NOTES ON ABELIAN VARIETIES

YICHAO TIAN AND WEIZHE ZHENG

We fix a field k and an algebraic closure \overline{k} of k. A variety over k is a geometrically integral and separated scheme of finite type over k. If X and Y are schemes over k, we denote by $X \times Y =$ $X \times_{\operatorname{Spec} k} Y$, and Ω^1_X the sheaf of differential 1-forms on X relative to k.

1. Generalities on group schemes over a field

Definition 1.1. (i) A group scheme over k is a k-scheme $\pi : G \to \operatorname{Spec}(k)$ together with morphisms of k-schemes $m: G \times G \to G$ (multiplication), $i: G \to G$ (inverse), and $e: \operatorname{Spec}(k) \to G$ (identity section), such that the following conditions are satisfied:

$$\begin{split} m \circ (m \times \mathrm{Id}_G) &= m \circ (\mathrm{Id}_G \times m) : G \times G \times G \to G, \\ m \circ (e \times \mathrm{Id}_G) &= j_1 : \mathrm{Spec}(k) \times G \to G, \\ m \circ (\mathrm{Id}_G \times e) &= j_2 : G \times \mathrm{Spec}(k) \to G, \\ e \circ \pi &= m \circ (\mathrm{Id}_G \times i) \circ \Delta_G = m \circ (i \times \mathrm{Id}_G) \circ \Delta_G : G \to G, \end{split}$$

where $j_1 : \operatorname{Spec}(k) \times G \xrightarrow{\sim} G$ and $j_2 : G \times \operatorname{Spec}(k) \xrightarrow{\sim} G$ are the natural isomorphisms.

(ii) A group scheme G over k is said to be *commutative* if, letting $s: G \times G \to G \times G$ be the isomorphism switching the two factors, we have the identity $m = m \circ s : G \times G \to G$.

(iii) A homomorphism of group schemes $f: G_1 \to G_2$ is a morphism of k-schemes which commutes with the morphisms of multiplication, inverse and identity section.

Remark 1.2. (i) For any k-scheme S, the set $G(S) = Mor_{k-Sch}(S, G)$ is naturally equipped with a group structure. By Yoneda Lemma, the group scheme G is completely determined by the functor $h_G: S \mapsto G(S)$ from the category of k-schemes to the category of groups. More precisely, the functor $G \mapsto h_G$ from the category of group schemes over k to the category Funct(k-Sch, Group) of functors is fully faithful.

(ii) For any $n \in \mathbf{Z}$, we put $[n] = [n]_G : G \to G$ to be the morphism of k-schemes

$$G \xrightarrow{\Delta^{(n)}} \underbrace{G \times G \times \cdots \times G}_{n \text{ times}} \xrightarrow{m^{(n)}} G$$

if $n \ge 0$, and $[n] = [-n] \circ i$ if n < 0. If G is commutative, $[n]_G$ is a homomorphism of group schemes. Moreover, G is commutative if and only if i is a homomorphism.

Example 1.3. (1) The additive group. Let $\mathbf{G}_a = \operatorname{Spec}(k[X])$ be the group scheme given by

$$m^*: k[X] \to k[X] \otimes k[X] \quad X \mapsto X \otimes 1 + 1 \otimes X$$
$$i^*: k[X] \to k[X] \quad X \mapsto -X$$
$$[n]_{\mathbf{G}_a}: k[X] \to k[X] \quad X \mapsto nX.$$

For any k-scheme S, $\mathbf{G}_a(S) = \operatorname{Hom}_{k-\operatorname{Alg}}(k[X], \Gamma(S, \mathcal{O}_S)) = \Gamma(S, \mathcal{O}_S)$ with the additive group law.

(2) The multiplicative group is the group scheme $\mathbf{G}_m = \operatorname{Spec}(k[X, 1/X])$ given by

$$m^*(X) = X \otimes X, \quad e^*(X) = 1, \quad i^*(X) = 1/X.$$

For any k-scheme S, we have $\mathbf{G}_m(S) = \Gamma(S, \mathcal{O}_S)^{\times}$ with the multiplicative group law.

(3) For any integer n > 0, the closed subscheme $\mu_n = \text{Spec}(k[X]/(X^n - 1))$ of \mathbf{G}_m has a group structure induced by that of \mathbf{G}_m . For any k-scheme S, $\mu_n(S)$ is the group of n-th roots of unity in $\Gamma(S, \mathcal{O}_S)^{\times}$, *i.e.*,

$$\mu_n(S) = \{ f \in \Gamma(S, \mathcal{O}_S)^{\times} \mid f^n = 1 \}.$$

We note that μ_n is not reduced if the characteristic of k divides n.

(4) For $n \in \mathbb{Z}_{\geq 1}$, we put $\operatorname{GL}_n = \operatorname{Spec}(k[(T_{i,j})_{1 \leq i,j \leq n}, U]/(U \det(T_{i,j}) - 1))$. It is endowed with a group scheme structure by imposing

$$m^*(T_{i,j}) = \sum_{k=1}^n T_{i,k} \otimes T_{k,j} \quad e^*(T_{i,j}) = \delta_{i,j},$$

where $\delta_{i,j} = 1$ if i = j and $\delta_{i,j} = 0$ otherwise. An explicit formula for the coinverse i^* is more complicated, and it can be given by the Cramer's rule for the inverse of a square matrix. For each S, $\operatorname{GL}_n(S)$ is the general linear group with coefficients in $\Gamma(S, \mathcal{O}_S)$. We have of course $\operatorname{GL}_1 = \mathbf{G}_m$.

Proposition 1.4. Any group scheme over k is separated.

Proof. This follows from the Cartesian diagram

$$\begin{array}{c} G & \xrightarrow{\pi} & \operatorname{Spec}(k) \\ \downarrow \Delta_G & & \downarrow^e \\ G \times G & \xrightarrow{m \circ (\operatorname{Id}_G \times i)} & G \end{array}$$

and the fact that e is a closed immersion.

Lemma 1.5. Let X be a geometrically connected (resp. geometrically irreducible, resp. geometrically reduced) k-scheme, Y be a connected (resp. irreducible, resp. reduced) k-scheme. Then $X \times Y$ is connected (resp. irreducible, resp. reduced).

For a proof, see [EGA IV, 4, 5].

Proposition 1.6. Let G be a group scheme over k. If k is perfect, then the reduced subscheme $G_{\text{red}} \subset G$ is a closed subgroup scheme of G.

Proof. Since k is perfect, the product $G_{\text{red}} \times G_{\text{red}}$ is still reduced by 1.5. The composed morphism $G_{\text{red}} \times G_{\text{red}} \hookrightarrow G \times G \xrightarrow{m} G$ factors through G_{red} . This gives G_{red} a subgroup scheme structure of G.

Remark 1.7. If k is imperfect, the analogue of 1.6 is not true in general. In fact, if a is an element of k which is not a p-th power, where $p = \operatorname{char}(k)$, then $G = \operatorname{Spec}(k[X]/(X^{p^2} - aX^p))$ is a subgroup scheme of \mathbf{G}_a , but $G_{\operatorname{red}} = \operatorname{Spec}(k[X]/(X(X^{p^2-p} - a)))$ is not a subgroup scheme of G.

Lemma 1.8. Let X be a connected scheme over k with a rational point $x \in X(k)$. Then X is geometrically connected.

Proof. This is [EGA IV 4.5.14].

 $\mathbf{2}$

Proposition 1.9. Let G be a group scheme, locally of finite type over k, and G^0 be the connected component of G containing $e \in G(k)$.

(i) The following properties are equivalent:

(a1) $G \otimes_k K$ is reduced for some perfect field extension K/k;

(a2) the ring $\mathcal{O}_{G,e} \otimes_k K$ is reduced for some perfect field extension K/k;

(b1) G is smooth over k;

(b2) G is smooth over k at e;

(ii) The identity component G^0 is actually an open and closed subgroup scheme of G, geometrically irreducible. In particular, we have $(G_K)^0 = (G^0)_K$ for any field extension K/k.

(iii) Every connected component of G is irreducible and of finite type over k.

Remark 1.10. (i) A reduced group scheme over k is not necessarily smooth unless k is perfect. In fact, let k be an imperfect field of characteristic p, α be an element of k which is not a p-th power. Consider the subgroup scheme $G = \text{Spec}(k[X,Y]/(X^p + \alpha Y^p))$ of $\text{Spec}(k[X,Y]) \simeq \mathbf{G}_a \times \mathbf{G}_a$. Then G is regular but not smooth over k. In fact, $G \otimes_k k(\sqrt[p]{\alpha})$ is not reduced.

(ii) The non-neutral components of a group scheme over k are not necessarily geometrically irreducible. Consider for example a prime number p invertible in k. Then the number of irreducible components of μ_p is 2 if k does not contain any p-th root of unity different from 1, and is p otherwise. In particular, $\mu_{p,\mathbf{Q}}$ has exactly 2 irreducible components while $\mu_{p,\mathbf{Q}(\zeta_p)}$ has exactly p irreducible components, where ζ_p is a primitive p-th root of unity.

Proof. (i) We only need to prove the implication $(a_2) \Rightarrow (b_1)$. We may assume k = k. For $g \in G(k)$, we denote by $r_g : G \to G$ the right translation by g. It's clear that r_g induces an isomorphism of local rings $\mathcal{O}_{G,g} \simeq \mathcal{O}_{G,e}$. Hence (a_2) implies that G is reduced. Let $\operatorname{sm}(G) \subset G$ be the smooth locus. This is a Zariski dense open subset of G, stable under all the translations r_g . Hence we have $\operatorname{sm}(G) = G$.

(ii) By Lemma 1.8, G^0 is geometrically connected. Hence so is $G^0 \times G^0$ by 1.5. So under the multiplication morphism of G, the image of $G^0 \times G^0$ lies necessarily in G^0 . This shows that G^0 is a closed subgroup scheme of G.

Next we show that G^0 is geometrically irreducible and quasi-compact. Since G^0 is stable under base field extensions, we may assume $k = \overline{k}$. Since G^0 is irreducible if and only if G^0_{red} is, we may assume that G^0 is reduced. By (ii), this implies that G^0 is smooth. It's well known that a smooth variety is connected if and only if it's irreducible. To prove the quasi-compactness of G^0 , we take a non-empty affine open subset $U \subset G^0$. Then U is dense in G^0 , since G^0 is irreducible. For every $g \in G^0(k)$, the two open dense subsets gU^{-1} and U have non-trivial intersection. Hence the map $U \times U \to G^0$ given by multiplication is surjective. Since $U \times U$ is quasi-compact, so is G^0 .

(iii) Again we may assume $k = \overline{k}$. Then every connected component of G is the right translation of G^0 by a rational point.

Let G be a group scheme, locally of finite type over k, and \hat{G} be the completion of G along the identity section e. The group law of G induces a (formal) group law on \hat{G} , *i.e.*, we have a co-multiplication map

(1.10.1)
$$\hat{m}^*: \mathcal{O}_{G,e} \to \mathcal{O}_{G,e} \hat{\otimes} \mathcal{O}_{G,e}$$

where $\hat{\mathcal{O}}_{G,e}$ is the completion of $\mathcal{O}_{G,e}$. In particular, for any $n \in \mathbb{Z}_{\geq 1}$, we have a natural map $\hat{m}^* : \mathcal{O}_{G,e} \to (\mathcal{O}_{G,e}/\mathfrak{m}^n) \otimes (\mathcal{O}_{G,e}/\mathfrak{m}^n)$, where \mathfrak{m} is the maximal ideal of $\mathcal{O}_{G,e}$.

Theorem 1.11 (Cartier). Let G be a group scheme, locally of finite type over k. If k has characteristic 0, then G is reduced, hence smooth over k.

Proof. (Oort) Let $A = \mathcal{O}_{G,e}$, $\mathfrak{m} \subset A$ be the maximal ideal, and $\operatorname{nil}(A) \subset A$ be the nilradical. Since k is perfect, G_{red} is a closed subgroup scheme of G. It follows thus from Proposition 1.9(ii) that $A_{\operatorname{red}} = A/\operatorname{nil}(A)$ is a regular local ring. Let $\mathfrak{m}_{\operatorname{red}} \subset A_{\operatorname{red}}$ be the maximal ideal of A_{red} . Then we have

$$\dim(A) = \dim(A_{\mathrm{red}}) = \dim_k(\mathfrak{m}_{\mathrm{red}}/\mathfrak{m}_{\mathrm{red}}^2) = \dim_k(\mathfrak{m}/(\mathfrak{m}^2 + \mathrm{nil}(A))).$$

Thus it suffices to show that $\operatorname{nil}(A) \subset \mathfrak{m}^2$. Since then, we will have $\dim_k(\mathfrak{m}/\mathfrak{m}^2) = \dim(A)$, hence A is a regular local ring.

Let $0 \neq x \in \operatorname{nil}(A)$, and $n \geq 2$ be the positive integer such that $x^{n-1} \neq 0$ and $x^n = 0$. Since A is noetherian, there exists an integer $q \geq 2$ with $x^{n-1} \notin \mathfrak{m}^q$. We put $B = A/\mathfrak{m}^q$, $\mathfrak{m}_B = \mathfrak{m}/\mathfrak{m}^q$, and let \overline{x} denote the image of x in B. As remarked above, the multiplication law of G induces a homomorphism $\hat{m}^* : A \to B \otimes B$. Since $e \in G(k)$ is a two-sided identity element, we have

 $\hat{m}^*(x) = \overline{x} \otimes 1 + 1 \otimes \overline{x} + y \quad \text{with } y \in \mathfrak{m}_B \otimes \mathfrak{m}_B.$

From $x^n = 0$, we get

$$0 = \hat{m}^*(x^n) = \hat{m}^*(x)^n = (\overline{x} \otimes 1 + 1 \otimes \overline{x} + y)^n$$

hence

$$n \cdot (\overline{x}^{n-1} \otimes \overline{x}) \in ((\overline{x}^{n-1} \mathfrak{m}_B) \otimes \mathfrak{m}_B + \mathfrak{m}_B \otimes \mathfrak{m}_B^2).$$

Since char(k) = 0, we have $(\overline{x}^{n-1} \otimes \overline{x}) \in (\overline{x}^{n-1}\mathfrak{m}_B) \otimes \mathfrak{m}_B + \mathfrak{m}_B \otimes \mathfrak{m}_B^2$. This implies that either $\overline{x}^{n-1} \in \overline{x}^{n-1}\mathfrak{m}_B$, or $\overline{x} \in \mathfrak{m}_B^2$. If it's the first case, Nakayama's lemma would imply that $\overline{x}^{n-1} = 0$. Hence we have $x \in \mathfrak{m}^2$.

Definition 1.12. Let G be a group scheme over k, and Ω_G^1 be the sheaf of differential 1-forms on G with respect to k. A section $\alpha \in \Gamma(G, \Omega_G^1)$ is said to be right invariant (resp. left invariant), if we have $pr_1^*(\alpha) = m^*(\alpha)$ in $\Gamma(G \times G, pr_1^*\Omega_G^1)$ (resp. $pr_2^*(\alpha) = m^*(\alpha)$ in $\Gamma(G \times G, pr_2^*\Omega_G^1)$).

Remark 1.13. Let α be a right invariant differential 1-form of G. For each $g \in G(k)$, we denote by $r_g : G \to G$ the morphism of right translation by g. Since $pr_1 \circ (\mathrm{Id}_G \times (g \circ \pi)) = \mathrm{Id}_G$ and $m \circ (\mathrm{Id}_G \times (g \circ \pi)) = r_g$, we have $r_g^*(\alpha) = (\mathrm{Id}_G \times (g \circ \pi))^* m^* \alpha = (\mathrm{Id}_G \times (g \circ \pi))^* pr_1^* \alpha = \alpha$. Conversely, if $k = \overline{k}$ and $\alpha \in \Gamma(G, \Omega_G^1)$ is invariant under any r_g^* , then α is right invariant in sense of 1.12. We have similar remarks for left invariant 1-forms.

Proposition 1.14. Let $\omega_G = e^* \Omega_G^1$ be the cotangent space of G at e. Then there is a canonical isomorphism $\pi^* \omega_G \simeq \Omega_G^1$ such that the induced adjunction map $\omega_G \to \Gamma(G, \Omega_G^1)$ is injective and identifies ω_G with the space of right invariant 1-forms of G.

Proof. Consider the diagram

where τ is the isomorphism $(x, y) \mapsto (xy, y)$. If we consider $G \times G$ as a scheme over G via pr_2 , then τ is a G-automorphism of $G \times G$. It induces an isomorphism of differential modules

$$\Omega^1_{G \times G/G} \simeq \tau^* \Omega^1_{G \times G/G}.$$

By base change formula for differential modules, we have $\Omega^1_{G \times G/G} \simeq pr_1^* \Omega^1_G$. Thus the above isomorphism gives rise to an isomorphism

$$pr_1^*\Omega_G^1 \simeq \tau^* pr_1^*\Omega_G^1 = m^*\Omega_G^1$$

Pulling back by $(e \circ \pi, \mathrm{Id}_G)$, we get

 τ

$$^{*}\omega_{G} = (e \circ \pi, \mathrm{Id}_{G})^{*} pr_{1}^{*}\Omega_{G}^{1} \simeq (e \circ \pi, \mathrm{Id}_{G})^{*} m^{*}\Omega_{G}^{1} = \Omega_{G}^{1}.$$

Corollary 1.15. Let $f : \mathbf{P}_k^1 \to G$ be a morphism from the projective line to a group scheme G over k. Then there exists a k-rational point $x \in G(k)$, such that $f(\mathbf{P}_k^1) = \{x\}$.

Proof. It's clear that the image of \mathbf{P}_k^1 is either a curve or a k-rational point of G. If it were the first case, let X denote the image of \mathbf{P}_k^1 , and $k(\mathbf{P}^1)$ and k(X) be respectively the fraction fields of \mathbf{P}_k^1 and X. Then $k(\mathbf{P}_k^1)$ is a finite extension of k(X). Assume first that the extension $k(\mathbf{P}_k^1)/k(X)$ is separable (this is automatic if char(k) = 0). Then the morphism $f : \mathbf{P}_k^1 \to X \subset G$ is generically étale, hence there exists a closed point $t \in \mathbf{P}_k^1$ such that the induced map $f^*\Omega_G^1 \otimes \kappa(t) \to \Omega_{\mathbf{P}_k^1}^1 \otimes \kappa(t)$ is surjective. But according to the previous proposition, Ω_G^1 is generated by its global sections, so there exists a global section of $\Omega_{\mathbf{P}_1}^1$ that is non-vanishing at t. But this is absurd, since $\Omega_{\mathbf{P}_k^1}^1 \simeq \mathcal{O}_{\mathbf{P}_k^1}(-2)$ does not have any non-zero global sections at all! In the general case, we denote by L the separable closure of k(X) in $k(\mathbf{P}_k^1)$. The purely inseparable finite extension $k(\mathbf{P}_k^1)/L$, say of degree p^n , corresponds to the *n*-th iteration of (relative) Frobenius morphism $\operatorname{Frob}_{\mathbf{P}_k^1}^n : \mathbf{P}_k^1 \to \mathbf{P}_k^1$ which sends $(x_0: x_1) \mapsto (x_0^{p^n}: x_1^{p^n})$. So the morphism f can be factorized as

$$\mathbf{P}_k^1 \xrightarrow{\operatorname{Frob}_{\mathbf{P}_k^1}^n} \mathbf{P}_k^1 \xrightarrow{g} G,$$

where g corresponds to the separable field extension L/k(X). Applying the above argument to g, we still get a contradiction. This completes the proof.

We end this section by the following proposition due to A. Weil.

Proposition 1.16. Let X be a normal variety over k, and f be a rational map from X to a group scheme G over k. If f is defined on an open subscheme $U \subset X$ with $\operatorname{codim}_X(X - U) \ge 2$, then f extends to a morphism $X \to G$.

Proof. We may assume $k = \overline{k}$. Let $U \subset X$ be the maximal open subscheme where f is defined. We write multiplicatively the group law on G. Consider the rational map $\Phi: X \times X \dashrightarrow G$ given by $\Phi(x, y) = f(x)f(y)^{-1}$. We claim that for any $x \in X(k)$, we have $x \in U(k)$ if and only if Φ can be defined at (x, x). The "only if" part is trivial. Now suppose that Φ is defined at (x, x). Let W denote the maximal open locus where Φ is defined, and W_x denote the open subset of X such that $\{x\} \times W_x = W \cap (\{x\} \times X)$. We have $W_x \neq \emptyset$. As X is irreducible, there exists $y \in U \cap W_x$. Thus $f(x) = \Phi(x, y)f(y)$ is well defined. This proves the claim. By assumption, the codimension of F = X - U in X is at least 2. We have to show that Φ is defined everywhere on the diagonal $\Delta(X) \subset X \times X$. We note first that the locus in $\Delta(X)$ where Φ is not defined is exactly $\Delta(F)$, and $\Phi(x, x) = e$ whenever Φ is defined at (x, x), where $e \in G$ denotes the identity element. Let D be the closed subset of $X \times X$ where Φ is not defined. Then each irreducible component of $D \cap \Delta(X)$ must be of codimension 1 in $\Delta(X)$. But by assumption $D \cap \Delta(X) = \Delta(F)$ has codimension at least 2 in $\Delta(X)$. It follows that $D \cap \Delta(X) = \emptyset$. In particular, Φ is defined at (x, x). This completes the proof of the proposition.

YICHAO TIAN AND WEIZHE ZHENG

2. Definition and basic properties of Abelian varieties

Definition 2.1. An abelian variety over k is a proper variety over k equipped with a k-group scheme structure.

Proposition 2.2. Let X be an abelian variety over k.

(i) X is smooth over k.

(ii) Let $\omega_X = e^* \Omega^1_{X/k}$ be the cotangent space of X at the unit section. Then we have $\Gamma(X, \Omega^1_X) \simeq \omega_X$. In particular, if X has dimension 1, then the genus of X equals 1.

(iii) Let Y be a normal variety, and $f: Y \dashrightarrow X$ be a rational map. Then f extends to a morphism $f: Y \to X$.

(iv) If Y is a rational variety (i.e., birationally equivalent to the projective space \mathbf{P}_k^d with $d \ge 1$), then any rational map from Y to X is constant.

Proof. Statement (i) follows from Proposition 1.9(ii). For (ii), it follows from 1.14 that $\Omega^1_{X/k} \simeq \omega_X \otimes_k \mathcal{O}_X$. So we have

$$\Gamma(X, \Omega^1_X) = \omega_X \otimes \Gamma(X, \mathcal{O}_X).$$

But by Lemma 1.8, X is geometrically connected. Hence, we have $\Gamma(X, \mathcal{O}_X) = k$, and (ii) follows. For statement (iii), we note that the local ring of X at a point of height 1 is a discrete valuation ring as X is normal. It follows from the valuative criterion of properness that the rational map f can be defined at all points of height 1. Proposition 1.16 implies that f extends actually to the whole X. For (iv), we note that X is birationally equivalent to $(\mathbf{P}_k^1)^d$, and giving a rational map from Y to X is equivalent to giving a rational from $(\mathbf{P}_k^1)^d$ to X. Statement (iv) now follows immediately from (iii) and Corollary 1.15.

Proposition 2.3 (Rigidity Lemma). Let X and Y be varieties over k, Z be a separated k-scheme, and $f: X \times Y \to Z$ be a morphism. Assume that X is proper with a k-rational point, and there exists a closed point $y_0 \in Y$ such that the image $f(X \times \{y_0\})$ is a single point $z_0 \in Z$. Then there is a morphism $g: Y \to Z$ such that $f = g \circ p_2$, where $p_2: X \times Y \to Y$ is the natural projection.

Proof. Choose a k-rational point x_0 of X, and define $g: Y \to Z$ by $g(y) = f(x_0, y)$. Since Z is separated, the locus in $X \times Y$ where f and $g \circ p_2$ coincide is closed in $X \times Y$. As $X \times Y$ is connected, to show that $f = g \circ p_2$, we just need to show that these morphisms coincide on some open subset of $X \times Y$. Let U be an affine open neighborhood of z_0 in Z, $F = Z \setminus U$. Then $G = p_2(f^{-1}(F))$ is a closed subset of Y. Since $f(X \times \{y_0\}) = \{z_0\}$ by assumption, we have $y_0 \notin G$. There exists thus an affine open neighborhood V of y_0 such that $V \cap G = \emptyset$. It's easy to see that $f(X \times V) \subset U$. Since U is affine, the morphism $f: X \times V \to U$ is determined by the induced morphism

$$f^*: \Gamma(U, \mathcal{O}_U) \to \Gamma(X \times V, \mathcal{O}_{X \times V}) \simeq \Gamma(X, \mathcal{O}_X) \otimes \Gamma(V, \mathcal{O}_V).$$

As X is proper, reduced, connected and has a k-rational point, we have $\Gamma(X, \mathcal{O}_X) \simeq k$. That means the morphism $f: X \times V \to U$ actually factors through the projection $p_2: X \times V \to V$. Hence f and $g \circ p_2$ coincide on $X \times V$.

Corollary 2.4. Let X be an abelian variety over k, Y be a group scheme over k, and $f: X \to Y$ be a morphism of k-schemes. Then there exists a point $a \in Y(k)$ and a homomorphism of group schemes $h: X \to Y$ such that $f = T_a \circ h$, where T_a is the right translation by a.

Proof. Let e be the unit section of X, and a = f(e). Define $h : X \to Y$ by $h(x) = f(x) \cdot a^{-1}$. Consider the morphism

 $\Phi: X \times X \to Y \quad (u, v) \mapsto h(uv)h(v)^{-1}h(u)^{-1}.$

We have $\Phi(e, x) = \Phi(x, e) = e$ for any point x in X. By the rigidity lemma, it follows that Φ is the constant map to e. Hence, h is a homomorphism of abelian varieties.

Corollary 2.5. Any abelian variety over k is a commutative group scheme.

Proof. By Corollary 2.4, any morphism of abelian varieties that sends the unit section to the unit section is a homomorphism. The corollary then follows by applying this fact to the inverse morphism of an abelian variety. \Box

From now on, we denote additively the group law of an abelian variety X, by 0 its unit element. Let Y and Z be reduced closed subschemes of X. Assume that either Y or Z is geometrically reduced. Denote by Y + Z the image of $Y \times Z$ the addition morphism $m: X \times X \to X$, which is a closed subset of X since m is proper. If we endow Y + Z with the reduced closed subscheme structure, then m induces a surjection $Y \times Z \to Y + Z$.

Lemma 2.6. Let X be an abelian variety over k, and $Y \subset X$ be a closed subvariety stable under the addition morphism. Then Y contains 0 and is stable under the inversion morphism; in particular, Y is an abelian variety.

Proof. Consider the isomorphism

$$\Phi: X \times X \to X \times X \quad (x, y) \mapsto (x, x + y).$$

Since Y is stable under addition, the image $\Phi(Y \times Y)$ lies in $Y \times Y$. But both $Y \times Y$ and $\Phi(Y \times Y)$ are irreducible varieties of the same dimension. We have $\Phi: Y \times Y \simeq Y \times Y$. In particular, for any $y \in Y$, $\Phi^{-1}(y, y) = (y, 0)$ belongs to $Y \times Y$. Thus 0 belongs to Y. Moreover, $\Phi^{-1}(y, 0) = (y, -y)$ belongs to $Y \times Y$. This proves Y is stable under inversion.

Definition 2.7. Let X be an abelian variety over k. We say a closed subvariety $Y \subset X$ is an *abelian subvariety* if Y is stable under addition. We say X is a *simple* abelian variety if it has no non-trivial abelian subvarieties.

Lemma 2.8. Let X be an abelian variety of dimension d, and W be a geometrically irreducible closed subvariety of X containing 0. Then there exists a unique abelian subvariety $Y \subset X$ containing W such that for any abelian subvariety A of X containing W, we have $Y \subset A$. Moreover, there exists an integer $1 \le h \le d$ such that any point $x \in Y(\overline{k})$ can be represented as $\sum_{i=1}^{h} a_i$ with $a_i \in W(\overline{k})$.

Proof. If dim(W) = 0, then W reduces to $\{0\}$, and the lemma is trivial. Suppose dim $(W) \ge 1$. For any integer $n \ge 1$, let $W^{(n)}$ be the image of

$$\underbrace{W \times W \times \cdots \times W}_{n \text{ times}} \to X \qquad (x_1, \cdots, x_n) \mapsto x_1 + x_2 + \cdots + x_n.$$

Then $W^{(n)}$ is a closed geometrically irreducible subvariety of X, and we have $W^{(n)} \subset W^{(n+1)}$. It's clear that any abelian subvariety containing W must contain $W^{(n)}$, and any point $x \in W^{(n)}(\overline{k})$ can be written as $\sum_{i=1}^{n} a_i$ with $a_i \in W(\overline{k})$. Let h be the minimal integer such that $W^{(h)} = W^{(h+1)}$. By induction, we see that $W^{(h)} = W^{(n)}$ for any $n \ge h$. As $1 \le \dim(W^{(m)}) < \dim(W^{(m+1)})$ for $m \le h - 1$, we have $h \le d$. For $x, y \in W^{(h)}$, we have $x + y \in W^{(2h)} = W^{(h)}$. By 2.6, this means that $Y = W^{(h)}$ is an abelian subvariety of X.

In the situation of the above lemma, we say Y is the abelian subvariety generated by W.

Proposition 2.9. Let X be an abelian variety over k of dimension d, D be the support of a divisor of X, W be a closed subvariety containing 0 and disjoint from D, and Y the abelian subvariety generated by W. Then D is stable under translation by Y, i.e., D + Y = D in the notations of 2.5.

Proof. We may assume k algebraically closed. Up to replacing D by one of its irreducible components, we may assume D is irreducible. Let X_1 be the image of the morphism $D \times W \to X$ given by $(x, y) \mapsto x - y$. Then X_1 is an irreducible closed subvariety of X containing D, since $0 \in W$. So we have either $X_1 = X$ or $X_1 = D$. If $X_1 = X$, as $0 \in X$, we have 0 = x - y with $x \in D(k)$ and $y \in W(k)$. This means $x = y \in D \cap W$, which contradicts with the assumption that D and W are disjoint. We have thus $X_1 = D$, *i.e.*, we have $a - w \in D$ for any $a \in D(k)$ and $w \in W(k)$. Since any $b \in Y(k)$ can be written as $b = -\sum_{i=1}^{h} w_i$ for some $h \leq d$ and $w_i \in W(k)$ by Lemma 2.8, we see by induction that D contains D + Y.

Corollary 2.10. Let D be a divisor of an abelian variety X, and W be a closed subvariety of X disjoint from D. Then for any points $w, w' \in W(k)$, D is stable under the translation by w' - w.

Proof. We may assume D effective and reduced. Note that $T_{-w}(W)$ contains 0 and is disjoint from $T_{-w}(D)$. The corollary follows immediately from the proposition.

Corollary 2.11. Let X be a simple abelian variety, D be a nontrivial divisor of X. Then any closed subvariety of X of positive dimension has a nontrivial intersection with D.

3. Theorem of the cube and its consequences

We will assume the following theorem in algebraic geometry, and its proof can be found in [Ha77] or [Mu70, §5].

Theorem 3.1. Let $f : X \to Y$ be a proper morphism of locally noetherian schemes, \mathscr{F} be a coherent sheaf on X, flat over Y. Then there is a finite complex concentrated in degrees [0, n]

$$K^{\bullet}: 0 \to K^0 \to K^1 \to \dots \to K^n \to 0$$

consisting of \mathcal{O}_Y -modules locally free of finite type, such that for any morphism $g: Z \to Y$ and any integer $q \ge 0$ we have a functorial isomorphism

$$H^q(X \times_Y Z, p_1^*(\mathscr{F})) \xrightarrow{\sim} H^q(Z, g^*(K^{\bullet})),$$

where p_1 is the projection $p_1: X \times_Y Z \to X$.

This important theorem has many consequences on the cohomology of schemes. Here, what we need is the following

Corollary 3.2. Let X, Y, f and \mathscr{F} be as in the theorem. Then for any integer $q \ge 0$, the function on Y with values in \mathbb{Z} defined by

$$\mapsto \dim_{\kappa(y)} H^q(X_y, \mathscr{F}_y)$$

is upper semi-continuous on Y, i.e., for any integer $d \ge 0$ the subset $\{y \in Y; \dim_{\kappa(y)} H^q(X_y, \mathscr{F}_y) \ge d\}$ is closed in Y.

Proof. The problem is local for Y, so we may assume Y = Spec(A) is affine and all the components of the complex K^{\bullet} are free A-modules of finite type. Let $d^q : K^q \to K^{q+1}$ be the coboundary operator of K. Then we have

$$\dim_{\kappa(y)} H^{q}(X_{y}, \mathscr{F}_{y}) = \dim_{\kappa(y)} \operatorname{Ker}(d^{q} \otimes \kappa(y)) - \dim_{\kappa(y)} \operatorname{Im}(d^{q-1} \otimes \kappa(y)) = \dim_{\kappa(y)}(K^{q} \otimes \kappa(y)) - \dim_{\kappa(y)} \operatorname{Im}(d^{q} \otimes \kappa(y)) - \dim_{\kappa(y)} \operatorname{Im}(d^{q-1} \otimes \kappa(y)).$$

The first term being constant on Y, it suffices to prove that, for any q, the function $y \mapsto g(y) = \dim_{\kappa(y)} \operatorname{Im}(d^q \otimes_A \kappa(y))$ is lower semi-continuous on Y, *i.e.*, the subset of Y consisting of points y with $g(y) \leq r$ is closed for any integer $r \geq 0$. The condition that $g(y) \leq r$ is equivalent to saying that the morphism $(\wedge^{r+1}d^q) \otimes_A \kappa(y) : K^q \otimes_A \kappa(y) \to K^{q+1} \otimes_A \kappa(y)$ is zero. Since both K^q and K^{q+1} are free A-modules, $\wedge^{r+1}d^q$ is represented by a matrix with coefficients in A. The locus where $\wedge^{r+1}d^q$ vanishes is the common zeros of all the coefficients of its matrix.

Proposition 3.3 (See-Saw principle). Let X be a proper variety, Y be a locally noetherian scheme over k and L be a line bundle on $X \times Y$. Then there exists a unique closed subscheme $Y_1 \hookrightarrow Y$ satisfying the following properties:

(i) If L_1 is the restriction of L to $X \times Y_1$, there is a line bundle M_1 on Y_1 and an isomorphism $p_2^*M_1 \simeq L_1$ on $X \times Y_1$;

(ii) If $f: Z \to Y$ is a morphism such that there exists a line bundle K on Z and an isomorphism $p_2^*(K) \simeq (\operatorname{Id}_X \times f)^*(L)$ on $X \times Z$, then f can be factored through $g: Z \to Y_1$ and $K \simeq g^*(M_1)$.

First, we prove the following

Lemma 3.4. Let X, Y and L be as in the proposition above. Then the subset of Y, consisting of points y such that the restriction L_y on $X \times \{y\}$ is trivial, is closed in Y.

Proof. We claim that L_y is trivial if and only if we have both $\dim_{\kappa(y)} H^0(X \times \{y\}, L_y) \ge 1$ and $\dim_{\kappa(y)} H^0(X \times \{y\}, L_y^{-1}) \ge 1$. These conditions are clearly necessary. Conversely, if these dimension conditions are satisfied, then there are non-trivial morphisms $f : \mathcal{O}_{X \times \{y\}} \to L_y$ and $g : L_y \to \mathcal{O}_{X \times \{y\}}$. Since X is a proper variety, we have $\Gamma(X \times \{y\}, \mathcal{O}_{X \times \{y\}}) = \kappa(y)$. Hence the composite $g \circ f : \mathcal{O}_{X \times \{y\}} \to L_y \to \mathcal{O}_{X \times \{y\}}$ is necessarily an isomorphism. This shows that both fand g are isomorphisms, hence L_y is trivial. The lemma then follows immediately from Corollary 3.2.

Proof of Prop. 3.3. The uniqueness of Y_1 follows immediately from the universal property of Y_1 . Since different local pieces of Y_1 will patch together by the uniqueness of Y_1 , it's sufficient to prove the existence of Y_1 locally for the Zariski topology of Y. Let F be the subset of points $y \in Y$ such that the restriction L_y to $X \times \{y\}$ is trivial. Then F is a closed subset by Lemma 3.4. If the desired Y_1 exists, then its underlying topological space is exactly F. Let $y \in F$ be a closed point, and Y_y be the localization of Y at y. We just need to prove the existence of Y_1 for Y_y , since then Y_1 will naturally spread out to a closed subscheme of a certain open neighborhood of y in Y. Up to replacing Y by Y_y , we may assume Y = Spec(A) is local with closed point y and L_y is trivial.

Let $K^{\bullet} = (0 \to K^0 \xrightarrow{\alpha} K^1 \to \cdots)$ be the complex of finite free A-modules given by Theorem 3.1 for the sheaf L. For an A-module N, we put $N^* = \text{Hom}_A(N, A)$. Let M denote the cokernel of the induced map $\alpha^* : K^{1*} \to K^{0*}$. Then for any A-algebra B, if we denote $X_B = X \otimes_k B$ and by L_B the pullback of L on X_B , we have

$$H^0(X_B, L_B) = \operatorname{Ker}(\alpha \otimes_A B) = \operatorname{Hom}_A(M, B) = \operatorname{Hom}_B(M \otimes_A B, B).$$

In particular, we have $H^0(X \times \{y\}, L_y) = \operatorname{Hom}_{\kappa(y)}(M \otimes_A \kappa(y), \kappa(y))$. Since L_y is trivial by assumption, we have $\dim_{\kappa(y)}(M \otimes_A \kappa(y)) = 1$. By Nakayama's lemma, there exists an ideal $I \subset A$ such that $M \simeq A/I$ as A-modules. Then for any A-algebra B, $H^0(X_B, L_B)$ is a free B-module of rank 1 if and only if the structure map $A \to B$ factors as $A \to A/I \to B$. Applying the same process to the sheaf L^{-1} , we get another ideal $J \subset A$ such that for any A-algebra B, $H^0(X_B, L_B^{-1})$ is free of rank 1 over B if and only if B is actually an A/J-algebra. We claim that the closed subscheme $Y_1 = \operatorname{Spec}(A/(I+J))$ satisfies the requirements of the proposition. Condition (ii) is immediate by our construction of $X \times Y_1$. Let L_1 denote the restriction of L on Y_1 . It's sufficient to prove that L_1 is a trivial line bundle. Let f_0 and g_0 be respectively generators of $H^0(X \times \{y\}, L_y)$ and $H^0(X \times \{y\}, L_y^{-1})$ such that their image is 1 by the canonical map

$$H^{0}(X \times \{y\}, L_{y}) \times H^{0}(X \times \{y\}, L_{y}^{-1}) \to H^{0}(X \times \{y\}, \mathcal{O}_{X \times \{y\}}) = \kappa(y).$$

This is certainly possible, since L_y is trivial. Let $f \in H^0(X \times Y_1, L_1)$ (resp. $g \in H^0(X \times Y_1, L_1^{-1})$) be a lift of f_0 (resp. g_0). Up to modifying f, we may assume the image of (f,g) is 1 by the canonical product morphism

$$H^{0}(X \times Y_{1}, L_{1}) \times H^{0}(X \times Y_{1}, L_{1}^{-1}) \to H^{0}(X \times Y_{1}, \mathcal{O}_{X \times Y_{1}}) \simeq A/(I+J).$$

If we denote still by $f : \mathcal{O}_{X \times Y_1} \to L_1$ (resp. by $g : L_1 \to \mathcal{O}_{X \times Y_1}$) the morphism of line bundles induced by f (resp. by g), we have $g \circ f = \mathrm{Id}_{\mathcal{O}_{X \times Y_1}}$ and $f \circ g = \mathrm{Id}_{L_1}$. This proves that L_1 is trivial.

Theorem 3.5 (Theorem of the Cube). Let X and Y be proper varieties over k, Z be a connected k-scheme of finite type, and $x_0 \in X(k)$, $y_0 \in Y(k)$ and $z_0 \in Z$. Let L be a line bundle on $X \times Y \times Z$ whose restrictions to $\{x_0\} \times Y \times Z$, $X \times \{y_0\} \times Z$ and $X \times Y \times \{z_0\}$ are trivial. Then L is trivial.

Proof. (Mumford) By Proposition 3.3, there exists a maximal closed subscheme $Z' \subset Z$ such that $L|_{X \times Y \times Z'} \simeq p_3^*(M)$, where p_3 is the projection $X \times Y \times Z' \to Z'$ and M is a line bundle on Z'. As $z_0 \in Z', Z'$ is non-empty. After restriction to $\{x_0\} \times Y \times Z'$, we see that $M \simeq \mathcal{O}'_Z$. It remains to show that Z' = Z. Since Z is connected, it suffices to prove that if a point belongs to Z', then Z' contains an open neighborhood of this point. Denote this point by z_0 . Let \mathcal{O}_{Z,z_0} be the local ring of Z at z_0 , \mathfrak{m} be its maximal ideal, and $\kappa(z_0) = \mathcal{O}_{Z,z_0}/\mathfrak{m}$, and I_{z_0} be the ideal of $Z' \times_Z \operatorname{Spec}(\mathcal{O}_{Z,z_0})$. It's sufficient to prove that $I_{z_0} = 0$. If not, since $\bigcap_{n \ge 1} \mathfrak{m}^n = 0$ by Krull's theorem, we would have an integer $n \ge 1$ such that $\mathfrak{m}^n \supset I_{z_0}$ and $\mathfrak{m}^{n+1} \not\supseteq I_{z_0}$. Hence $(\mathfrak{m}^{n+1} + I_{z_0})/\mathfrak{m}^{n+1}$ is a non-zero subspace of $\mathfrak{m}^n/\mathfrak{m}^{n+1}$. We put $J_1 = \mathfrak{m}^{n+1} + I_{z_0}$, then there exists $\mathfrak{m}^{n+1} \subset J_2 \subsetneq J_1$ such that $\dim_{\kappa(z_0)}(J_1/J_2) = 1$. Let $Z_i = \operatorname{Spec}(\mathcal{O}_{Z,z_0}/J_i)$ for i = 1, 2. We have $Z_1 \subset Z_2$, and the ideal of Z_1 in Z_2 is generated by an element $a \in I_{z_0}$. We have an exact sequence of abelian sheaves over the topological space $X \times Y \times \{z_0\}$

$$0 \to \mathcal{O}_{X \times Y \times \{z_0\}} \xrightarrow{u} \mathcal{O}_{X \times Y \times Z_2}^{\times} \to \mathcal{O}_{X \times Y \times Z_1}^{\times} \to 1,$$

where u is given by $x \mapsto 1 + ax$. Since $H^0(X \times Y \times Z_i, \mathcal{O}_{X \times Y \times Z_i}^{\times})$ is canonically isomorphic to $H^0(Z_i, \mathcal{O}_{Z_i}^{\times})$ for i = 1, 2, we see that the natural map $H^0(X \times Y \times Z_2, \mathcal{O}_{X \times Y \times Z_2}^{\times}) \to H^0(X \times Y \times Z_1, \mathcal{O}_{X \times Y \times Z_1}^{\times})$ is surjective. Hence, we have an exact sequence of cohomology groups (3.5.1)

$$0 \to H^1(X \times Y \times \{z_0\}, \mathcal{O}_{X \times Y \times \{z_0\}}) \to H^1(X \times Y \times \{z_0\}, \mathcal{O}_{X \times Y \times Z_2}^{\times}) \to H^1(X \times Y \times \{z_0\}, \mathcal{O}_{X \times Y \times Z_1}^{\times}).$$

By our construction, $L_1 = L|_{X \times Y \times Z_1}$ is trivial, and $L_2 = L|_{X \times Y \times Z_2}$ is not trivial. If we denote by $[L_i]$ (i = 1, 2) the cohomology class of L_i in $H^1(X \times Y \times \{z_0\}, \mathcal{O}_{X \times Y \times Z_i}^{\times})$, we have $[L_1] = 0$ and $[L_2] \neq 0$. By the exact sequence (3.5.1), $[L_2]$ comes from a nonzero cohomology class $[L_0]$ in $H^1(X \times Y \times \{z_0\}, \mathcal{O}_{X \times Y \times \{z_0\}})$. We have a commutative diagram

where vertical arrows are induced by the natural restriction $\{x_0\} \times Y \times \{z_0\} \hookrightarrow X \times Y \times \{z_0\}$, and the injectivity of the lower arrow follows in the same way as in (3.5.1). Since *L* is trivial over $\{x_0\} \times Y \times Z$, in particular over $\{x_0\} \times Y \times Z_2$, the image of $[L_0]$ in

$$H^{1}(\{x_{0}\} \times Y \times \{z_{0}\}, \mathcal{O}_{\{x_{0}\} \times Y \times \{z_{0}\}}) \simeq H^{1}(Y, \mathcal{O}_{Y}) \otimes_{k} \kappa(z_{0})$$

vanishes. Similarly, the image of $[L_0]$ in $H^1(X \times \{y_0\} \times \{z_0\}, \mathcal{O}_{X \times \{y_0\} \times \{z_0\}}) \simeq H^1(X, \mathcal{O}_X) \otimes_k \kappa(z_0)$ vanishes. On the other hand, we have an isomorphism

$$H^{1}(X \times Y \times \{z_{0}\}, \mathcal{O}_{X \times Y \times \{z_{0}\}}) \simeq H^{1}(X \times Y, \mathcal{O}_{X \times Y}) \otimes_{k} \kappa(z_{0}) \xrightarrow{\sim} (H^{1}(X, \mathcal{O}_{X}) \oplus H^{1}(Y, \mathcal{O}_{Y})) \otimes_{k} \kappa(z_{0})$$

by Künneth formula, where the latter map is induced by the inclusion $({x_0} \times Y) \cup (X \times {y_0}) \hookrightarrow X \times Y$. We conclude that $[L_0]$ must vanish. This is a contradiction, and the proof of the theorem is complete.

Remark 3.6. A slightly different way to prove that Z' contains an open neighborhood of z_0 is the following. First, we note as above that it's sufficient to show the restriction of L to $X \times Y \times$ $\operatorname{Spec}(\mathcal{O}_{Z,z_0})$ is trivial. Let A be the completion of \mathcal{O}_{Z,z_0} , $S = \operatorname{Spec}(A)$, $S_n = \operatorname{Spec}(\mathcal{O}_{Z,z_0}/\mathfrak{m}^{n+1})$, and $(X \times Y \times S)^{\wedge}$ be the completion of $X \times Y \times S$ along the closed subscheme $X \times Y \times \{z_0\}$. Then we have canonical morphisms of Picard groups

$$\operatorname{Pic}(X \times Y \times \operatorname{Spec}(\mathcal{O}_{Z,z_0})) \hookrightarrow \operatorname{Pic}(X \times Y \times S) \xrightarrow{\sim} \operatorname{Pic}((X \times Y \times S)^{\wedge}) = \varprojlim_n \operatorname{Pic}(X \times Y \times S_n),$$

where the injectivity of this map follows from the descent of coherent sheaves by faithfully flat and quasi-compact morphisms, and the second isomorphism is Grothendieck's existence theorem of coherent sheaves in formal geometry [EGA III 5.1.4]. Hence it suffices to prove that the restriction $L_n = L|_{X \times Y \times S_n}$ is trivial for all $n \ge 0$. We prove this by induction on n. The case n = 0 is a hypothesis of the theorem. We now assume $n \ge 1$ and L_{n-1} is trivial. We have an exact sequence of abelian sheaves on $X \times Y \times \{z_0\}$

$$0 \to \mathcal{O}_{X \times Y \times \{z_0\}} \otimes_k \mathfrak{m}^n / \mathfrak{m}^{n+1} \xrightarrow{u} \mathcal{O}_{X \times Y \times S_n}^{\times} \to \mathcal{O}_{X \times Y \times S_{n-1}}^{\times} \to 1,$$

where u is given by $x \mapsto 1 + x$. Taking cohomologies, we get

$$0 \to H^1(X \times Y \times \{z_0\}, \mathcal{O}_{X \times Y \times \{z_0\}}) \otimes_k \mathfrak{m}^n/\mathfrak{m}^{n+1} \to \operatorname{Pic}(X \times Y \times S_n) \to \operatorname{Pic}(X \times Y \times S_{n-1}).$$

By induction hypothesis the class of L_{n-1} in $\operatorname{Pic}(X \times Y \times S_{n-1})$ is zero, so the class of L_n in $\operatorname{Pic}(X \times Y \times S_n)$ comes from a class in $H^1(X \times Y \times \{z_0\}, \mathcal{O}_{X \times Y \times \{z_0\}})$. Then we can use the same argument as above to conclude that this cohomology class must vanish.

Proposition 3.7. Let X be an abelian variety over k, $p_i : X \times X \times X \to X$ be the projection onto the *i*-th factor, $m_{i,j} = p_i + p_j : X \times X \times X \to X$, and $m_{123} : p_1 + p_2 + p_3 : X \times X \times X \to X$. Then for any line bundle L on X, we have

$$M = m_{123}^* L \otimes m_{12}^* L^{-1} \otimes m_{13}^* L^{-1} \otimes m_{23}^* L^{-1} \otimes p_1^* L \otimes p_2^* L \otimes p_3^* L \simeq \mathcal{O}_{X \times X \times X}.$$

Equivalently, if S is a k-scheme and f, g, h are any S valued points of X, we have

$$(3.7.1) \qquad (f+g+h)^*L \simeq (f+g)^*L \otimes (f+h)^*L \otimes (g+h)^*L \otimes f^*L^{-1} \otimes g^*L^{-1} \otimes h^*L^{-1}.$$

Proof. Let $i_1 : X \times X \to X \times X \times X$ be the morphism given by $(x, y) \mapsto (0, x, y)$. We have $m_{123} \circ i_1 = m, m_{12} \circ i_1 = p_1, m_{13} \circ i_1 = p_2, m_{23} \circ i_1 = m, p_1 \circ i_1 = 0, p_2 \circ i_1 = p_1, \text{ and } p_3 \circ i_1 = p_2$. So we have

$$M|_{\{0\}\times X\times X} = i_1^*M = m^*L \otimes p_1^*L^{-1} \otimes p_2^*L^{-1} \otimes m^*L^{-1} \otimes p_1^*L \otimes p_2^*L \simeq \mathcal{O}_{X\times X}$$

YICHAO TIAN AND WEIZHE ZHENG

Similarly, both $M|_{X \times \{0\} \times X}$ and $M_{X \times X \times \{0\}}$ are trivial. The corollary follows from Theorem 3.5.

Corollary 3.8. Let X be an abelian variety, n_X be the morphism of multiplication by $n \in \mathbb{Z}$ on X. Then for any line bundle L on X, we have

(3.8.1)
$$(n_X)^*L \simeq L^{\frac{n^2+n}{2}} \otimes (-1_X)^*L^{\frac{n^2-n}{2}}.$$

Proof. The formula (3.8.1) for n < 0 follows from the case n > 0 by applying $(-1)_X^*$. We now prove the corollary for $n \ge 1$ by induction. The cases with n = 0, 1 are trivial. Assume now $n \ge 1$ and (3.8.1) has been verified for all positive integers less than or equal to n. Taking $f = n_X$, $g = 1_X$, and $h = -1_X$ in the formula (3.7.1), we get

$$(n+1)_X^*L \simeq (n_X^*L)^2 \otimes (n-1)_X^*L^{-1} \otimes L \otimes (-1_X)^*L.$$

The formula (3.8.1) is then verified by an easy computation.

Corollary 3.9 (Square Theorem). Let X be an abelian variety over k, L a line bundle on X. Let S be any k-scheme, $X_S = X \times S$, $L_S = p_X^*L$, x, y be two S-valued points of X, and $T_x : X_S \to X_S$ be the translation by x. Then there exists a line bundle N on S such that

$$T_{x+y}^*L_S \otimes L_S \simeq T_x^*L_S \otimes T_y^*L_S \otimes p_S^*N,$$

where $p_S: X_S \to S$ is the natural projection onto S.

Proof. Let $\beta : S \to X \times X$ be the morphism $s \mapsto (x(s), y(s))$, and $\alpha = (\mathrm{Id}_X, \beta) : X_S = X \times S \to X \times (X \times X)$. By Theorem of the cube 3.7, we have

$$\alpha^*(m_{123}^*L) \simeq \alpha^*(m_{12}^*L \otimes m_{13}^*L \otimes m_{23}^*L \otimes p_1^*L^{-1} \otimes p_2^*L^{-1} \otimes p_3^*L^{-1})$$

It's easy to see that the above isomorphism is equivalent to

$$T_{x+y}^*L_S = T_x^*L_S \otimes T_y^*L_S \otimes L_S^{-1} \otimes p_S^*(m^*L \otimes p_1^{-1}L \otimes p_2^{-1}L).$$

This proves the corollary.

Definition 3.10. Let X be an abelian variety, and L a line bundle on X. We denote by K(L) the maximal closed subscheme X such that $(m^*(L) \otimes p_1^*L^{-1})|_{X \times K(L)}$ has the form $p_2^*(N)$.

The existence of K(L) is ensured by see-saw principle 3.4. It's easy to see that $0 \in K(L)$. Restricted to $\{0\} \times K(L)$, we have $N \simeq L$. Thus K(L) is the maximal subscheme $Z \subset X$ such that the restriction of the line bundle $(m^*L \otimes p_1^*L^{-1} \otimes p_2^*L^{-1})$ to $X \times Z$ is trivial.

Lemma 3.11. The closed subscheme K(L) is a closed subgroup scheme of X.

Proof. We have to show that K(L) is stable under the addition of X, *i.e.*, it's sufficient to prove that the morphism

 $X \times K(L) \times K(L) \hookrightarrow X \times X \times X \xrightarrow{\operatorname{Id}_X \times m} X \times X$

factors through the natural inclusion $X \times K(L) \hookrightarrow X \times X$. By the universal property of K(L), we need to prove that the restriction of $(\mathrm{Id}_X \times m)^*(m^*L \otimes p_1^*L^{-1} \otimes p_2^*L^{-1})$ to $X \times K(L) \times K(L)$ is trivial. With the notation of 3.7, we have $m \circ (\mathrm{Id}_X \times m) = m_{123}$, $p_1 \circ (\mathrm{Id}_X \times m) = p_1$, and $p_2 \circ (\mathrm{Id}_X \times m) = m_{23}$. Therefore, we have

$$\begin{aligned} (\mathrm{Id}_X \times m)^* (m^*L \otimes p_1^*L^{-1} \otimes p_2^*L^{-1}) &= m_{123}^*L \otimes p_1^*L^{-1} \otimes m_{23}^*L^{-1} \\ &\simeq m_{12}^*L \otimes m_{13}^*L \otimes p_1^*L^{-2} \otimes p_2^*L^{-1} \otimes p_3^*L^{-1} \\ &= (m_{12}^*L \otimes p_1^*L^{-1} \otimes p_2^*L^{-1}) \otimes (m_{13}^*L \otimes p_1^*L^{-1} \otimes p_3^*L^{-1}), \end{aligned}$$

 \square

where the second isomorphism uses Proposition 3.7. When restricted to $X \times K(L) \times K(L)$, both $m_{12}^*L \otimes p_1^*L^{-1} \otimes p_2^*L^{-1}$ and $m_{13}^*L \otimes p_1^*L^{-1} \otimes p_3^*L^{-1}$ are trivial. This proves the lemma.

Proposition 3.12. Consider the statements:

(i) L is ample on X.

(ii) K(L) is a finite group scheme.

We have (i) \Rightarrow (ii). Conversely, if $L = \mathcal{O}_X(D)$ is the line bundle associated with an effective divisor D, then (i) and (ii) are both equivalent to

(iii) The group $\{x \in X(\overline{k}); T_x(D) = D\}$ (equality as divisors) is finite.

Proof. By considering scalar extension of X to \overline{k} , we may assume that k is algebraically closed. For (i) \Rightarrow (ii), suppose K(L) is not finite. Let Y be the reduced closed subscheme of the neutral connected component of K(L). Then Y is a smooth connected closed subgroup scheme of X of dimension d > 0; in particular, Y is an abelian scheme. As L is ample, so is the restriction $L_Y = L|_Y$. By our construction, the line bundle $m^*L_Y \otimes p_1^* L_Y^{-1} \otimes p_2^* L_Y^{-1}$ is trivial. Pulling back by the morphism $Y \to Y \times Y$ given by $y \mapsto (y, -y)$, we see that $L_Y \otimes (-1_Y)^* L_Y$ is trivial. But -1_Y is an automorphism of Y and L_Y is ample, so $L_Y \otimes (-1_Y)^* L_Y$ is also ample. This is a contradiction. Assume $L = \mathcal{O}_X(D)$ is effective. The implication (ii) \Rightarrow (iii) being trivial, we just need to prove (iii) \Rightarrow (i). By Serre's cohomological criterion of ampleness [EGA, III 4.4.2], it's sufficient to prove

(iii) \Rightarrow (i). By Serre's cohomological criterion of ampleness [EGA, III 4.4.2], it's sufficient to prove that the linear system |2D| has no base point, and defines a finite morphism $X \to \mathbf{P}^N$. By 3.9, the linear system |2D| contains the divisors $T_x(D)+T_{-x}(D)$ (addition for divisors) for all $x \in X(k)$. For any $u \in X(k)$, we can find $x \in X(k)$ such that $u \pm x \notin \text{Supp } D$, *i.e.*, we have $u \notin T_x(D) + T_{-x}(D)$. This shows that the linear system |2D| has no base point, and defines a morphism $\phi : X \to \mathbf{P}^N$. If ϕ is not finite, we can find a closed irreducible curve C such that $\phi(C)$ is a point. It follows that for any $E \in |2D|$, either E contains C or is disjoint with C. In particular, there are infinitely many $x \in X(k)$ such that $T_x(D) + T_{-x}(D)$ is disjoint from C. For such an $x \in X(k)$, it follows from Corollary 2.10 that every irreducible component of $T_x(D) + T_{-x}(D)$ is invariant under the translation by a - b for any $a, b \in C(k)$. In particular, D is invariant under translation by a - bfor any $a, b \in C(k)$. This contradicts the assumption that the group $\{x \in X(k); T_x(D) \simeq D\}$ is finite.

Theorem 3.13. Every abelian variety over k is projective.

Proof. Let X be an abelian variety over k of dimension $d \ge 1$. We need to prove that there exists an ample line bundle on X. First, we prove this in the case $k = \overline{k}$. Let U be an affine open subscheme of X such that each irreducible component of the complementary $X \setminus U$ has dimension d - 1. We denote by D the divisor defined by the reduced closed subscheme $X \setminus U$. Up to translation, we may assume that $0 \in U$. Consider the subgroup $H \subset X$ defined by

$$H(\overline{k}) = \{ x \in X(\overline{k}); T_x(D) = D \}.$$

It's easy to see that H is closed in X. On the other hand, U is stable under translation T_x for $x \in H$. Since $0 \in U$, we have $H \subset U$. It follows that H is both proper and affine, hence finite. The above proposition now implies that $\mathcal{O}_X(D)$ is ample. In the general case, we can choose an ample divisor D defined over a finite extension k'/k. If k'/k is separable, we may assume k'/k is Galois. The divisor

$$\tilde{D} := \sum_{\sigma \in \operatorname{Gal}(k'/k)} \sigma(D)$$

is then an ample divisor defined over k. If k'/k is purely inseparable, there exists an integer m such that $\alpha^{p^m} \in k$ for all $\alpha \in k'$. Then $p^m \cdot D$ is an ample divisor defined on k. The general case is a composition of these two special cases.

4. QUOTIENT BY A FINITE GROUP SCHEME

Definition 4.1. Let G be a group scheme over $k, e \in G(k)$ be the unit element, and m denote its multiplication. An action of G on a k-scheme X is a morphism $\mu : G \times X \to X$ such that

(i) the composite

$$X \simeq \operatorname{Spec}(k) \times X \xrightarrow{e \times \operatorname{Id}_X} G \times X \xrightarrow{\mu} X$$

is the identity;

(ii) the diagram

is commutative.

The action μ is said to be free if the morphism

$$(\mu, p_2): G \times X \to X \times X$$

is a closed immersion.

From the functorial point of view, giving an action of G on X is equivalent to giving for every S-valued point f of G, an automorphism $\mu_f : X \times S \to X \times S$ of S-schemes, functorially in S. The two conditions in the definition above is equivalent to requiring that $G(S) \to \operatorname{Aut}_S(X \times S)$ sending $f \mapsto \mu_f$ is a homomorphism of groups.

Definition 4.2. Let X and Y be k-schemes equipped with a G-action. A morphism of k-schemes $f: Y \to X$ is called G-equivariant, if the diagram

is commutative. In particular, if the action of G on Y is trivial, a G-equivariant morphism $f: X \to Y$ is called *G-invariant*. A G-invariant morphism $f: X \to \mathbf{A}_k^1$ is called a G-invariant function on X.

Definition 4.3. Let X be a k-scheme equipped with an action of G, \mathscr{F} be a coherent sheaf on X. A *lift* of the action μ to \mathscr{F} is an isomorphism $\lambda : p_2^* \mathscr{F} \xrightarrow{\sim} \mu^* \mathscr{F}$ of sheaves on $G \times X$ such that the diagram of sheaves on $G \times G \times X$

is commutative, where $p_{23}: G \times G \times X \to G \times X$ is the natural projection onto the last two factors, p_i is the projection onto the *i*-th factor.

From the functorial point of view, a lift of μ on \mathscr{F} is to require, for every S-valued point f of G, an isomorphism of coherent sheaves

$$\lambda_f:\mathscr{F}\otimes\mathcal{O}_S\xrightarrow{\sim}\mu_f^*(\mathscr{F}\otimes\mathcal{O}_S)$$

on $X \times S$, where $\mu_f : X \times S \to X \times S$ is the automorphism determined by μ . The commutative diagram (4.3.1) is equivalent to requiring that, for any S-valued points f, g of G, we have a commutative diagram of coherent sheaves on $X \times S$

$$\begin{aligned} \mathscr{F} \otimes \mathcal{O}_S & \xrightarrow{\lambda_g} & \mu_g^*(\mathscr{F} \otimes \mathcal{O}_S) \\ & \downarrow^{\lambda_{fg}} & \downarrow^{\mu_g^*(\lambda_f)} \\ & \mu_{fg}^*(\mathscr{F} \otimes S) = \mu_g^* \mu_f^*(\mathscr{F} \otimes \mathcal{O}_S), \end{aligned}$$

where we have used the identification $\mu_{fg} = \mu_f \circ \mu_g$.

Theorem 4.4. Let G be a finite group scheme over k, X be a k-scheme endowed with an action of G such that the orbit of any point of X is contained in an affine open subset of X.

(i) There exists a pair (Y, π) where Y is a k-scheme and $\pi : X \to Y$ a morphism, satisfying the following conditions:

- as a topological space, (Y, π) is the quotient of X for the action of the underlying finite group;
- the morphism $\pi: X \to Y$ is G-invariant, and if $\pi_*(\mathcal{O}_X)^G$ denotes the subsheaf of $\pi_*(\mathcal{O}_X)$ of G-invariant functions, the natural homomorphism $\mathcal{O}_Y \to \pi_*(\mathcal{O}_X)^G$ is an isomorphism.

The pair (Y,π) is uniquely determined up to isomorphism by these conditions. The morphism π is finite and surjective. Furthermore, Y has the following universal property: for any G-invariant morphism $f: X \to Z$, there exists a unique morphism $g: Y \to Z$ such that $f = g \circ \pi$.

(ii) Suppose that the action of G on X is free and $G = \operatorname{Spec}(R)$ with $\dim_k(R) = n$. The π is a finite flat morphism of degree n, and the subscheme of $X \times X$ defined by the closed immersion

$$(\mu, p_2): G \times X \to (X, X)$$

is equal to the subscheme $X \times_Y X \subset X \times X$. Finally, if \mathscr{F} is a coherent sheaf on Y, $\pi^* \mathscr{F}$ has a natural G-action lifting that on X, and

$$\mathscr{F} \mapsto \pi^* \mathscr{F}$$

induces an equivalence of the category of coherent \mathcal{O}_Y -modules (resp. locally free \mathcal{O}_Y -module of finite rank) and the category of coherent \mathcal{O}_X -modules with G-action (resp. locally free \mathcal{O}_X -modules of finite rank with G-action).

Proof. (i) Let x be a point of X, and U be an affine neighborhood of x that contains the orbit of x. We put $V = \bigcap_{g \in G(\overline{k})} gU$, where g runs through the set of geometric points of G. Then V is an affine neighborhood of x in X invariant under the action of G. Up to replacing X by V, we may and do assume that X = Spec(A) is affine. Let R be the ring of $G, \epsilon : R \to k$ the evaluation map at the unit element e, and $m^* : R \to R \otimes R$ be the comultiplication map. Then giving an action μ of G on X is equivalent to giving a map of k-algebras $\mu^* : A \to R \otimes_k A$ such that the composite

$$(\epsilon \otimes \mathrm{Id}_A) \circ \mu^* : A \xrightarrow{\mu^*} R \otimes A \xrightarrow{\epsilon \otimes \mathrm{Id}_A} A$$

is the identity map, and that the diagram

is commutative.

5. The Picard functor

Let S be a scheme, Sch/S be the category of S-schemes, and $f: X \to S$ be a proper and flat morphism. For $T \in \operatorname{Sch}/S$, we put $X_T = X \times_S T$. We denote by $\operatorname{Pic}(X_T)/\operatorname{Pic}(T)$ the cokernel of the natural homomorphism of groups $f_T^* : \operatorname{Pic}(T) \to \operatorname{Pic}(X_T)$ induced by the canonical projection $f_T: X_T \to T$. We denote by $\operatorname{Pic}_{X/S}$ be the abelian functor $T \mapsto \operatorname{Pic}(X_T)/\operatorname{Pic}(T)$ on Sch/S . Let $\operatorname{Pic}_{X/S}$ be the associated sheaf of $\operatorname{Pic}_{X/S}$ with respect to the fppf-topology on Sch/S . In general, for $T \in \operatorname{Sch}/S$, $\operatorname{Pic}_{X/S}(T)$ does not coincide with $\operatorname{Pic}(X_T)/\operatorname{Pic}(T)$. But we have the following

Lemma 5.1. If $f : X \to S$ admits a section s, then $\underline{\operatorname{Pic}}_{X/S}$ is a sheaf for the fppf-topology of Sch/S , i.e., for any $T \in \operatorname{Sch}/S$, we have $\operatorname{Pic}_{X/S}(T) = \operatorname{Pic}(X_T)/\operatorname{Pic}(T)$.

Proof. Let $p: T' \to T$ be a fppf-morphism in \mathbf{Sch}/S , $T'' = T' \times_T T'$, and $p_i: T'' \to T'$ be the canonical projections onto the *i*-th factor. We have to verify that there is an exact sequence of abelian groups

$$0 \to \operatorname{Pic}(X_T) / \operatorname{Pic}(T) \xrightarrow{p^*} \operatorname{Pic}(X_{T'}) / \operatorname{Pic}(T') \xrightarrow{p_2^* - p_1^*} \operatorname{Pic}(X_{T''}) / \operatorname{Pic}(T'').$$

References

- [GM] G. van der Geer and B. Moonen, Abelian Varieties, Preprint available at http://staff.science.uva.nl/ ~bmoonen/boek/BookAV.html
- [Ha77] R. Hartshorne, Algebraic Geometry, Springer Verlag, (1977).
- [Mu70] D. Mumford (with Appendices by C. P. Ramanujam and Y. Manin), Abelian Varieties, Tata Institute of Fundamental Research, (1970).
- [We48] A. Weil, Variétés abéliennes et courbes algébriques, Hermann, Paris, (1948).

MATHEMATICS DEPARTMENT, FINE HALL, WASHINGTON ROAD, PRINCETON, NJ, 08544, USA *E-mail address*: yichaot@princeton.edu

COLUMBIA UNIVERSITY, 2960 BROADWAY, NEW YORK, NY 10027, USA *E-mail address*: zheng@math.columbia.edu