NOTES ON ABELIAN VARIETIES

YICHAO TIAN AND WEIZHE ZHENG

We fix a field k and an algebraic closure k of k. A variety over k is a geometrically integral and
separated scheme of finite type over k. If X and Y are schemes over k, we denote by X x Y =
X Xspeck Y, and Qk the sheaf of differential 1-forms on X relative to k.

1. GENERALITIES ON GROUP SCHEMES OVER A FIELD

Definition 1.1. (i) A group scheme over k is a k-scheme 7 : G — Spec(k) together with morphisms
of k-schemes m : G x G — G (multiplication), i : G — G (inverse), and e : Spec(k) — G (identity
section), such that the following conditions are satisfied:

mo(mxIdg) =mo(Idg xm): G x G x G — G,

mo (e x Idg) = j1 : Spec(k) x G — G,

mo (Idg xe) = js :G x Spec(k) — G,
eom=mo (Idg xXi)oAg=mo (ixIdg)oAg: G = G,

where j; : Spec(k) x G = G and j, : G x Spec(k) — G are the natural isomorphisms.

(if) A group scheme G over k is said to be commutative if, letting s : G x G — G x G be the
isomorphism switching the two factors, we have the identity m =mos: G x G — G.

(iii) A homomorphism of group schemes f : Gi — Gy is a morphism of k-schemes which
commutes with the morphisms of multiplication, inverse and identity section.

Remark 1.2. (i) For any k-scheme S, the set G(S) = Morg_scn (S, G) is naturally equipped with a
group structure. By Yoneda Lemma, the group scheme G is completely determined by the functor
hg: S — G(S) from the category of k-schemes to the category of groups. More precisely, the
functor G — h¢ from the category of group schemes over k to the category Funct(k—Sch, Group)
of functors is fully faithful.

(ii) For any n € Z, we put [n] = [n]¢ : G — G to be the morphism of k-schemes

(n) )
GRS axax--xG125a
—_——
n times
if n >0, and [n] = [-n]oiif n < 0. If G is commutative, [n]g is a homomorphism of group

schemes. Moreover, G is commutative if and only if ¢ is a homomorphism.
Ezample 1.3. (1) The additive group. Let G, = Spec(k[X]) be the group scheme given by
m* kX 2 kX]QkX] X X®14+10X
kX = k[X] X =X
[n]g, : k[X] — k[X] X +— nX.
For any k-scheme S, G,(S) = Homy_a15(k[X],T'(S, Og)) =T'(S, Og) with the additive group law.
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(2) The multiplicative group is the group scheme G, = Spec(k[X,1/X]) given by
m(X)=X®X, (X)=1 "(X)=1/X.

For any k-scheme S, we have G,,,(S) = T'(S, Og)* with the multiplicative group law.

(3) For any integer n > 0, the closed subscheme i, = Spec(k[X]/(X™ — 1)) of G, has a group
structure induced by that of G,,. For any k-scheme S, u,,(5) is the group of n-th roots of unity
in I'(S, 0g)*, i.e.,

in(S) ={f € I(5,05)° | f* =1}
We note that u, is not reduced if the characteristic of k divides n.

(4) For n € Z>1, we put GL,, = Spec(k[(T;,;)1<i,j<n, U]/ (U det(T; ;) —1). It is endowed with a

group scheme structure by imposing

m*(Tiy) =Y Tk @Thy € (Ti;) = bij,
k=1

where 6; ; = 1 if i = j and d; ; = 0 otherwise. An explicit formula for the coinverse ¢* is more
complicated, and it can be given by the Cramer’s rule for the inverse of a square matrix. For each
S, GL,,(S) is the general linear group with coefficients in I'(S, Og). We have of course GL; = G,.

Proposition 1.4. Any group scheme over k is separated.

Proof. This follows from the Cartesian diagram

G u Spec(k)

> )
mo(Idg X1)

GxG——>G

and the fact that e is a closed immersion. O

Lemma 1.5. Let X be a geometrically connected (resp. geometrically irreducible, resp. geometri-
cally reduced) k-scheme, Y be a connected (resp. irreducible, resp. reduced) k-scheme. Then X XY
is connected (resp. irreducible, resp. reduced).

For a proof, see [EGA IV, 4, 5].

Proposition 1.6. Let G be a group scheme over k. If k is perfect, then the reduced subscheme
Grea C G is a closed subgroup scheme of G.

Proof. Since k is perfect, the product Greq X Greq is still reduced by The composed morphism

Gred X Greqa — G x G 5 @G factors through Greq. This gives G,eq a subgroup scheme structure of
G. O

Remark 1.7. If k is imperfect, the analogue of [[.0]is not true in general. In fact, if a is an element
of k which is not a p-th power, where p = char(k), then G = Spec(k[X]/(X?* —aXP)) is a subgroup
scheme of G, but Greq = Spec(lc[X]/(X(XpQ*’j —a))) is not a subgroup scheme of G.

Lemma 1.8. Let X be a connected scheme over k with a rational point x € X (k). Then X is
geometrically connected.

Proof. This is [EGA 1V 4.5.14]. O
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Proposition 1.9. Let G be a group scheme, locally of finite type over k, and G° be the connected
component of G containing e € G(k).

(i) The following properties are equivalent:

(al) G ®y K is reduced for some perfect field extension K/k;

(a2) the ring Og.e @k K is reduced for some perfect field extension K/k;

(b1) G is smooth over k;

(b2) G is smooth over k at e;

(ii) The identity component G° is actually an open and closed subgroup scheme of G, geomet-
rically irreducible. In particular, we have (Gx)? = (G°) g for any field extension K/k.

(#i) Every connected component of G is irreducible and of finite type over k.

Remark 1.10. (i) A reduced group scheme over k is not necessarily smooth unless k is perfect. In
fact, let k be an imperfect field of characteristic p, a be an element of k which is not a p-th power.
Consider the subgroup scheme G = Spec(k[X,Y]/(X? +aY?)) of Spec(k[X,Y]) ~ G, X G,. Then
G is regular but not smooth over k. In fact, G ® k(¥/«) is not reduced.

(ii) The non-neutral components of a group scheme over k are not necessarily geometrically
irreducible. Consider for example a prime number p invertible in k. Then the number of irreducible
components of p, is 2 if k does not contain any p-th root of unity different from 1, and is p otherwise.
In particular, u, q has exactly 2 irreducible components while p, q(¢,) has exactly p irreducible
components, where (, is a primitive p-th root of unity.

Proof. (i) We only need to prove the implication (a2) = (b1). We may assume k = k. For g € G(k),
we denote by ry : G — G the right translation by g. It’s clear that r, induces an isomorphism of
local rings Og,y ~ Og.. Hence (a2) implies that G is reduced. Let sm(G) C G be the smooth
locus. This is a Zariski dense open subset of G, stable under all the translations r,. Hence we have
sm(G) = G.

(ii) By Lemma G° is geometrically connected. Hence so is G° x G° by So under the
multiplication morphism of G, the image of G® x G° lies necessarily in G°. This shows that G° is
a closed subgroup scheme of G.

Next we show that GO is geometrically irreducible and quasi-compact. Since G is stable under
base field extensions, we may assume k = k. Since G is irreducible if and only if G(r)ed is, we may
assume that G is reduced. By (ii), this implies that G is smooth. It’s well known that a smooth
variety is connected if and only if it’s irreducible. To prove the quasi-compactness of G, we take
a non-empty affine open subset U C G°. Then U is dense in G, since G is irreducible. For every
g € G°(k), the two open dense subsets gU ! and U have non-trivial intersection. Hence the map
U x U — GY given by multiplication is surjective. Since U x U is quasi-compact, so is G°.

(iii) Again we may assume k = k. Then every connected component of G is the right translation
of GY by a rational point. O

Let G be a group scheme, locally of finite type over k, and G be the completion of G along
the identity section e. The group law of G induces a (formal) group law on G, i.e., we have a
co-multiplication map

(1.10.1) m*: Og.e = 0q.c©0g.c

where @G,e is the completion of Og,. In particular, for any n € Z>;, we have a natural map
m* : Oge = (Og,e/m™) ® (Og,e/m™), where m is the maximal ideal of Og ..

Theorem 1.11 (Cartier). Let G be a group scheme, locally of finite type over k. If k has charac-
teristic 0, then G is reduced, hence smooth over k.
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Proof. (Oort) Let A = Og e, m C A be the maximal ideal, and nil(A) C A be the nilradical. Since
k is perfect, Gyeq is a closed subgroup scheme of G. It follows thus from Proposition [1.9(ii) that
Ajea = A/nil(A) is a regular local ring. Let myeq C Ayeq be the maximal ideal of Aeq. Then we
have

dim(A) = dim(Areq) = dimy (Myeq/mZq) = dimy (m/(m? + nil(A))).

Thus it suffices to show that nil(4) C m?. Since then, we will have dimy(m/m?) = dim(A), hence
A is a regular local ring.

Let 0 # o € nil(A), and n > 2 be the positive integer such that 2”71 # 0 and 2™ = 0. Since
A is noetherian, there exists an integer ¢ > 2 with 2"~! ¢ m9. We put B = A/m?, mp = m/m9,
and let T denote the image of = in B. As remarked above, the multiplication law of G induces a
homomorphism m* : A — B ® B. Since e € G(k) is a two-sided identity element, we have

m'(x)=T®14+17T+y withy € mp@mp.
From z" = 0, we get

O=m* ") =m"(z)"=TR1+1T+y)",
hence

n- (fn_l ®T) € ((fn_lmB) ®mp +mp ®m23)

Since char(k) = 0, we have ("' ® Z) € (" 'mp) ® mp + mp ® m%. This implies that either
7"l € " 'mp, or T € m%. If it’s the first case, Nakayama’s lemma would imply that "' = 0.
Hence we have x € m2.

U

Definition 1.12. Let G be a group scheme over k, and Q¢ be the sheaf of differential 1-forms on
G with respect to k. A section o € I'(G, Q) is said to be right invariant (resp. left invariant), if
we have pri(a) = m*(a) in I'(G x G,priQg) (resp. pri(a) = m*(a) in I'(G x G, priQg)).

Remark 1.13. Let o be a right invariant differential 1-form of G. For each g € G(k), we denote
by ry : G — G the morphism of right translation by g. Since pry o (Idg x(g o 7)) = Idg and
m o (Idg x(g o m)) = 7y, we have r;(a) = (Idg x(g o 7))*m*a = (Idg x(g o 7))*pria = a.
Conversely, if k = k and o € T'(G, Q) is invariant under any 7y, then « is right invariant in sense

of [LT2] We have similar remarks for left invariant 1-forms.

Proposition 1.14. Let wg = €*Q, be the cotangent space of G at e. Then there is a canonical
isomorphism m*weg ~ Q such that the induced adjunction map we — T'(G, QL) is injective and
identifies wg with the space of right invariant 1-forms of G.

Proof. Consider the diagram

eor,Id r
G e T GaxG G

NN

G—=> Spec(k),

pr2

where 7 is the isomorphism (z,y) — (xy,y). If we consider G x G as a scheme over G via pra,
then 7 is a G-automorphism of G x G. It induces an isomorphism of differential modules

1 ~ ~*0O1l
QGxG/G =T QGXG/G'
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By base change formula for differential modules, we have Q. o = priQt. Thus the above
isomorphism gives rise to an isomorphism

priQs ~ T priQL = mrQg.
Pulling back by (e o 7,Idg), we get
m*we = (e o, Idg)*priQ ~ (e o m,Idg)*m* Q& = QL.

O

Corollary 1.15. Let f : P; — G be a morphism from the projective line to a group scheme G
over k. Then there exists a k-rational point x € G(k), such that f(P}) = {x}.

Proof. It’s clear that the image of P} is either a curve or a k-rational point of G. If it were the
first case, let X denote the image of P}, and k(P') and k(X) be respectively the fraction fields of
P; and X. Then k(P}) is a finite extension of k(X ). Assume first that the extension k(P})/k(X)
is separable (this is automatic if char(k) = 0). Then the morphism f : P} — X C G is generically
étale, hence there exists a closed point ¢ € P}, such that the induced map f*Qf ®x(t) — Qi’i ®K(t)

is surjective. But according to the previous proposition, Qé is generated by its global sections, so
there exists a global section of Q%Dl that is non-vanishing at ¢. But this is absurd, since Q%,l ~
k

OPi (—2) does not have any non-zero global sections at alll In the general case, we denote by L

the separable closure of k(X) in k(P}). The purely inseparable finite extension k(P})/L, say of
degree p™, corresponds to the n-th iteration of (relative) Frobenius morphism Frob’lék :PL — P}

which sends (z¢ : 1) — (xgn : xfn). So the morphism f can be factorized as
Frob,
P, —5H P 4G,
where g corresponds to the separable field extension L/k(X). Applying the above argument to g,
we still get a contradiction. This completes the proof. O

We end this section by the following proposition due to A. Weil.

Proposition 1.16. Let X be a normal variety over k, and f be a rational map from X to a group
scheme G over k. If f is defined on an open subscheme U C X with codimx (X — U) > 2, then f
extends to a morphism X — G.

Proof. We may assume k = k. Let U C X be the maximal open subscheme where f is defined.
We write multiplicatively the group law on (. Consider the rational map ® : X x X --» G given
by ®(x,y) = f(z)f(y)~!. We claim that for any z € X (k), we have z € U(k) if and only if ® can
be defined at (x,z). The “only if” part is trivial. Now suppose that ® is defined at (x,z). Let
W denote the maximal open locus where ® is defined, and W, denote the open subset of X such
that {x} x W, = W N ({z} x X). We have W, # (). As X is irreducible, there exists y € U N W,.
Thus f(x) = ®(x,y)f(y) is well defined. This proves the claim. By assumption, the codimension
of F =X —U in X is at least 2. We have to show that ¢ is defined everywhere on the diagonal
A(X) C X x X. We note first that the locus in A(X) where ® is not defined is exactly A(F'), and
®(x,x) = e whenever @ is defined at (z,z), where e € G denotes the identity element. Let D be
the closed subset of X x X where ® is not defined. Then each irreducible component of DN A(X)
must be of codimension 1 in A(X). But by assumption D N A(X) = A(F) has codimension at
least 2 in A(X). It follows that DNA(X) = (). In particular, ® is defined at (x, ). This completes
the proof of the proposition. O



6 YICHAO TIAN AND WEIZHE ZHENG

2. DEFINITION AND BASIC PROPERTIES OF ABELIAN VARIETIES

Definition 2.1. An abelian variety over k is a proper variety over k equipped with a k-group
scheme structure.

Proposition 2.2. Let X be an abelian variety over k.

(i) X is smooth over k.

(ii) Let wx = e*Qﬁ(/k be the cotangent space of X at the unit section. Then we have T'(X, Q%) ~
wx . In particular, if X has dimension 1, then the genus of X equals 1.

(iii) Let Y be a normal variety, and f :' Y --+ X be a rational map. Then f extends to a
morphism f:Y — X.

(iv) If Y is a rational variety (i.e., birationally equivalent to the projective space P¢ with d > 1),
then any rational map from'Y to X is constant.

Proof. Statement (i) follows from Proposition ii). For (ii), it follows from that Q% e~
wx Qr Ox. So we have
(X, 04) =wx ® T(X,0x).

But by Lemma [1.8] X is geometrically connected. Hence, we have I'(X, Ox) = k, and (ii) follows.
For statement (iii), we note that the local ring of X at a point of height 1 is a discrete valuation
ring as X is normal. It follows from the valuative criterion of properness that the rational map
f can be defined at all points of height 1. Proposition [I.16] implies that f extends actually to
the whole X. For (iv), we note that X is birationally equivalent to (PL)¢, and giving a rational

map from Y to X is equivalent to giving a rational from (P})¢ to X. Statement (iv) now follows
immediately from (iii) and Corollary d

Proposition 2.3 (Rigidity Lemma). Let X and Y be varieties over k, Z be a separated k-scheme,
and f: X XY — Z be a morphism. Assume that X is proper with a k-rational point, and there
exists a closed point yo € Y such that the image f(X X {yo}) is a single point zo € Z. Then there
is a morphism g : Y — Z such that f = g opa, where po : X XY — Y is the natural projection.

Proof. Choose a k-rational point zo of X, and define g : Y — Z by ¢g(y) = f(zo,y). Since Z is
separated, the locus in X XY where f and gops coincide is closed in X xY. As X xY is connected,
to show that f = g o ps, we just need to show that these morphisms coincide on some open subset
of X x Y. Let U be an affine open neighborhood of zq in Z, F = Z\U. Then G = po(f~(F)) is a
closed subset of Y. Since f(X x {yo}) = {20} by assumption, we have yg ¢ G. There exists thus
an affine open neighborhood V' of yg such that VNG = . It’s easy to see that f(X x V) C U.
Since U is affine, the morphism f: X x V — U is determined by the induced morphism

f* : F(U, OU) — F(X X V, OXXV) ~ F(X, Ox) (811(‘/7 Ov)

As X is proper, reduced, connected and has a k-rational point, we have I'(X,Ox) ~ k. That
means the morphism f : X x V — U actually factors through the projection py : X x V — V.
Hence f and g o ps coincide on X x V. O

Corollary 2.4. Let X be an abelian variety over k, Y be a group scheme over k, and f : X =Y
be a morphism of k-schemes. Then there exists a point a € Y (k) and a homomorphism of group
schemes h : X =Y such that f =T, o h, where T, is the right translation by a.

Proof. Let e be the unit section of X, and a = f(e). Define h : X — Y by h(z) = f(x)-a~ %
Consider the morphism

P: X xX =Y (u,v)— h(uww)h(v)  h(u)"!.
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We have ®(e,x) = ®(z,e) = e for any point z in X. By the rigidity lemma, it follows that ® is
the constant map to e. Hence, h is a homomorphism of abelian varieties. O

Corollary 2.5. Any abelian variety over k is a commutative group scheme.

Proof. By Corollary [2.4] any morphism of abelian varieties that sends the unit section to the
unit section is a homomorphism. The corollary then follows by applying this fact to the inverse
morphism of an abelian variety. O

From now on, we denote additively the group law of an abelian variety X, by 0 its unit element.
Let Y and Z be reduced closed subschemes of X. Assume that either Y or Z is geometrically
reduced. Denote by Y + Z the image of Y x Z the addition morphism m: X x X — X, which
is a closed subset of X since m is proper. If we endow Y + Z with the reduced closed subscheme
structure, then m induces a surjection Y x Z7 - Y + Z.

Lemma 2.6. Let X be an abelian variety over k, andY C X be a closed subvariety stable under the
addition morphism. Then'Y contains 0 and is stable under the inversion morphism; in particular,
Y is an abelian variety.

Proof. Consider the isomorphism
P XXX >XxX (x,y)— (z,z+y).

Since Y is stable under addition, the image ®(Y xY) liesin Y xY. But both Y x Y and &(Y xY)
are irreducible varieties of the same dimension. We have ® : Y xY ~ Y x Y. In particular, for any
y €Y, d (y,y) = (y,0) belongs to Y x Y. Thus 0 belongs to Y. Moreover, ®~*(y,0) = (y, —y)
belongs to Y x Y. This proves Y is stable under inversion. O

Definition 2.7. Let X be an abelian variety over k. We say a closed subvariety ¥ C X is an
abelian subvariety if Y is stable under addition. We say X is a simple abelian variety if it has no
non-trivial abelian subvarieties.

Lemma 2.8. Let X be an abelian variety of dimension d, and W be a geometrically irreducible
closed subvariety of X containing 0. Then there exists a unique abelian subvariety Y C X con-
taining W such that for any abelian subvariety A of X containing W, we have Y C A. Moreover,

there exists an integer 1 < h < d such that any point © € Y (k) can be represented as 2?21 a; with

a; € W(k)

Proof. If dim(W) = 0, then W reduces to {0}, and the lemma is trivial. Suppose dim(W) > 1.
For any integer n > 1, let W (") be the image of

WXWx--xW—=X (1, &) = 21+ T2+ + Ty

n times

Then W is a closed geometrically irreducible subvariety of X, and we have W™ ¢ W+ It’s
clear that any abelian subvariety containing W must contain W, and any point z € W) (k) can
be written as >, a; with a; € W (k). Let h be the minimal integer such that W) = W +1),
By induction, we see that W) = W) for any n > h. As 1 < dim(W ™) < dim(W™+D) for
m < h—1, we have h < d. For z,y € W we have z +y € W = Ww® By this means
that Y = W) is an abelian subvariety of X. O

In the situation of the above lemma, we say Y is the abelian subvariety generated by W.
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Proposition 2.9. Let X be an abelian variety over k of dimension d, D be the support of a divisor
of X, W be a closed subvariety containing 0 and disjoint from D, and Y the abelian subvariety
generated by W. Then D is stable under translation by Y, i.e., D+Y = D in the notations of[2.5

Proof. We may assume k algebraically closed. Up to replacing D by one of its irreducible compo-
nents, we may assume D is irreducible. Let X3 be the image of the morphism D x W — X given
by (z,y) — x —y. Then X is an irreducible closed subvariety of X containing D, since 0 € W.
So we have either X1 = X or X; = D. If X; = X, as 0 € X, we have 0 = x — y with € D(k)
and y € W(k). This means x =y € DN W, which contradicts with the assumption that D and
W are disjoint. We have thus X; = D, i.e., we have a —w € D for any a € D(k) and w € W(k).

Since any b € Y (k) can be written as b = — Z?:l w; for some h < d and w; € W(k) by Lemma
[2.8] we see by induction that D contains D + Y. O

Corollary 2.10. Let D be a divisor of an abelian variety X, and W be a closed subvariety of X
disjoint from D. Then for any points w,w’ € W(k), D is stable under the translation by w' — w.

Proof. We may assume D effective and reduced. Note that T_,, (W) contains 0 and is disjoint from
T_. (D). The corollary follows immediately from the proposition. U

Corollary 2.11. Let X be a simple abelian variety, D be a nontrivial divisor of X. Then any
closed subvariety of X of positive dimension has a nontrivial intersection with D.

3. THEOREM OF THE CUBE AND ITS CONSEQUENCES

We will assume the following theorem in algebraic geometry, and its proof can be found in
[Ha77] or [Mu70, §5].

Theorem 3.1. Let f : X — Y be a proper morphism of locally noetherian schemes, F be a
coherent sheaf on X, flat over Y. Then there is a finite complex concentrated in degrees [0, n]
K*: 0K - K'—».. .5 K">0
consisting of Oy -modules locally free of finite type, such that for any morphism g : Z — Y and
any integer ¢ > 0 we have a functorial isomorphism
Hq(X Xy Zapi(j» = Hq(Z’g*(K.))a
where py is the projection p1 : X Xy Z — X.

This important theorem has many consequences on the cohomology of schemes. Here, what we
need is the following

Corollary 3.2. Let XY, f and .F be as in the theorem. Then for any integer ¢ > 0, the function
on Y with values in Z defined by

Yy — dimﬁ(y) Hq(Xy, ﬁy)

is upper semi-continuous on'Y , i.e., for any integer d > 0 the subset {y € Y; dimy,(y) HY(X,, #,) >
d} is closed in'Y.

Proof. The problem is local for Y, so we may assume Y = Spec(A) is affine and all the components
of the complex K*® are free A-modules of finite type. Let d? : K9 — K9*! be the coboundary
operator of K. Then we have

dim,, () H (X, %) = dim, ) Ker(d? ® £(y)) — dim,(,) Im(d?™" ® k(y))
= dim,, () (K? ® k(y)) — dim,, ) Im(d? ® £(y)) — dim,, ) Im(d?" @ K(y)).



NOTES ON ABELIAN VARIETIES 9

The first term being constant on Y, it suffices to prove that, for any ¢, the function y — g(y) =
dim,;(yy Im(d? ® k(y)) is lower semi-continuous on Y, i.e., the subset of Y consisting of points y
with ¢g(y) < r is closed for any integer » > 0. The condition that g(y) < r is equivalent to saying
that the morphism (A™"1d%) @4 k(y) : K¢ ®a k(y) — K91 ®4 k(y) is zero. Since both K9 and
Kt! are free A-modules, A"1d? is represented by a matrix with coefficients in A. The locus
where A"t1d? vanishes is the common zeros of all the coefficients of its matrix.

U

Proposition 3.3 (See-Saw principle). Let X be a proper variety, Y be a locally noetherian scheme
over k and L be a line bundle on X X Y. Then there exists a unique closed subscheme Y1 — Y
satisfying the following properties:

(i) If Ly is the restriction of L to X x Y1, there is a line bundle My on Yy and an isomorphism
psMy ~ Ly on X x Yy;

(ii) If f : Z = Y is a morphism such that there exists a line bundle K on Z and an isomorphism
pa(K) ~ (Idx xf)*(L) on X x Z, then f can be factored through g : Z — Y7 and K ~ g*(My).

First, we prove the following

Lemma 3.4. Let X,Y and L be as in the proposition above. Then the subset of Y, consisting of
points y such that the restriction L, on X x {y} is trivial, is closed in'Y .

Proof. We claim that L, is trivial if and only if we have both dim,,, HY(X x {y}, L,) > 1
and dim,,(,) H (X x {yh, L, 1) > 1. These conditions are clearly necessary. Conversely, if these
dimension conditions are satisfied, then there are non-trivial morphisms f : Ox .y, — L, and
g: Ly — Oxyxqyy- Since X is a proper variety, we have I'(X x {y}, Oxx{y}) = £(y). Hence the
composite go f : Oxyxyy — Ly — Oxxyyy is necessarily an isomorphism. This shows that both f
and g are isomorphisms, hence L, is trivial. The lemma then follows immediately from Corollary
5.2 O

Proof of Prop. [3.3. The uniqueness of Y] follows immediately from the universal property of Y.
Since different local pieces of Y; will patch together by the uniqueness of Y7, it’s sufficient to prove
the existence of Y7 locally for the Zariski topology of Y. Let F' be the subset of points y € Y
such that the restriction L, to X x {y} is trivial. Then F' is a closed subset by Lemma If the
desired Y7 exists, then its underlying topological space is exactly F. Let y € F be a closed point,
and Y, be the localization of Y at y. We just need to prove the existence of Y7 for Y, since then
Y1 will naturally spread out to a closed subscheme of a certain open neighborhood of y in Y. Up
to replacing Y by Y,, we may assume Y = Spec(A) is local with closed point y and L, is trivial.

Let K* = (0 - K° % K' — ...) be the complex of finite free A-modules given by Theorem
for the sheaf L. For an A-module N, we put N* = Hom 4 (N, A). Let M denote the cokernel
of the induced map o* : K — K. Then for any A-algebra B, if we denote X5 = X ®; B and
by Lp the pullback of L on Xpg, we have

HY(Xp,Lp) = Ker(a ®4 B) = Homu (M, B) = Homp(M ®4 B, B).

In particular, we have H°(X x {y},L,) = Hom,)(M ®4 £(y),x(y)). Since L, is trivial by
assumption, we have dim,,)(M ®4 k(y)) = 1. By Nakayama’s lemma, there exists an ideal I C A
such that M ~ A/I as A-modules. Then for any A-algebra B, H°(Xp, Lp) is a free B-module
of rank 1 if and only if the structure map A — B factors as A — A/I — B. Applying the same
process to the sheaf L=, we get another ideal J C A such that for any A-algebra B, H°(Xp, Lgl)
is free of rank 1 over B if and only if B is actually an A/J-algebra. We claim that the closed
subscheme Y; = Spec(A/(I + J)) satisfies the requirements of the proposition. Condition (ii) is
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immediate by our construction of X xY;. Let L; denote the restriction of L on Y;. It’s sufficient to
prove that L; is a trivial line bundle. Let fo and go be respectively generators of H(X x {y}, L)
and HO(X x {y}, L, ") such that their image is 1 by the canonical map

HO(X x {y}, Ly) x H°(X x {y}, L") = H°(X x {y}, Ox x(y}) = £(y)-

This is certainly possible, since L, is trivial. Let f € H(X x Y1, Ly) (resp. g € HO(X x Y1, L7"))
be a lift of fo (resp. go). Up to modifying f, we may assume the image of (f,g) is 1 by the
canonical product morphism

HY(X xY1,L1) x H*(X x Y1, L7 — HY(X x Y1,0xxv,) =~ A/(I +J).

If we denote still by f : Oxxy, = L1 (resp. by g : L1 — Oxxy,) the morphism of line bundles
induced by f (resp. by g), we have go f = Idoy,,, and fog = Idg,. This proves that L; is
trivial. O

Theorem 3.5 (Theorem of the Cube). Let X and Y be proper varieties over k, Z be a connected
k-scheme of finite type, and xog € X (k), yo € Y (k) and zg € Z. Let L be a line bundle on X XY X Z
whose restrictions to {xo} XY x Z, X x{yo} X Z and X XY x {20} are trivial. Then L is trivial.

Proof. (Mumford) By Proposition [3.3] there exists a maximal closed subscheme Z’' C Z such that
L|xxyxz =~ p5(M), where ps is the projection X x Y x Z' — Z’' and M is a line bundle on Z'. As
2o € Z', Z' is non-empty. After restriction to {zo} X Y x Z’, we see that M ~ 0. It remains to
show that Z’ = Z. Since Z is connected, it suffices to prove that if a point belongs to Z’, then Z’
contains an open neighborhood of this point. Denote this point by zy. Let Oz ., be the local ring
of Z at zp, m be its maximal ideal, and x(z9) = Oz ., /m, and I, be the ideal of Z’ x z Spec(Oz ., ).
It’s sufficient to prove that I, = 0. If not, since N,>1m"™ = 0 by Krull’s theorem, we would have
an integer n > 1 such that m" > I, and m"*™! 2 . Hence (m"*! + I, )/m"*! is a non-zero
subspace of m”/m"*l. We put J; = m"*! + I, then there exists m"*! C Jy C J; such that
dimy (.0 (J1/J2) = 1. Let Z; = Spec(Oz. .,/ J;) for i = 1,2. We have Z; C Z3, and the ideal of Z;
in Z, is generated by an element a € I,,. We have an exact sequence of abelian sheaves over the
topological space X XY x {2}

u X X
0= Oxxyx{z} = Oxxyxz = Oxxyxz = L

where u is given by x — 1+ az. Since H(X x Y x Z;, O;{XYXZi) is canonically isomorphic to
H®(Z;, 03 ) for i = 1,2, we see that the natural map H°(X x Y x Z3,0% v, 5. ) = H(X xY x
Z1,0% vy« Zl) is surjective. Hence, we have an exact sequence of cohomology groups

(3.5.1)

0— HY (X XY x{20}, Oxxyxfzo}) = H (XY x{20}, O 1y wz,) = H (XxY x{20}, O% .y x2,)-

By our construction, Ly = L|xxyxz, is trivial, and Ls = L|xxyxz, is not trivial. If we denote
by [Li] (i = 1,2) the cohomology class of L; in H'(X x Y x {20}, 0%y .), we have [L;] =0
and [Lo] # 0. By the exact sequence (3.5.1)), [L2] comes from a nonzero cohomology class [Lo] in
HY(X xY x {20}, Oxxyx{z1}) We have a commutative diagram

0 Hl(X xY x {ZO}vOXxYX{zo}) HI(X XY x {20}70;(><Y><Z2)

| |

0—— Hl({xo} XY x {ZO}7O{Q:U}><Y><{ZU}) — Hl({xO} XY X {ZO}>OE<JCO}><Y><22)7
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where vertical arrows are induced by the natural restriction {zo} X Y x {20} — X x Y x {2},
and the injectivity of the lower arrow follows in the same way as in (3.5.1]). Since L is trivial over
{zo} x Y x Z, in particular over {zp} x Y x Zs, the image of [Lg] in

Hl({xo} XY X {ZO}7O{IO}><Y><{ZO}) ~ Hl(Y, Oy) Rk K(Zo)

vanishes. Similarly, the image of [Lo] in H* (X x {yo} X {20}, Oxx{yorx{z}) = H' (X, Ox) @ k(20)
vanishes. On the other hand, we have an isomorphism

HY (X xY x{20}, Oxxyxiz}) = H (X XY, Oxxy)®pk(20) = (H (X, 0x)BH (Y, Oy)) @y (20)

by Kiinneth formula, where the latter map is induced by the inclusion ({zo} x Y)U (X x {yo}) —
X xY. We conclude that [Lg] must vanish. This is a contradiction, and the proof of the theorem
is complete.

O

Remark 3.6. A slightly different way to prove that Z’ contains an open neighborhood of zg is
the following. First, we note as above that it’s sufficient to show the restriction of L to X x Y x
Spec(Qyz.,,) is trivial. Let A be the completion of Oy .., S = Spec(A), S, = Spec(Oz ,,/m"+1),
and (X x Y x S)" be the completion of X x Y x S along the closed subscheme X x Y x {z}.
Then we have canonical morphisms of Picard groups

Pic(X x Y x Spec(Oz.,,)) < Pic(X x Y x §) = Pic((X x Y x S)") = lim Pic(X x Y x Sy),

where the injectivity of this map follows from the descent of coherent sheaves by faithfully flat and
quasi-compact morphisms, and the second isomorphism is Grothendieck’s existence theorem of
coherent sheaves in formal geometry [EGA III 5.1.4]. Hence it suffices to prove that the restriction
L, = L|xxyxs, is trivial for all n > 0. We prove this by induction on n. The case n = 0 is a
hypothesis of the theorem. We now assume n > 1 and L,,_; is trivial. We have an exact sequence
of abelian sheaves on X XY X {z}

u

0— OXXYX{ZO} Ok mn/mn—H — O;(XYXS,L - O;(XYXS”,l -1,
where wu is given by « — 1 + z. Taking cohomologies, we get
0= H' (X xY x {20}, Oxxyx{z}) @k m"/m" ™" = Pic(X x Y x S,) = Pic(X x YV x Sp_1).

By induction hypothesis the class of L,_; in Pic(X x Y x S,,_1) is zero, so the class of L, in
Pic(X x Y x S,,) comes from a class in H'(X XY x {20}, Ox xy x{2})- Then we can use the same
argument as above to conclude that this cohomology class must vanish.

Proposition 3.7. Let X be an abelian variety over k, p; : X x X x X — X be the projection onto
the i-th factor, m; ; = pi+pj : X x X x X = X, and mi23 : p1 +p2+p3 : X x X x X — X. Then
for any line bundle L on X, we have

M =miyL@mi, L™t @mi;L™t @ my L™ @ piL @ p3L @ p3L =~ Oxxxxx-
Equivalently, if S is a k-scheme and f,g,h are any S valued points of X, we have
(3.7.1) (f+g+h)'L~(f+g)'Le(f+h)'Le(g+h)'Le f L@ L oh L

Proof. Let i1 : X x X — X x X x X be the morphism given by (z,y) — (0,z,y). We have
M1230%1 = M, M1 041 = P1, M13 041 = P2, Ma3 041 = m, p1 o041 = 0, p2oi; = p1, and p3 oy = pa.
So we have

Mloyxxsxx =M =m*L@piL ' @ ps L' @m*L™' @ p{L @ p3L ~ Ox xx.
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Similarly, both M|xoyxx and Mx xx oy are trivial. The corollary follows from Theorem (3.5
O

Corollary 3.8. Let X be an abelian variety, nx be the morphism of multiplication by n € Z on
X. Then for any line bundle L on X, we have

n2+n nz—n

(3.8.1) (nx)"'L ~L" %" ® (~1x)" L™=

Proof. The formula (3.8.1)) for n < 0 follows from the case n > 0 by applying (—1)%. We now
prove the corollary for n > 1 by induction. The cases with n = 0,1 are trivial. Assume now n > 1
and (3.8.1)) has been verified for all positive integers less than or equal to n. Taking f = nyx,
g=1x, and h = —1x in the formula (3.7.1), we get

n+D)5%L~n5xL)?*onh-1D5%L o Lo (-1x) L.
The formula (3.8.1) is then verified by an easy computation. O

Corollary 3.9 (Square Theorem). Let X be an abelian variety over k, L a line bundle on X. Let
S be any k-scheme, Xg = X xS, Lg = pX L, =,y be two S-valued points of X, and T, : Xg = Xg
be the translation by x. Then there exists a line bundle N on S such that

T;+yLS ® Lg ~ T;LS ®T;LS ®p§N,

where ps : Xg — S is the natural projection onto S.

Proof. Let 8: S — X x X be the morphism s — (z(s),y(s)), and a = (Idx,5) : Xs =X xS —
X x (X x X). By Theorem of the cube [3.7} we have

a*(miysl) ~ o (miyL @ misL @ miz L@ pi L~ @ ps L' @ psL71)
It’s easy to see that the above isomorphism is equivalent to
Ty, Ls=TiLs®T;Ls®Lg" ®@ps(m*L@p; ' Lepy'L).
This proves the corollary. O

Definition 3.10. Let X be an abelian variety, and L a line bundle on X. We denote by K (L)
the maximal closed subscheme X such that (m*(L) ® p{L™")|xx k(1) has the form p3(N).

The existence of K(L) is ensured by see-saw principle It’s easy to see that 0 € K(L).
Restricted to {0} x K(L), we have N ~ L. Thus K (L) is the maximal subscheme Z C X such
that the restriction of the line bundle (m*L @ piL~! @ p5L~1) to X x Z is trivial.

Lemma 3.11. The closed subscheme K (L) is a closed subgroup scheme of X.
Proof. We have to show that K (L) is stable under the addition of X, i.e., it’s sufficient to prove
that the morphism

X x K(L)x K(L) = X x X x X 227 ¥ » x

factors through the natural inclusion X x K(L) — X x X. By the universal property of K (L),
we need to prove that the restriction of (Idx xm)*(m*L @ p; L' @ p3L~1) to X x K(L) x K(L)
is trivial. With the notation of we have m o (Idx Xxm) = mya3, p1 o (Idx Xxm) = p;, and
p2 o (Idx xm) = mas. Therefore, we have

(dx xm)* (L piL~" © p3L") = mingL ® piL~" @ iy L)
~ misL @ misL ®p1‘L‘2 ®p§L_1 ®p§L_1
= (M Lepi L' @ps L") @ (misL @ pi L~ @ ps L),
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where the second isomorphism uses Proposition When restricted to X x K (L) x K(L), both
mi, L @p; L7t @ psL~1 and misL @ p; L~ ® p5 L~ are trivial. This proves the lemma.
O

Proposition 3.12. Consider the statements:

(i) L is ample on X.

(ii) K(L) is a finite group scheme.

We have (i) = (ii). Conwversely, if L = Ox (D) is the line bundle associated with an effective
divisor D, then (i) and (ii) are both equivalent to

(iil) The group {x € X (k);T.(D) = D} (equality as divisors) is finite.

Proof. By considering scalar extension of X to k, we may assume that k is algebraically closed.
For (i)=-(ii), suppose K (L) is not finite. Let ¥ be the reduced closed subscheme of the neutral
connected component of K(L). Then Y is a smooth connected closed subgroup scheme of X of
dimension d > 0; in particular, Y is an abelian scheme. As L is ample, so is the restriction
Ly = L|y. By our construction, the line bundle m* Ly ®p>{L;1 ®p§L;1 is trivial. Pulling back by
the morphism Y — Y x Y given by y — (y, —y), we see that Ly ® (—1y )*Ly is trivial. But —1y is
an automorphism of Y and Ly is ample, so Ly ® (—1y)*Ly is also ample. This is a contradiction.

Assume L = Ox (D) is effective. The implication (ii)=-(iii) being trivial, we just need to prove
(iii)=-(i). By Serre’s cohomological criterion of ampleness [EGA, 11T 4.4.2], it’s sufficient to prove
that the linear system |2D| has no base point, and defines a finite morphism X — PV, By the
linear system |2D| contains the divisors T, (D)+T_,(D) (addition for divisors) for all z € X (k). For
any u € X (k), we can find x € X (k) such that u+x ¢ Supp D, i.e., we have u ¢ T,,(D) +T_,(D).
This shows that the linear system |2D| has no base point, and defines a morphism ¢ : X — PN,
If ¢ is not finite, we can find a closed irreducible curve C such that ¢(C) is a point. It follows
that for any E € |2D|, either E contains C or is disjoint with C. In particular, there are infinitely
many = € X (k) such that T, (D) + T_,(D) is disjoint from C. For such an x € X (k), it follows
from Corollary that every irreducible component of T,(D) + T_(D) is invariant under the
translation by a — b for any a,b € C(k). In particular, D is invariant under translation by a — b
for any a,b € C(k). This contradicts the assumption that the group {z € X (k); T,(D) ~ D} is
finite. O

Theorem 3.13. Every abelian variety over k is projective.

Proof. Let X be an abelian variety over k of dimension d > 1. We need to prove that there exists an
ample line bundle on X. First, we prove this in the case k = k. Let U be an affine open subscheme
of X such that each irreducible component of the complementary X\U has dimension d — 1. We
denote by D the divisor defined by the reduced closed subscheme X\U. Up to translation, we may
assume that 0 € U. Consider the subgroup H C X defined by

H(F) = {z € X(k): T2(D) = D).

It’s easy to see that H is closed in X. On the other hand, U is stable under translation 7 for
x € H. Since 0 € U, we have H C U. It follows that H is both proper and affine, hence finite.
The above proposition now implies that Ox (D) is ample. In the general case, we can choose an
ample divisor D defined over a finite extension k'/k. If k'/k is separable, we may assume k’/k is
Galois. The divisor

D= Z o(D)

o€Gal(k' k)
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is then an ample divisor defined over k. If k'/k is purely inseparable, there exists an integer m
such that o™ € k for all & € k’. Then p™ - D is an ample divisor defined on k. The general case
is a composition of these two special cases. O

4. QUOTIENT BY A FINITE GROUP SCHEME

Definition 4.1. Let G be a group scheme over k, e € G(k) be the unit element, and m denote its
multiplication. An action of G on a k-scheme X is a morphism p: G x X — X such that
(i) the composite
X ~Spec(k) x X 9% g x x & x
is the identity;
(ii) the diagram

mXIdx

GxGEGxX———Gx X

lldx X ll/«
”w

Gx X X

is commutative.
The action p is said to be free if the morphism

(yp2) :Gx X = X x X

is a closed immersion.

From the functorial point of view, giving an action of G on X is equivalent to giving for every
S-valued point f of G, an automorphism pf : X x S — X x § of S-schemes, functorially in S.
The two conditions in the definition above is equivalent to requiring that G(S) — Autg(X x 5)
sending f +— gy is a homomorphism of groups.

Definition 4.2. Let X and Y be k-schemes equipped with a G-action. A morphism of k-schemes
f:Y — X is called G-equivariant, if the diagram

Gx X —2X X
\lecxf if
GxY i Y

is commutative. In particular, if the action of G on Y is trivial, a G-equivariant morphism f : X —
Y is called G-invariant. A G-invariant morphism f : X — A} is called a G-invariant function on
X.

Definition 4.3. Let X be a k-scheme equipped with an action of G, .% be a coherent sheaf on
X. A lift of the action y to . is an isomorphism \ : p3.# — u*.% of sheaves on G' x X such that
the diagram of sheaves on G x G x X

* p3 (N * * * (0%
(4.3.1) p5F = p33(p*F) == (Idg xp)" (p3.7)
ladc i) )
(% O (mxIdx)"(A) (% o ([ x g
(m x 1) (p3.7) 220" (1 L) i ) = (g %) (1" )

is commutative, where po3 : G X G x X — G x X is the natural projection onto the last two factors,
p; is the projection onto the i-th factor.
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From the functorial point of view, a lift of 1 on .F is to require, for every S-valued point f of
G, an isomorphism of coherent sheaves

/\f:ﬁ@)OSl},u}(ng@(Qs)

on X x S, where py : X x § = X x S is the automorphism determined by p. The commutative
diagram (4.3.1) is equivalent to requiring that, for any S-valued points f,g of G, we have a
commutative diagram of coherent sheaves on X x S

Ag "
F ® 05— piy(F @ Og)

\L)‘fy \LMZ(/\f)

Wig(F @ 8) == pgp;(F © Os),
where we have used the identification prg = iy o pg.

Theorem 4.4. Let G be a finite group scheme over k, X be a k-scheme endowed with an action
of G such that the orbit of any point of X is contained in an affine open subset of X.

(i) There exists a pair (Y, 7) where Y is a k-scheme and w: X — 'Y a morphism, satisfying the
following conditions:

e as a topological space, (Y, ) is the quotient of X for the action of the underlying finite
group;

o the morphism 7 : X — Y is G-invariant, and if m.(Ox )Y denotes the subsheaf of m.(Ox)
of G-invariant functions, the natural homomorphism Oy — m,(Ox)C is an isomorphism.

The pair (Y,m) is uniquely determined up to isomorphism by these conditions. The morphism w
is finite and surjective. Furthermore, Y has the following universal property: for any G-invariant
morphism f : X — Z, there exists a unique morphism g :Y — Z such that f = gom.

(ii) Suppose that the action of G on X is free and G = Spec(R) with dimy(R) =n. The w is a
finite flat morphism of degree n, and the subscheme of X x X defined by the closed immersion

(yp2) : Gx X — (X, X)

is equal to the subscheme X xy X C X x X. Finally, if F is a coherent sheaf on'Y, 7*.% has a
natural G-action lifting that on X, and

F = F

induces an equivalence of the category of coherent Oy -modules (resp. locally free Oy -module of
finite rank) and the category of coherent Ox -modules with G-action (resp. locally free Ox-modules
of finite rank with G-action).

Proof. (i) Let x be a point of X, and U be an affine neighborhood of = that contains the orbit of
z. Weput V = ﬁgeg@)gU, where g runs through the set of geometric points of G. Then V is an
affine neighborhood of x in X invariant under the action of G. Up to replacing X by V, we may
and do assume that X = Spec(A) is affine. Let R be the ring of G, ¢ : R — k the evaluation map
at the unit element e, and m* : R - R ® R be the comultiplication map. Then giving an action p
of G on X is equivalent to giving a map of k-algebras u* : A - R ®; A such that the composite

(e@ldg)op AL R A 2144, 4
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is the identity map, and that the diagram

A a R® A
lﬂ* \Lm*@)ldf;
RoA—E8  peoRoA

is commutative.

5. THE PICARD FUNCTOR

Let S be a scheme, Sch/S be the category of S-schemes, and f : X — S be a proper and flat
morphism. For T' € Sch/S, we put X7 = X xgT. We denote by Pic(Xr)/Pic(T') the cokernel of
the natural homomorphism of groups f7 : Pic(T") — Pic(Xr) induced by the canonical projection
fr+ Xr — T. We denote by Picy,g be the abelian functor 7'+ Pic(Xr)/ Pic(T') on Sch/S. Let
Picx,s be the associated sheaf of Picy /g with respect to the fppf-topology on Sch/S. In general,
for T' € Sch/S, Picy,g(T) does not coincide with Pic(X7)/ Pic(T"). But we have the following

Lemma 5.1. If f : X — S admits a section s, then Picy g is a sheaf for the fppf-topology of
Sch/S, i.e., for any T € Sch/S, we have Picx,s(T) = Pic(Xr)/ Pic(T).

Proof. Let p : T" — T be a fppf-morphism in Sch/S, T” = T’ x7 T, and p; : T — T’ be the
canonical projections onto the i-th factor. We have to verify that there is an exact sequence of
abelian groups

0 — Pic(X7)/ Pic(T) £ Pic(Xg)/ Pic(T") 22724 Pie(X7)/ Pic(T").
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