G and r ∈ R,
write rg = hrr

′ with hr ∈ H and r′ ∈ R. Then Ver(g[G,G]) is ∏r hr[H,H].



86 CHAPTER 3. CLASS FIELD THEORY

Theorem 3.7.8. Let E/F be a finite Galois extension of number fields and let K
be an intermediate field. Then the diagram

IF/F×NE/F (IE) ∼ //

��

Gal(E/F )ab

Ver
��

IK/K×NE/K(IE) ∼ // Gal(E/K)ab

commutes.

Proof. Let G = Gal(E/F ) and H = Gal(E/K). Let p be a maximal ideal of
OF unramified in F and let q be a lifting of p to E. It suffices to show that(
E/K
pOK

)
= Ver(φ̄), where φ = Frobq/p ∈ G and φ̄ is the class of φ in Gab. Note

that pOK = ∏
g∈Γ(K ∩ gq), where G = ∐

g∈Γ HgD, D = D(q/p) = 〈φ〉 is the
decomposition group. For p′ = K ∩ gq, Frobgq/p′ = Frobfggq/p = (gφg−1)fg = gφfgg−1,
where fg = f(p′/p) is the smallest integer i ≥ 1 such that gφig−1 ∈ H. Thus(

E/K

pOK

)
=
∏
g∈Γ

gφfgg−1[H,H].

This is also Ver(φ̄), because a set of representatives of H\G is given by gφi, g ∈ Γ,
0 ≤ i ≤ fg−1, and (gφi)φ = gφi+1 for 0 ≤ i < fg−1 and (gφfg−1)φ = (gφfgg−1)g.

This compatibility with transfer implies the following principal ideal theorem for
the Hilbert class field.

Theorem 3.7.9 (principal ideal). Let F be a number field. For every ideal a of OF ,
aOHF is principal.

For any Galois extension E/F , HE is the maximal unramified abelian extension
of E (this characterization uses the compatibility with local reciprocity, which will
be proved in the next section), hence a Galois extension of F .

Proof. LetG = Gal(HHF /F ). SinceHHF /F is an unramified extension, the maximal
abelian sub-extension HHF /F is HF . Thus Gal(HF/F ) = Gab and Gal(HHF /HF ) =
[G,G]. By the compatibility with transfer, the diagram

ClF ∼ //

��

Gab

Ver
��

ClHF
∼ // [G,G]

commutes. Thus, by the following theorem, the map ClF → ClHF is zero.

Theorem 3.7.10. Let G be a finite group. Then Ver: Gab → [G,G]ab is the zero
map.

We refer the reader to [N, Theorem VI.7.6] for a proof of a generalization of this
group-theoretic result.
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Remark 3.7.11. For a number field F we can form the class field tower

F = F0 ⊆ F1 ⊆ F2 ⊆ . . . ,

where each Fi+1 = HFi is the Hilbert class field of HFi . Furtwängler asked whether
the class field tower is finite. Golod and Shafarevich gave examples of number fields
F for which the class field tower is infinite. See [CF, Chapter IX].

3.8 Local class field theory

Global reciprocity on local fields
Theorem 3.8.1. Let E/F be a finite abelian extension of number fields. The global
Artin reciprocity ρE/F : IF/F×NE/F (IE) ∼−→ Gal(E/F ) induces, for every place w of
E above a place v of F , an isomorphism

F×v /NEw/Fv(E×w ) ∼−→ D(w/v).

We start with a local analogue of the first inequality.

Lemma 3.8.2. For any finite abelian extension L/K of local fields of characteris-
tic 0, we have

[K× : NL/K(L×)] ≤ #Gal(L/K).

Proof. Let D = Gal(L/K). In the cyclic case, we have seen that #Ĥ0(D,L×) = #D
in the proof of the second inequality. The general case follows from the cyclic case
by the following exact sequence for a sub-extension L′/K:

L′×/NL/L′(L×)
NL′/K−−−−→ K×/NL/K(L×)→ K×/NL′/K(L′×)→ 1.

Proposition 3.8.3. ρE/F (F×v ) = D(w/v).

This will finish the proof of the theorem. Indeed, ρE/F (NEw/Fv(E×w )) = 1, so
by the proposition, ρE/F induces a surjective homomorphism F×v /NEw/Fv(E×w ) →
D(w/v), and we conclude by the inequality above.

Proof. Let G = Gal(E/F ), D = D(w/v), K = ED. We have a commutative square

IF/NE
ρE/F

∼
//

��

G

��
IF/NK

ρK/F

∼
// G/D.

Since v splits in K, ρK/F (F×v ) = 1. Thus ρE/F (F×v ) ⊆ D.
For the inverse inclusion we reduce to the case of a Kummer extension as follows.

Assume that H = ρE/F (F×v ) ( D. Let L/K be a sub-extension of EH/K of prime
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degree p. Then ρL/F (F×v ) = 1. Let L′ = L(ζp) andK ′ = K(ζp). By the commutative
square

IK′/K ′×NL′/K′(IL′)
ρL′/K′

∼
//

NK′/F
��

Gal(L′/K ′)� _

��
IF/F×NL/F (IL)

ρL/F

∼
// Gal(L/F ),

we have ρL′/K′(K ′×v′ ) = 1, where v′ | wK , wK = w|K . By assumption, w is the unique
place of w above wK . Thus wL = w|L is the unique place of L above wK , so that
p | [LwL : KwK ] | [L′w′ : KwK ], where w′ is a place above v′ and wL. Note that
[K ′ : K] | p − 1 is prime to p. To find a contradiction, it suffices to show that v′
splits in L′.

We are thus reduced to showing that if E/F is an abelian extension of exponent n,
with F containing all n-th roots of unity, such that F×v0 ⊆ NE, then v0 splits in E.
Let S 3 v0 be a finite set of places of F containing all Archimedean places, all
places ramified in E, and all places dividing n, such that IF = F×IF,S. We have
NE ⊇ F×F×v0

∏
v∈S
v 6=v0

F×nv
∏
v 6∈S Uv = N . Thus E is contained in the class field of N

described in following theorem applied to T = {v0}. Since v0 splits in this class
field, it splits in E.

Theorem 3.8.4. Let F be a number field containing the n-th roots of unity and let
S = T

∐
T ′ be a finite set of places of F containing all Archimedean places and all

places dividing n such that IF = F×IF,S. Let

N =
∏
v∈T

F×v
∏
v∈T ′

F×nv
∏
v 6∈S

Uv, N ′ =
∏
v∈T ′

F×v
∏
v∈T

F×nv
∏
v 6∈S

Uv.

Then F×N = NE, where E = F ( n
√

∆), ∆ = F× ∩N ′.

The case T = ∅ is Theorem 3.7.4. We have seen that E/F is a finite extension.
Note that v ∈ T clearly splits in E/F .

Proof. As before, by Artin reciprocity NE ⊇ F×nv for all places v of F . For v /∈ S,
E/F is unramified so that NE ⊇ Uv. For v ∈ T , NE ⊇ F×v . Thus NE ⊇ F×N . It
suffices to show that they have the same index in IF .

We have

[IF : NE] = [E : F ] = [∆F×n : F×n] = [∆ : ∆ ∩ F×n] = [∆ : O×nF,S].

To compute [IF : F×N ], we use the short exact sequence

1→ O×F,S/∆′ →
∏
v∈T ′

F×v /F
×n
v

ψ−→ IF/F×N → 1,

where ∆′ = F× ∩N . For the surjectivity of ψ we used IF = F×IF,S. Thus

[IF : F×N ] = [
∏
v∈T ′

F×v :
∏
v∈T ′

F×nv ][O×F,S : O×nF,S]−1[∆′ : O×nF,S].
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Similarly, let E ′ = F ( n
√

∆′). Then NE′ ⊇ N ′, and we have

[IF : NE′ ] = [∆′ : O×nF,S], [IF : F×N ′] = [
∏
v∈T

F×v :
∏
v∈T ′

F×nv ][O×F,S : O×nF,S]−1[∆ : O×nF,S].

Thus

[IF : NE][IF : NE′ ] = [∆ : O×nF,S][∆′ : O×nF,S] = [IF : F×N ][IF : F×N ′].

Here we have used the fact

[
∏
v∈S

F×v :
∏
v∈S

F×nv ] = n2#S = [O×F,S : O×nF,S]2

proven in Theorem 3.7.4. It follows that [IF : NE] = [IF : F×N ] and NE =
F×N .

Local reciprocity and existence theorem
Proposition 3.8.5. Let L/K be a finite (resp. finite Galois) extension of local fields.
Let F be a number field and v a place of F with an isomorphism ι : Fv ∼−→ K. Then
there exist a finite (resp. finite Galois) extension E/F , a place w of E above v, and
an isomorphism Ew

∼−→ L extension ι. Furthermore, in the Galois case, there exists
an intermediate field F ′ of E/F such that F ′v′ = Fv and Gal(L/K) ' Gal(E/F ′),
where v′ = w|F ′.

We have seen that any local field of characteristic zero is the completion of a
number field. That a finite extension of Qp is the completion of a number field is a
special case of the above proposition.

Note that even if L/K is abelian, E/F is not necessarily abelian.

Proof. The Archimedean case is trivial. Assume we are in the non-Archimedean
case.

In the case of a finite extension, we have L = K[X]/(f). By Krasner’s lemma,
we may assume that f ∈ F [X]. We take E = F [X]/(f) and take w to be the place
defined by the embedding E ↪→ L.

In the case of a finite Galois extension, L/K is the splitting field of a polynomial
g ∈ K[X]. Again by Krasner’s lemma, we may assume that g ∈ F [X]. We take E
to be the splitting field of g in F and choose a place w | v. Then we have Ew ' L
extending F ′v′ ' K. We get a monomorphism D = Gal(L/K) → Gal(E/F ) = G.
Finally we take F ′ = FD, so that Gal(E/F ′) = D.

Let L/K be a finite abelian extension of local fields of characteristic zero. By
the last assertion of the proposition, there exist a finite abelian extension of number
fields E/F , places w | v, and an isomorphism Ew ' L inducing Fv ' K. We define
the local reciprocity isomorphism

rL/K : Gal(L/K) ∼−→ K×/NL/K(L×)

to be the isomorphism induced from the global reciprocity isomorphism rE/F . We
check that this definition does not depend on choices. For this, consider another
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set of data E ′/F ′, w′ | v′, E ′w′ ' L. Let E ′′ be the composite of E and E ′ in L.
The embedding E ′′ → L induces a place w′′ of E ′′ and an isomorphism E ′′w′′

∼−→ L
inducing F ′′v′′

∼−→ K, where F ′′ is the composite of F and F ′ in K and v′′ = w′′|E′′ .
The extension E ′′/F ′′ is a composite of EF ′′/F ′′ and E ′F ′′/F ′′, hence abelian. By
the functoriality of global reciprocity, the square

Gal(E ′′/F ′′)

��

rE′′/F ′′

∼
// IF ′′/F ′′×NE′′/F ′′(IE′′)

NF ′′/F
��

Gal(E/F )
rE/F

∼
// IF/F×NE/F (IE)

commutes. This implies that rL/K does not depend on choices.
We check the required properties of rL/K . For L/K unramified with K non-

Archimedean, the normalization rL/K(FrobL/K) = πLNL/K(L×) follows from the
construction of rL/K via the Artin map. For abelian extensions L/K and L′/K ′

of local fields and an embedding τ : L ↪→ L′ such that τ(K) ⊆ K ′, the functorial-
ity of rL/K follows from the functoriality of global reciprocity. Indeed, we construct
successively number field extensions E/F (abelian), F ′/F , and E ′/F ′ (abelian, mod-
ifying F ′/F if necessary), giving rise to the local field extensions by completion, then
τ(E) ⊆ E ′.

Next we prove the local existence theorem (Theorem 3.1.13), namely that every
(open) subgroup N ⊆ K× of finite index equals NL := NL/K(L×) for some finite
extension L/K. As in the global case, we reduce to the Kummer case where N
has exponent n and K contains all n-th roots of unity. In this case, N ⊇ K×n.
We conclude by the fact that NK( n

√
K×) = K×n (Proposition 3.2.8), which is a

consequence of local reciprocity and Kummer theory.

Corollary 3.8.6. Let L/K be a finite Galois extension of local fields of character-
istic 0 and let K ′/K be the maximal abelian sub-extension. Then NL = NK′.

Proof. We claim that for any abelian extension L′/K with NL/K ⊆ NL′/K , L is
an extension of L′. Assume this claim. By the existence theorem, there exists an
abelian extension L′′/K such that NL′′/K = NL/K . By the claim, L is an extension
of L′′. But NL′′/K = NL/K ⊆ NK′/K , so that L′′ is an extension of K ′. By the
assumption on K ′, we have K ′ ' L′′, so that NL = NL′′ = NK′ .

We prove the claim by induction on [L : K]. We have

NL/K ⊆ NL′/K ∩NK′/K = NL′K′/K .

Here the equality is a consequence of the existence theorem (Corollary 3.1.14). Thus

NL/K′ ⊆ N−1
K′/K(NL/K) ⊆ N−1

K′/K(NL′K′/K) = NL′K′/K′ .

Here in the equality we used the lemma below (applied to L′K ′/K). Since L/K is
solvable (see the remark below), [L : K ′] < [L : K], and we conclude by induction
hypothesis.

Lemma 3.8.7. Let L′/K be a finite abelian extension of local fields of characteris-
tic 0 and let K ′/K be a sub-extension. Then N−1

K′/K(NL′/K) = NL′/K′.
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Proof. Consider the exact sequence

K ′×/NL′/K′
NK′/K−−−−→ K×/NL′/K → K×/NK′/K → 1

that we used in the proof of the local analogue of the first inequality. Since
[L′ : K] = [L′ : K ′][K ′ : K],

we have #(K×/NL′/K) = #(K ′×/NL′/K′)#(K×/NK′/K) by reciprocity. Thus the
first arrow in the exact sequence is an injection. In other words, N−1

K′/K(NL′/K) =
NL′/K′ .
Remark 3.8.8 (Higher ramification groups). Let L/K be a finite extension of
Archimedean local fields of group G. For i ≥ −1, the i-th ramification group Gi < G
is the subgroup consisting of g ∈ G acting trivially on OL/mi+1

L (or equivalently,
vL(gx− x) ≥ i+ 1 for all x ∈ OL). This gives a descending filtration

G = G−1 > G0 > G1 > . . . .

of normal subgroups of G. Note that G0 is the inertia group so that G−1/G0 '
Gal(kL/kK). For i ≥ 0, g ∈ G0 belongs to g ∈ Gi if and only if gπL/πL ∈ U (i)

L , be-
cause OL = OLG0 [πL]. Thus g 7→ gπL/πL gives an injection Gi/Gi+1 ↪→ U

(i)
L /U

(i+1)
L .

It follows that G is solvable. Note that U (i)
L /U

(i+1)
L is k×L for i = 0 and kL for i ≥ 1.

The group G1 is a p-group and is called the wild inertia group.
Let L/K be a finite Galois extension of local fields of characteristic 0 and let

K ′/K be the maximal abelian sub-extension as in the corollary. We define
rL/K : Gal(L/K)ab ∼−→ K×/NL/K(L×)

to be the isomorphism induced by rK′/K . Functoriality of rL/K follows from the
abelian case. This finishes the proof of local reciprocity (Theorem 3.1.5).
Theorem 3.8.9 (Compatibility between local and global reciprocity). Let E/F be
a finite Galois extension of number fields and let w be a place of E above a place v
of F . Then the diagram

Gal(Ew/Fv)ab rEw/Fv
∼
//

��

F×v /NEw/Fv(E×w )

��
Gal(E/F )ab rE/F

∼
// IF/F×NE/F (IE)

commutes.
Proof. Let F ′ = ED, where D = D(w/v), and let v′ = w|F ′ . Then Fv ' F ′v′ and the
above diagram can be identified with the outer square of the diagram

Gal(Ew/F ′v′)ab
rEw/F ′

v′

∼
//

'
��

F ′×v′ /NEw/F ′v′
(E×w )

'
��

Gal(E/F ′)ab rE/F ′

∼
//

��

IF ′/F ′×NE/F ′(IE)
NF ′/F
��

Gal(E/F )ab rE/F

∼
// IF/F×NE/F (IE)
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The upper square commutes by construction: both rEw/F ′v′ and rE/F ′ can be identi-
fied with the reciprocity isomorphisms for the maximal abelian sub-extension E ′/F ′
of E/F ′. The lower square commutes by the functoriality of global reciprocity.

Local construction of local reciprocity
Our construction of the local reciprocity uses global reciprocity. There are more
direct constructions of local reciprocity.

We have indicated that reciprocity can be interpreted as a cup product of group
cohomology. It is more convenient to state this with Tate cohomology. For any finite
Galois extension L/K of local fields of group G and degree d, there is a canonical
isomorphism BrL/K := H2(G,L×) ' 1

d
Z/Z and the inverse image cL/K ∈ H2(G,L×)

of the class of 1
d
is called the fundamental class.

Theorem 3.8.10. The homomorphism

Ĥq−2(G,Z)→ Ĥq(G,L×)

defined by cup product with cL/K is an isomorphism for every q ∈ Z.

The case q = 0 gives the reciprocity isomorphism:

rL/K : Gab = Ĥ−2(G,Z)
−∪cL/K−−−−→
∼

Ĥ0(G,L×) = K×/NL/K(L×).

For details on this approach (both local and global), we refer to [CF].
In the case where L/K is a totally ramified finite Galois extension of non-

Archimedean local fields, the reciprocity map can be made more explicit. In this
case, the fundamental class is given by the short exact sequences of G-modules

1→ UL → U
L̂ur

φ−→ U
L̂ur → 1, 1→ U

L̂ur → L̂ur× vL−→ Z→ 0,

where Lur is the maximal unramified extension of L, and φ(x) = Frob(x)/x. The
image of g[G,G] in Ĥ−1(G,U

L̂ur) (or Ĥ−1(G,UL)) is given by the class of gπL/πL.
Thus

rL/K(g[G,G]) = N
L̂ur/K̂ur(x),

where x ∈ U
L̂ur is a solution to the equation Frob(x)/x = gπL/πL.

Note that the short exact sequence

1→ Gal(Kab/Kur)→ Gal(Kab/K)→ Gal(kK/kK)→ 1,

where Kab is the maximal abelian extension of K and Gal(kK/kK) ' Ẑ, splits. It
follows that for any finite abelian extension L/K is contained in a finite abelian
extension of the form K1K2/K, where K1/K is unramified and K2/K is totally
ramified. For an explicit construction of the splitting, see below.
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Lubin-Tate extensions
For non-Archimedean local fields, Lubin-Tate theory solves the problem of explicit
construction of abelian extensions. Let K be such a field. Let π be a uniformizer
and let q = #kK .

Definition 3.8.11. A Lubin-Tate polynomial is f(X) = Xq + aq−1X
q−1 + · · · +

a2X
2 + πX ∈ OK [X] such that vK(ai) ≥ 1. The n-th Lubin-Tate extension Ln is

the splitting field of the n-th iteration f (n)(X) = (f ◦ f ◦ · · · ◦ f)(X) of f(X).

It turns out that these extensions depend on π but not on the choice of f .

Theorem 3.8.12 (Lubin-Tate). The extension Ln/K is abelian and we have

NLn/K = U
(n)
K πZ.

Thus Ln/K is a totally ramified extension of group UK/U (n)
K .

Example 3.8.13. For K = Qp and f(X) = (X + 1)p − 1, we have f (n)(X) =
(X + 1)pn − 1, so Ln = Qp(ζpn) = Qp(Q×p [pn]).

In general, Ln = K(Ff [πn]), where Ff is the Lubin-Tate module associated to f ,
which is a one-dimensional formal group law equipped with an OK-action. The
isomorphism class of Ff depends only on π.

Let L∞ = ⋃
n Ln. Then Kab = L∞K

ur. We get a splitting Gal(Kab/K) '
Gal(L∞/K) × Gal(Kur/K) corresponding to the splitting K̂× ' UK × πẐ via reci-
procity.
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