
NOTES ON ABELIAN VARIETIES

YICHAO TIAN AND WEIZHE ZHENG

We fix a field k and an algebraic closure k of k. A variety over k is a geometrically integral and
separated scheme of finite type over k. If X and Y are schemes over k, we denote by X × Y =
X ×Spec k Y , and Ω1

X the sheaf of differential 1-forms on X relative to k.

1. Generalities on group schemes over a field

Definition 1.1. (i) A group scheme over k is a k-scheme π : G→ Spec(k) together with morphisms
of k-schemes m : G×G→ G (multiplication), i : G→ G (inverse), and e : Spec(k)→ G (identity
section), such that the following conditions are satisfied:

m ◦ (m× IdG) = m ◦ (IdG×m) : G×G×G→ G,

m ◦ (e× IdG) = j1 : Spec(k)×G→ G,

m ◦ (IdG×e) = j2 :G× Spec(k)→ G,

e ◦ π = m ◦ (IdG×i) ◦∆G = m ◦ (i× IdG) ◦∆G : G→ G,

where j1 : Spec(k)×G ∼−→ G and j2 : G× Spec(k)
∼−→ G are the natural isomorphisms.

(ii) A group scheme G over k is said to be commutative if, letting s : G × G → G × G be the
isomorphism switching the two factors, we have the identity m = m ◦ s : G×G→ G.

(iii) A homomorphism of group schemes f : G1 → G2 is a morphism of k-schemes which
commutes with the morphisms of multiplication, inverse and identity section.

Remark 1.2. (i) For any k-scheme S, the set G(S) = Mork−Sch(S,G) is naturally equipped with a
group structure. By Yoneda Lemma, the group scheme G is completely determined by the functor
hG : S 7→ G(S) from the category of k-schemes to the category of groups. More precisely, the
functor G 7→ hG from the category of group schemes over k to the category Funct(k−Sch,Group)
of functors is fully faithful.

(ii) For any n ∈ Z, we put [n] = [n]G : G→ G to be the morphism of k-schemes

G
∆(n)

−−−→ G×G× · · · ×G︸ ︷︷ ︸
n times

m(n)

−−−→ G

if n ≥ 0, and [n] = [−n] ◦ i if n < 0. If G is commutative, [n]G is a homomorphism of group
schemes. Moreover, G is commutative if and only if i is a homomorphism.

Example 1.3. (1) The additive group. Let Ga = Spec(k[X]) be the group scheme given by

m∗ : k[X]→ k[X]⊗ k[X] X 7→ X ⊗ 1 + 1⊗X
i∗ : k[X]→ k[X] X 7→ −X

[n]Ga
: k[X]→ k[X] X 7→ nX.

For any k-scheme S, Ga(S) = Homk−Alg(k[X],Γ(S,OS)) = Γ(S,OS) with the additive group law.
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(2) The multiplicative group is the group scheme Gm = Spec(k[X, 1/X]) given by

m∗(X) = X ⊗X, e∗(X) = 1, i∗(X) = 1/X.

For any k-scheme S, we have Gm(S) = Γ(S,OS)× with the multiplicative group law.
(3) For any integer n > 0, the closed subscheme µn = Spec(k[X]/(Xn − 1)) of Gm has a group

structure induced by that of Gm. For any k-scheme S, µn(S) is the group of n-th roots of unity
in Γ(S,OS)×, i.e.,

µn(S) = {f ∈ Γ(S,OS)× | fn = 1}.
We note that µn is not reduced if the characteristic of k divides n.

(4) For n ∈ Z≥1, we put GLn = Spec(k[(Ti,j)1≤i,j≤n, U ]/(U det(Ti,j)− 1). It is endowed with a
group scheme structure by imposing

m∗(Ti,j) =

n∑
k=1

Ti,k ⊗ Tk,j e∗(Ti,j) = δi,j ,

where δi,j = 1 if i = j and δi,j = 0 otherwise. An explicit formula for the coinverse i∗ is more
complicated, and it can be given by the Cramer’s rule for the inverse of a square matrix. For each
S, GLn(S) is the general linear group with coefficients in Γ(S,OS). We have of course GL1 = Gm.

Proposition 1.4. Any group scheme over k is separated.

Proof. This follows from the Cartesian diagram

G

∆G

��

π // Spec(k)

e

��
G×G

m◦(IdG×i) // G

and the fact that e is a closed immersion. �

Lemma 1.5. Let X be a geometrically connected (resp. geometrically irreducible, resp. geometri-
cally reduced) k-scheme, Y be a connected (resp. irreducible, resp. reduced) k-scheme. Then X×Y
is connected (resp. irreducible, resp. reduced).

For a proof, see [EGA IV, 4, 5].

Proposition 1.6. Let G be a group scheme over k. If k is perfect, then the reduced subscheme
Gred ⊂ G is a closed subgroup scheme of G.

Proof. Since k is perfect, the product Gred×Gred is still reduced by 1.5. The composed morphism

Gred ×Gred ↪→ G×G m−→ G factors through Gred. This gives Gred a subgroup scheme structure of
G. �

Remark 1.7. If k is imperfect, the analogue of 1.6 is not true in general. In fact, if a is an element

of k which is not a p-th power, where p = char(k), then G = Spec(k[X]/(Xp2−aXp)) is a subgroup

scheme of Ga, but Gred = Spec(k[X]/(X(Xp2−p − a))) is not a subgroup scheme of G.

Lemma 1.8. Let X be a connected scheme over k with a rational point x ∈ X(k). Then X is
geometrically connected.

Proof. This is [EGA IV 4.5.14]. �
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Proposition 1.9. Let G be a group scheme, locally of finite type over k, and G0 be the connected
component of G containing e ∈ G(k).

(i) The following properties are equivalent:
(a1) G⊗k K is reduced for some perfect field extension K/k;
(a2) the ring OG,e ⊗k K is reduced for some perfect field extension K/k;
(b1) G is smooth over k;
(b2) G is smooth over k at e;
(ii) The identity component G0 is actually an open and closed subgroup scheme of G, geomet-

rically irreducible. In particular, we have (GK)0 = (G0)K for any field extension K/k.
(iii) Every connected component of G is irreducible and of finite type over k.

Remark 1.10. (i) A reduced group scheme over k is not necessarily smooth unless k is perfect. In
fact, let k be an imperfect field of characteristic p, α be an element of k which is not a p-th power.
Consider the subgroup scheme G = Spec(k[X,Y ]/(Xp+αY p)) of Spec(k[X,Y ]) ' Ga×Ga. Then
G is regular but not smooth over k. In fact, G⊗k k( p

√
α) is not reduced.

(ii) The non-neutral components of a group scheme over k are not necessarily geometrically
irreducible. Consider for example a prime number p invertible in k. Then the number of irreducible
components of µp is 2 if k does not contain any p-th root of unity different from 1, and is p otherwise.
In particular, µp,Q has exactly 2 irreducible components while µp,Q(ζp) has exactly p irreducible
components, where ζp is a primitive p-th root of unity.

Proof. (i) We only need to prove the implication (a2)⇒ (b1). We may assume k = k. For g ∈ G(k),
we denote by rg : G → G the right translation by g. It’s clear that rg induces an isomorphism of
local rings OG,g ' OG,e. Hence (a2) implies that G is reduced. Let sm(G) ⊂ G be the smooth
locus. This is a Zariski dense open subset of G, stable under all the translations rg. Hence we have
sm(G) = G.

(ii) By Lemma 1.8, G0 is geometrically connected. Hence so is G0 × G0 by 1.5. So under the
multiplication morphism of G, the image of G0 ×G0 lies necessarily in G0. This shows that G0 is
a closed subgroup scheme of G.

Next we show that G0 is geometrically irreducible and quasi-compact. Since G0 is stable under
base field extensions, we may assume k = k. Since G0 is irreducible if and only if G0

red is, we may
assume that G0 is reduced. By (ii), this implies that G0 is smooth. It’s well known that a smooth
variety is connected if and only if it’s irreducible. To prove the quasi-compactness of G0, we take
a non-empty affine open subset U ⊂ G0. Then U is dense in G0, since G0 is irreducible. For every
g ∈ G0(k), the two open dense subsets gU−1 and U have non-trivial intersection. Hence the map
U × U → G0 given by multiplication is surjective. Since U × U is quasi-compact, so is G0.

(iii) Again we may assume k = k. Then every connected component of G is the right translation
of G0 by a rational point. �

Let G be a group scheme, locally of finite type over k, and Ĝ be the completion of G along
the identity section e. The group law of G induces a (formal) group law on Ĝ, i.e., we have a
co-multiplication map

(1.10.1) m̂∗ : ÔG,e → ÔG,e⊗̂ÔG,e
where ÔG,e is the completion of OG,e. In particular, for any n ∈ Z≥1, we have a natural map
m̂∗ : OG,e → (OG,e/mn)⊗ (OG,e/mn), where m is the maximal ideal of OG,e.

Theorem 1.11 (Cartier). Let G be a group scheme, locally of finite type over k. If k has charac-
teristic 0, then G is reduced, hence smooth over k.
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Proof. (Oort) Let A = OG,e, m ⊂ A be the maximal ideal, and nil(A) ⊂ A be the nilradical. Since
k is perfect, Gred is a closed subgroup scheme of G. It follows thus from Proposition 1.9(ii) that
Ared = A/nil(A) is a regular local ring. Let mred ⊂ Ared be the maximal ideal of Ared. Then we
have

dim(A) = dim(Ared) = dimk(mred/m
2
red) = dimk

(
m/(m2 + nil(A))

)
.

Thus it suffices to show that nil(A) ⊂ m2. Since then, we will have dimk(m/m2) = dim(A), hence
A is a regular local ring.

Let 0 6= x ∈ nil(A), and n ≥ 2 be the positive integer such that xn−1 6= 0 and xn = 0. Since
A is noetherian, there exists an integer q ≥ 2 with xn−1 /∈ mq. We put B = A/mq, mB = m/mq,
and let x denote the image of x in B. As remarked above, the multiplication law of G induces a
homomorphism m̂∗ : A→ B ⊗B. Since e ∈ G(k) is a two-sided identity element, we have

m̂∗(x) = x⊗ 1 + 1⊗ x+ y with y ∈ mB ⊗mB .

From xn = 0, we get

0 = m̂∗(xn) = m̂∗(x)n = (x⊗ 1 + 1⊗ x+ y)n,

hence

n · (xn−1 ⊗ x) ∈
(
(xn−1mB)⊗mB + mB ⊗m2

B

)
.

Since char(k) = 0, we have (xn−1 ⊗ x) ∈ (xn−1mB) ⊗ mB + mB ⊗ m2
B . This implies that either

xn−1 ∈ xn−1mB , or x ∈ m2
B . If it’s the first case, Nakayama’s lemma would imply that xn−1 = 0.

Hence we have x ∈ m2.
�

Definition 1.12. Let G be a group scheme over k, and Ω1
G be the sheaf of differential 1-forms on

G with respect to k. A section α ∈ Γ(G,Ω1
G) is said to be right invariant (resp. left invariant), if

we have pr∗1(α) = m∗(α) in Γ(G×G, pr∗1Ω1
G) (resp. pr∗2(α) = m∗(α) in Γ(G×G, pr∗2Ω1

G)).

Remark 1.13. Let α be a right invariant differential 1-form of G. For each g ∈ G(k), we denote
by rg : G → G the morphism of right translation by g. Since pr1 ◦ (IdG×(g ◦ π)) = IdG and
m ◦ (IdG×(g ◦ π)) = rg, we have r∗g(α) = (IdG×(g ◦ π))∗m∗α = (IdG×(g ◦ π))∗pr∗1α = α.

Conversely, if k = k and α ∈ Γ(G,Ω1
G) is invariant under any r∗g , then α is right invariant in sense

of 1.12. We have similar remarks for left invariant 1-forms.

Proposition 1.14. Let ωG = e∗Ω1
G be the cotangent space of G at e. Then there is a canonical

isomorphism π∗ωG ' Ω1
G such that the induced adjunction map ωG → Γ(G,Ω1

G) is injective and
identifies ωG with the space of right invariant 1-forms of G.

Proof. Consider the diagram

G
(e◦π,IdG) // G×G τ //

m

$$JJJJJJJJJJ G×G

pr1

��

pr2 // G

π

��
G

π // Spec(k),

where τ is the isomorphism (x, y) 7→ (xy, y). If we consider G × G as a scheme over G via pr2,
then τ is a G-automorphism of G×G. It induces an isomorphism of differential modules

Ω1
G×G/G ' τ

∗Ω1
G×G/G.
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By base change formula for differential modules, we have Ω1
G×G/G ' pr∗1Ω1

G. Thus the above

isomorphism gives rise to an isomorphism

pr∗1Ω1
G ' τ∗pr∗1Ω1

G = m∗Ω1
G.

Pulling back by (e ◦ π, IdG), we get

π∗ωG = (e ◦ π, IdG)∗pr∗1Ω1
G ' (e ◦ π, IdG)∗m∗Ω1

G = Ω1
G.

�

Corollary 1.15. Let f : P1
k → G be a morphism from the projective line to a group scheme G

over k. Then there exists a k-rational point x ∈ G(k), such that f(P1
k) = {x}.

Proof. It’s clear that the image of P1
k is either a curve or a k-rational point of G. If it were the

first case, let X denote the image of P1
k, and k(P1) and k(X) be respectively the fraction fields of

P1
k and X. Then k(P1

k) is a finite extension of k(X). Assume first that the extension k(P1
k)/k(X)

is separable (this is automatic if char(k) = 0). Then the morphism f : P1
k → X ⊂ G is generically

étale, hence there exists a closed point t ∈ P1
k such that the induced map f∗Ω1

G⊗κ(t)→ Ω1
P1

k
⊗κ(t)

is surjective. But according to the previous proposition, Ω1
G is generated by its global sections, so

there exists a global section of Ω1
P1 that is non-vanishing at t. But this is absurd, since Ω1

P1
k
'

OP1
k
(−2) does not have any non-zero global sections at all! In the general case, we denote by L

the separable closure of k(X) in k(P1
k). The purely inseparable finite extension k(P1

k)/L, say of
degree pn, corresponds to the n-th iteration of (relative) Frobenius morphism FrobnP1

k
: P1

k → P1
k

which sends (x0 : x1) 7→ (xp
n

0 : xp
n

1 ). So the morphism f can be factorized as

P1
k

Frobn

P1
k−−−−−→ P1

k
g−→ G,

where g corresponds to the separable field extension L/k(X). Applying the above argument to g,
we still get a contradiction. This completes the proof. �

We end this section by the following proposition due to A. Weil.

Proposition 1.16. Let X be a normal variety over k, and f be a rational map from X to a group
scheme G over k. If f is defined on an open subscheme U ⊂ X with codimX(X − U) ≥ 2, then f
extends to a morphism X → G.

Proof. We may assume k = k̄. Let U ⊂ X be the maximal open subscheme where f is defined.
We write multiplicatively the group law on G. Consider the rational map Φ : X ×X 99K G given
by Φ(x, y) = f(x)f(y)−1. We claim that for any x ∈ X(k), we have x ∈ U(k) if and only if Φ can
be defined at (x, x). The “only if” part is trivial. Now suppose that Φ is defined at (x, x). Let
W denote the maximal open locus where Φ is defined, and Wx denote the open subset of X such
that {x} ×Wx = W ∩ ({x} ×X). We have Wx 6= ∅. As X is irreducible, there exists y ∈ U ∩Wx.
Thus f(x) = Φ(x, y)f(y) is well defined. This proves the claim. By assumption, the codimension
of F = X − U in X is at least 2. We have to show that Φ is defined everywhere on the diagonal
∆(X) ⊂ X ×X. We note first that the locus in ∆(X) where Φ is not defined is exactly ∆(F ), and
Φ(x, x) = e whenever Φ is defined at (x, x), where e ∈ G denotes the identity element. Let D be
the closed subset of X ×X where Φ is not defined. Then each irreducible component of D∩∆(X)
must be of codimension 1 in ∆(X). But by assumption D ∩ ∆(X) = ∆(F ) has codimension at
least 2 in ∆(X). It follows that D∩∆(X) = ∅. In particular, Φ is defined at (x, x). This completes
the proof of the proposition. �
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2. Definition and basic properties of Abelian varieties

Definition 2.1. An abelian variety over k is a proper variety over k equipped with a k-group
scheme structure.

Proposition 2.2. Let X be an abelian variety over k.
(i) X is smooth over k.
(ii) Let ωX = e∗Ω1

X/k be the cotangent space of X at the unit section. Then we have Γ(X,Ω1
X) '

ωX . In particular, if X has dimension 1, then the genus of X equals 1.
(iii) Let Y be a normal variety, and f : Y 99K X be a rational map. Then f extends to a

morphism f : Y → X.
(iv) If Y is a rational variety ( i.e., birationally equivalent to the projective space Pd

k with d ≥ 1),
then any rational map from Y to X is constant.

Proof. Statement (i) follows from Proposition 1.9(ii). For (ii), it follows from 1.14 that Ω1
X/k '

ωX ⊗k OX . So we have

Γ(X,Ω1
X) = ωX ⊗ Γ(X,OX).

But by Lemma 1.8, X is geometrically connected. Hence, we have Γ(X,OX) = k, and (ii) follows.
For statement (iii), we note that the local ring of X at a point of height 1 is a discrete valuation
ring as X is normal. It follows from the valuative criterion of properness that the rational map
f can be defined at all points of height 1. Proposition 1.16 implies that f extends actually to
the whole X. For (iv), we note that X is birationally equivalent to (P1

k)d, and giving a rational
map from Y to X is equivalent to giving a rational from (P1

k)d to X. Statement (iv) now follows
immediately from (iii) and Corollary 1.15. �

Proposition 2.3 (Rigidity Lemma). Let X and Y be varieties over k, Z be a separated k-scheme,
and f : X × Y → Z be a morphism. Assume that X is proper with a k-rational point, and there
exists a closed point y0 ∈ Y such that the image f(X × {y0}) is a single point z0 ∈ Z. Then there
is a morphism g : Y → Z such that f = g ◦ p2, where p2 : X × Y → Y is the natural projection.

Proof. Choose a k-rational point x0 of X, and define g : Y → Z by g(y) = f(x0, y). Since Z is
separated, the locus in X×Y where f and g◦p2 coincide is closed in X×Y . As X×Y is connected,
to show that f = g ◦ p2, we just need to show that these morphisms coincide on some open subset
of X ×Y . Let U be an affine open neighborhood of z0 in Z, F = Z\U . Then G = p2(f−1(F )) is a
closed subset of Y . Since f(X × {y0}) = {z0} by assumption, we have y0 /∈ G. There exists thus
an affine open neighborhood V of y0 such that V ∩ G = ∅. It’s easy to see that f(X × V ) ⊂ U .
Since U is affine, the morphism f : X × V → U is determined by the induced morphism

f∗ : Γ(U,OU )→ Γ(X × V,OX×V ) ' Γ(X,OX)⊗ Γ(V,OV ).

As X is proper, reduced, connected and has a k-rational point, we have Γ(X,OX) ' k. That
means the morphism f : X × V → U actually factors through the projection p2 : X × V → V .
Hence f and g ◦ p2 coincide on X × V . �

Corollary 2.4. Let X be an abelian variety over k, Y be a group scheme over k, and f : X → Y
be a morphism of k-schemes. Then there exists a point a ∈ Y (k) and a homomorphism of group
schemes h : X → Y such that f = Ta ◦ h, where Ta is the right translation by a.

Proof. Let e be the unit section of X, and a = f(e). Define h : X → Y by h(x) = f(x) · a−1.
Consider the morphism

Φ : X ×X → Y (u, v) 7→ h(uv)h(v)−1h(u)−1.



NOTES ON ABELIAN VARIETIES 7

We have Φ(e, x) = Φ(x, e) = e for any point x in X. By the rigidity lemma, it follows that Φ is
the constant map to e. Hence, h is a homomorphism of abelian varieties. �

Corollary 2.5. Any abelian variety over k is a commutative group scheme.

Proof. By Corollary 2.4, any morphism of abelian varieties that sends the unit section to the
unit section is a homomorphism. The corollary then follows by applying this fact to the inverse
morphism of an abelian variety. �

From now on, we denote additively the group law of an abelian variety X, by 0 its unit element.
Let Y and Z be reduced closed subschemes of X. Assume that either Y or Z is geometrically
reduced. Denote by Y + Z the image of Y × Z the addition morphism m : X × X → X, which
is a closed subset of X since m is proper. If we endow Y + Z with the reduced closed subscheme
structure, then m induces a surjection Y × Z → Y + Z.

Lemma 2.6. Let X be an abelian variety over k, and Y ⊂ X be a closed subvariety stable under the
addition morphism. Then Y contains 0 and is stable under the inversion morphism; in particular,
Y is an abelian variety.

Proof. Consider the isomorphism

Φ : X ×X → X ×X (x, y) 7→ (x, x+ y).

Since Y is stable under addition, the image Φ(Y ×Y ) lies in Y ×Y . But both Y ×Y and Φ(Y ×Y )
are irreducible varieties of the same dimension. We have Φ : Y ×Y ' Y ×Y . In particular, for any
y ∈ Y , Φ−1(y, y) = (y, 0) belongs to Y × Y . Thus 0 belongs to Y. Moreover, Φ−1(y, 0) = (y,−y)
belongs to Y × Y . This proves Y is stable under inversion. �

Definition 2.7. Let X be an abelian variety over k. We say a closed subvariety Y ⊂ X is an
abelian subvariety if Y is stable under addition. We say X is a simple abelian variety if it has no
non-trivial abelian subvarieties.

Lemma 2.8. Let X be an abelian variety of dimension d, and W be a geometrically irreducible
closed subvariety of X containing 0. Then there exists a unique abelian subvariety Y ⊂ X con-
taining W such that for any abelian subvariety A of X containing W , we have Y ⊂ A. Moreover,

there exists an integer 1 ≤ h ≤ d such that any point x ∈ Y (k) can be represented as
∑h
i=1 ai with

ai ∈W (k).

Proof. If dim(W ) = 0, then W reduces to {0}, and the lemma is trivial. Suppose dim(W ) ≥ 1.
For any integer n ≥ 1, let W (n) be the image of

W ×W × · · · ×W︸ ︷︷ ︸
n times

→ X (x1, · · · , xn) 7→ x1 + x2 + · · ·+ xn.

Then W (n) is a closed geometrically irreducible subvariety of X, and we have W (n) ⊂W (n+1). It’s
clear that any abelian subvariety containing W must contain W (n), and any point x ∈W (n)(k) can
be written as

∑n
i=1 ai with ai ∈ W (k). Let h be the minimal integer such that W (h) = W (h+1).

By induction, we see that W (h) = W (n) for any n ≥ h. As 1 ≤ dim(W (m)) < dim(W (m+1)) for
m ≤ h − 1, we have h ≤ d. For x, y ∈ W (h), we have x + y ∈ W (2h) = W (h). By 2.6, this means
that Y = W (h) is an abelian subvariety of X. �

In the situation of the above lemma, we say Y is the abelian subvariety generated by W .
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Proposition 2.9. Let X be an abelian variety over k of dimension d, D be the support of a divisor
of X, W be a closed subvariety containing 0 and disjoint from D, and Y the abelian subvariety
generated by W . Then D is stable under translation by Y , i.e., D+Y = D in the notations of 2.5.

Proof. We may assume k algebraically closed. Up to replacing D by one of its irreducible compo-
nents, we may assume D is irreducible. Let X1 be the image of the morphism D ×W → X given
by (x, y) 7→ x − y. Then X1 is an irreducible closed subvariety of X containing D, since 0 ∈ W .
So we have either X1 = X or X1 = D. If X1 = X, as 0 ∈ X, we have 0 = x − y with x ∈ D(k)
and y ∈ W (k). This means x = y ∈ D ∩W , which contradicts with the assumption that D and
W are disjoint. We have thus X1 = D, i.e., we have a− w ∈ D for any a ∈ D(k) and w ∈ W (k).

Since any b ∈ Y (k) can be written as b = −
∑h
i=1 wi for some h ≤ d and wi ∈ W (k) by Lemma

2.8, we see by induction that D contains D + Y . �

Corollary 2.10. Let D be a divisor of an abelian variety X, and W be a closed subvariety of X
disjoint from D. Then for any points w,w′ ∈W (k), D is stable under the translation by w′ − w.

Proof. We may assume D effective and reduced. Note that T−w(W ) contains 0 and is disjoint from
T−w(D). The corollary follows immediately from the proposition. �

Corollary 2.11. Let X be a simple abelian variety, D be a nontrivial divisor of X. Then any
closed subvariety of X of positive dimension has a nontrivial intersection with D.

3. Theorem of the cube and its consequences

We will assume the following theorem in algebraic geometry, and its proof can be found in
[Ha77] or [Mu70, §5].

Theorem 3.1. Let f : X → Y be a proper morphism of locally noetherian schemes, F be a
coherent sheaf on X, flat over Y . Then there is a finite complex concentrated in degrees [0, n]

K• : 0→ K0 → K1 → · · · → Kn → 0

consisting of OY -modules locally free of finite type, such that for any morphism g : Z → Y and
any integer q ≥ 0 we have a functorial isomorphism

Hq(X ×Y Z, p∗1(F ))
∼−→ Hq(Z, g∗(K•)),

where p1 is the projection p1 : X ×Y Z → X.

This important theorem has many consequences on the cohomology of schemes. Here, what we
need is the following

Corollary 3.2. Let X,Y, f and F be as in the theorem. Then for any integer q ≥ 0, the function
on Y with values in Z defined by

y 7→ dimκ(y)H
q(Xy,Fy)

is upper semi-continuous on Y , i.e., for any integer d ≥ 0 the subset {y ∈ Y ; dimκ(y)H
q(Xy,Fy) ≥

d} is closed in Y .

Proof. The problem is local for Y , so we may assume Y = Spec(A) is affine and all the components
of the complex K• are free A-modules of finite type. Let dq : Kq → Kq+1 be the coboundary
operator of K. Then we have

dimκ(y)H
q(Xy,Fy) = dimκ(y) Ker(dq ⊗ κ(y))− dimκ(y) Im(dq−1 ⊗ κ(y))

= dimκ(y)(K
q ⊗ κ(y))− dimκ(y) Im(dq ⊗ κ(y))− dimκ(y) Im(dq−1 ⊗ κ(y)).
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The first term being constant on Y , it suffices to prove that, for any q, the function y 7→ g(y) =
dimκ(y) Im(dq ⊗A κ(y)) is lower semi-continuous on Y , i.e., the subset of Y consisting of points y
with g(y) ≤ r is closed for any integer r ≥ 0. The condition that g(y) ≤ r is equivalent to saying
that the morphism (∧r+1dq) ⊗A κ(y) : Kq ⊗A κ(y) → Kq+1 ⊗A κ(y) is zero. Since both Kq and
Kq+1 are free A-modules, ∧r+1dq is represented by a matrix with coefficients in A. The locus
where ∧r+1dq vanishes is the common zeros of all the coefficients of its matrix.

�

Proposition 3.3 (See-Saw principle). Let X be a proper variety, Y be a locally noetherian scheme
over k and L be a line bundle on X × Y . Then there exists a unique closed subscheme Y1 ↪→ Y
satisfying the following properties:

(i) If L1 is the restriction of L to X × Y1, there is a line bundle M1 on Y1 and an isomorphism
p∗2M1 ' L1 on X × Y1;

(ii) If f : Z → Y is a morphism such that there exists a line bundle K on Z and an isomorphism
p∗2(K) ' (IdX ×f)∗(L) on X × Z, then f can be factored through g : Z → Y1 and K ' g∗(M1).

First, we prove the following

Lemma 3.4. Let X,Y and L be as in the proposition above. Then the subset of Y , consisting of
points y such that the restriction Ly on X × {y} is trivial, is closed in Y .

Proof. We claim that Ly is trivial if and only if we have both dimκ(y)H
0(X × {y}, Ly) ≥ 1

and dimκ(y)H
0(X × {y}, L−1

y ) ≥ 1. These conditions are clearly necessary. Conversely, if these
dimension conditions are satisfied, then there are non-trivial morphisms f : OX×{y} → Ly and
g : Ly → OX×{y}. Since X is a proper variety, we have Γ(X × {y},OX×{y}) = κ(y). Hence the
composite g ◦ f : OX×{y} → Ly → OX×{y} is necessarily an isomorphism. This shows that both f
and g are isomorphisms, hence Ly is trivial. The lemma then follows immediately from Corollary
3.2. �

Proof of Prop. 3.3. The uniqueness of Y1 follows immediately from the universal property of Y1.
Since different local pieces of Y1 will patch together by the uniqueness of Y1, it’s sufficient to prove
the existence of Y1 locally for the Zariski topology of Y . Let F be the subset of points y ∈ Y
such that the restriction Ly to X × {y} is trivial. Then F is a closed subset by Lemma 3.4. If the
desired Y1 exists, then its underlying topological space is exactly F . Let y ∈ F be a closed point,
and Yy be the localization of Y at y. We just need to prove the existence of Y1 for Yy, since then
Y1 will naturally spread out to a closed subscheme of a certain open neighborhood of y in Y . Up
to replacing Y by Yy, we may assume Y = Spec(A) is local with closed point y and Ly is trivial.

Let K• = (0 → K0 α−→ K1 → · · · ) be the complex of finite free A-modules given by Theorem
3.1 for the sheaf L. For an A-module N , we put N∗ = HomA(N,A). Let M denote the cokernel
of the induced map α∗ : K1∗ → K0∗. Then for any A-algebra B, if we denote XB = X ⊗k B and
by LB the pullback of L on XB , we have

H0(XB , LB) = Ker(α⊗A B) = HomA(M,B) = HomB(M ⊗A B,B).

In particular, we have H0(X × {y}, Ly) = Homκ(y)(M ⊗A κ(y), κ(y)). Since Ly is trivial by
assumption, we have dimκ(y)(M ⊗A κ(y)) = 1. By Nakayama’s lemma, there exists an ideal I ⊂ A
such that M ' A/I as A-modules. Then for any A-algebra B, H0(XB , LB) is a free B-module
of rank 1 if and only if the structure map A → B factors as A → A/I → B. Applying the same
process to the sheaf L−1, we get another ideal J ⊂ A such that for any A-algebra B, H0(XB , L

−1
B )

is free of rank 1 over B if and only if B is actually an A/J-algebra. We claim that the closed
subscheme Y1 = Spec(A/(I + J)) satisfies the requirements of the proposition. Condition (ii) is
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immediate by our construction of X×Y1. Let L1 denote the restriction of L on Y1. It’s sufficient to
prove that L1 is a trivial line bundle. Let f0 and g0 be respectively generators of H0(X ×{y}, Ly)
and H0(X × {y}, L−1

y ) such that their image is 1 by the canonical map

H0(X × {y}, Ly)×H0(X × {y}, L−1
y )→ H0(X × {y},OX×{y}) = κ(y).

This is certainly possible, since Ly is trivial. Let f ∈ H0(X ×Y1, L1) (resp. g ∈ H0(X ×Y1, L
−1
1 ))

be a lift of f0 (resp. g0). Up to modifying f , we may assume the image of (f, g) is 1 by the
canonical product morphism

H0(X × Y1, L1)×H0(X × Y1, L
−1
1 )→ H0(X × Y1,OX×Y1

) ' A/(I + J).

If we denote still by f : OX×Y1
→ L1 (resp. by g : L1 → OX×Y1

) the morphism of line bundles
induced by f (resp. by g), we have g ◦ f = IdOX×Y1

and f ◦ g = IdL1
. This proves that L1 is

trivial. �

Theorem 3.5 (Theorem of the Cube). Let X and Y be proper varieties over k, Z be a connected
k-scheme of finite type, and x0 ∈ X(k), y0 ∈ Y (k) and z0 ∈ Z. Let L be a line bundle on X×Y ×Z
whose restrictions to {x0}× Y ×Z, X ×{y0}×Z and X × Y ×{z0} are trivial. Then L is trivial.

Proof. (Mumford) By Proposition 3.3, there exists a maximal closed subscheme Z ′ ⊂ Z such that
L|X×Y×Z′ ' p∗3(M), where p3 is the projection X×Y ×Z ′ → Z ′ and M is a line bundle on Z ′. As
z0 ∈ Z ′, Z ′ is non-empty. After restriction to {x0} × Y × Z ′, we see that M ' O′Z . It remains to
show that Z ′ = Z. Since Z is connected, it suffices to prove that if a point belongs to Z ′, then Z ′

contains an open neighborhood of this point. Denote this point by z0. Let OZ,z0 be the local ring
of Z at z0, m be its maximal ideal, and κ(z0) = OZ,z0/m, and Iz0 be the ideal of Z ′×Z Spec(OZ,z0).
It’s sufficient to prove that Iz0 = 0. If not, since ∩n≥1m

n = 0 by Krull’s theorem, we would have
an integer n ≥ 1 such that mn ⊃ Iz0 and mn+1 + Iz0 . Hence (mn+1 + Iz0)/mn+1 is a non-zero
subspace of mn/mn+1. We put J1 = mn+1 + Iz0 , then there exists mn+1 ⊂ J2 ( J1 such that
dimκ(z0)(J1/J2) = 1. Let Zi = Spec(OZ,z0/Ji) for i = 1, 2. We have Z1 ⊂ Z2, and the ideal of Z1

in Z2 is generated by an element a ∈ Iz0 . We have an exact sequence of abelian sheaves over the
topological space X × Y × {z0}

0→ OX×Y×{z0}
u−→ O×X×Y×Z2

→ O×X×Y×Z1
→ 1,

where u is given by x 7→ 1 + ax. Since H0(X × Y × Zi,O×X×Y×Zi
) is canonically isomorphic to

H0(Zi,O×Zi
) for i = 1, 2, we see that the natural map H0(X × Y ×Z2,O×X×Y×Z2

)→ H0(X × Y ×
Z1,O×X×Y×Z1

) is surjective. Hence, we have an exact sequence of cohomology groups
(3.5.1)
0→ H1(X×Y ×{z0},OX×Y×{z0})→ H1(X×Y ×{z0},O×X×Y×Z2

)→ H1(X×Y ×{z0},O×X×Y×Z1
).

By our construction, L1 = L|X×Y×Z1
is trivial, and L2 = L|X×Y×Z2

is not trivial. If we denote
by [Li] (i = 1, 2) the cohomology class of Li in H1(X × Y × {z0},O×X×Y×Zi

), we have [L1] = 0
and [L2] 6= 0. By the exact sequence (3.5.1), [L2] comes from a nonzero cohomology class [L0] in
H1(X × Y × {z0},OX×Y×{z0}). We have a commutative diagram

0 // H1(X × Y × {z0},OX×Y×{z0}) //

��

H1(X × Y × {z0},O×X×Y×Z2
)

��
0 // H1({x0} × Y × {z0},O{x0}×Y×{z0})

// H1({x0} × Y × {z0},O×{x0}×Y×Z2
),
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where vertical arrows are induced by the natural restriction {x0} × Y × {z0} ↪→ X × Y × {z0},
and the injectivity of the lower arrow follows in the same way as in (3.5.1). Since L is trivial over
{x0} × Y × Z, in particular over {x0} × Y × Z2, the image of [L0] in

H1({x0} × Y × {z0},O{x0}×Y×{z0}) ' H
1(Y,OY )⊗k κ(z0)

vanishes. Similarly, the image of [L0] in H1(X×{y0}×{z0},OX×{y0}×{z0}) ' H1(X,OX)⊗kκ(z0)
vanishes. On the other hand, we have an isomorphism

H1(X×Y ×{z0},OX×Y×{z0}) ' H
1(X×Y,OX×Y )⊗kκ(z0)

∼−→ (H1(X,OX)⊕H1(Y,OY ))⊗kκ(z0)

by Künneth formula, where the latter map is induced by the inclusion ({x0}× Y )∪ (X ×{y0}) ↪→
X × Y . We conclude that [L0] must vanish. This is a contradiction, and the proof of the theorem
is complete.

�

Remark 3.6. A slightly different way to prove that Z ′ contains an open neighborhood of z0 is
the following. First, we note as above that it’s sufficient to show the restriction of L to X × Y ×
Spec(OZ,z0) is trivial. Let A be the completion of OZ,z0 , S = Spec(A), Sn = Spec(OZ,z0/mn+1),
and (X × Y × S)∧ be the completion of X × Y × S along the closed subscheme X × Y × {z0}.
Then we have canonical morphisms of Picard groups

Pic(X × Y × Spec(OZ,z0)) ↪→ Pic(X × Y × S)
∼−→ Pic((X × Y × S)∧) = lim←−

n

Pic(X × Y × Sn),

where the injectivity of this map follows from the descent of coherent sheaves by faithfully flat and
quasi-compact morphisms, and the second isomorphism is Grothendieck’s existence theorem of
coherent sheaves in formal geometry [EGA III 5.1.4]. Hence it suffices to prove that the restriction
Ln = L|X×Y×Sn

is trivial for all n ≥ 0. We prove this by induction on n. The case n = 0 is a
hypothesis of the theorem. We now assume n ≥ 1 and Ln−1 is trivial. We have an exact sequence
of abelian sheaves on X × Y × {z0}

0→ OX×Y×{z0} ⊗k m
n/mn+1 u−→ O×X×Y×Sn

→ O×X×Y×Sn−1
→ 1,

where u is given by x 7→ 1 + x. Taking cohomologies, we get

0→ H1(X × Y × {z0},OX×Y×{z0})⊗k m
n/mn+1 → Pic(X × Y × Sn)→ Pic(X × Y × Sn−1).

By induction hypothesis the class of Ln−1 in Pic(X × Y × Sn−1) is zero, so the class of Ln in
Pic(X ×Y ×Sn) comes from a class in H1(X ×Y ×{z0},OX×Y×{z0}). Then we can use the same
argument as above to conclude that this cohomology class must vanish.

Proposition 3.7. Let X be an abelian variety over k, pi : X×X×X → X be the projection onto
the i-th factor, mi,j = pi + pj : X ×X ×X → X, and m123 : p1 + p2 + p3 : X ×X ×X → X. Then
for any line bundle L on X, we have

M = m∗123L⊗m∗12L
−1 ⊗m∗13L

−1 ⊗m∗23L
−1 ⊗ p∗1L⊗ p∗2L⊗ p∗3L ' OX×X×X .

Equivalently, if S is a k-scheme and f, g, h are any S valued points of X, we have

(3.7.1) (f + g + h)∗L ' (f + g)∗L⊗ (f + h)∗L⊗ (g + h)∗L⊗ f∗L−1 ⊗ g∗L−1 ⊗ h∗L−1.

Proof. Let i1 : X × X → X × X × X be the morphism given by (x, y) 7→ (0, x, y). We have
m123 ◦ i1 = m, m12 ◦ i1 = p1, m13 ◦ i1 = p2, m23 ◦ i1 = m, p1 ◦ i1 = 0, p2 ◦ i1 = p1, and p3 ◦ i1 = p2.
So we have

M |{0}×X×X = i∗1M = m∗L⊗ p∗1L−1 ⊗ p∗2L−1 ⊗m∗L−1 ⊗ p∗1L⊗ p∗2L ' OX×X .
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Similarly, both M |X×{0}×X and MX×X×{0} are trivial. The corollary follows from Theorem 3.5.
�

Corollary 3.8. Let X be an abelian variety, nX be the morphism of multiplication by n ∈ Z on
X. Then for any line bundle L on X, we have

(3.8.1) (nX)∗L ' L
n2+n

2 ⊗ (−1X)∗L
n2−n

2 .

Proof. The formula (3.8.1) for n < 0 follows from the case n > 0 by applying (−1)∗X . We now
prove the corollary for n ≥ 1 by induction. The cases with n = 0, 1 are trivial. Assume now n ≥ 1
and (3.8.1) has been verified for all positive integers less than or equal to n. Taking f = nX ,
g = 1X , and h = −1X in the formula (3.7.1), we get

(n+ 1)∗XL ' (n∗XL)2 ⊗ (n− 1)∗XL
−1 ⊗ L⊗ (−1X)∗L.

The formula (3.8.1) is then verified by an easy computation. �

Corollary 3.9 (Square Theorem). Let X be an abelian variety over k, L a line bundle on X. Let
S be any k-scheme, XS = X×S, LS = p∗XL, x, y be two S-valued points of X, and Tx : XS → XS

be the translation by x. Then there exists a line bundle N on S such that

T ∗x+yLS ⊗ LS ' T ∗xLS ⊗ T ∗yLS ⊗ p∗SN,
where pS : XS → S is the natural projection onto S.

Proof. Let β : S → X ×X be the morphism s 7→ (x(s), y(s)), and α = (IdX , β) : XS = X × S →
X × (X ×X). By Theorem of the cube 3.7, we have

α∗(m∗123L) ' α∗(m∗12L⊗m∗13L⊗m∗23L⊗ p∗1L−1 ⊗ p∗2L−1 ⊗ p∗3L−1)

It’s easy to see that the above isomorphism is equivalent to

T ∗x+yLS = T ∗xLS ⊗ T ∗yLS ⊗ L−1
S ⊗ p

∗
S(m∗L⊗ p−1

1 L⊗ p−1
2 L).

This proves the corollary. �

Definition 3.10. Let X be an abelian variety, and L a line bundle on X. We denote by K(L)
the maximal closed subscheme X such that (m∗(L)⊗ p∗1L−1)|X×K(L) has the form p∗2(N).

The existence of K(L) is ensured by see-saw principle 3.4. It’s easy to see that 0 ∈ K(L).
Restricted to {0} × K(L), we have N ' L. Thus K(L) is the maximal subscheme Z ⊂ X such
that the restriction of the line bundle (m∗L⊗ p∗1L−1 ⊗ p∗2L−1) to X × Z is trivial.

Lemma 3.11. The closed subscheme K(L) is a closed subgroup scheme of X.

Proof. We have to show that K(L) is stable under the addition of X, i.e., it’s sufficient to prove
that the morphism

X ×K(L)×K(L) ↪→ X ×X ×X IdX ×m−−−−−→ X ×X
factors through the natural inclusion X ×K(L) ↪→ X × X. By the universal property of K(L),
we need to prove that the restriction of (IdX ×m)∗(m∗L⊗ p∗1L−1 ⊗ p∗2L−1) to X ×K(L)×K(L)
is trivial. With the notation of 3.7, we have m ◦ (IdX ×m) = m123, p1 ◦ (IdX ×m) = p1, and
p2 ◦ (IdX ×m) = m23. Therefore, we have

(IdX ×m)∗(m∗L⊗ p∗1L−1 ⊗ p∗2L−1) = m∗123L⊗ p∗1L−1 ⊗m∗23L
−1

' m∗12L⊗m∗13L⊗ p∗1L−2 ⊗ p∗2L−1 ⊗ p∗3L−1

= (m∗12L⊗ p∗1L−1 ⊗ p∗2L−1)⊗ (m∗13L⊗ p∗1L−1 ⊗ p∗3L−1),
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where the second isomorphism uses Proposition 3.7. When restricted to X ×K(L)×K(L), both
m∗12L⊗ p∗1L−1 ⊗ p∗2L−1 and m∗13L⊗ p∗1L−1 ⊗ p∗3L−1 are trivial. This proves the lemma.

�

Proposition 3.12. Consider the statements:
(i) L is ample on X.
(ii) K(L) is a finite group scheme.
We have (i)⇒ (ii). Conversely, if L = OX(D) is the line bundle associated with an effective

divisor D, then (i) and (ii) are both equivalent to
(iii) The group {x ∈ X(k);Tx(D) = D} (equality as divisors) is finite.

Proof. By considering scalar extension of X to k, we may assume that k is algebraically closed.
For (i)⇒(ii), suppose K(L) is not finite. Let Y be the reduced closed subscheme of the neutral
connected component of K(L). Then Y is a smooth connected closed subgroup scheme of X of
dimension d > 0; in particular, Y is an abelian scheme. As L is ample, so is the restriction
LY = L|Y . By our construction, the line bundle m∗LY ⊗p∗1L−1

Y ⊗p∗2L
−1
Y is trivial. Pulling back by

the morphism Y → Y ×Y given by y 7→ (y,−y), we see that LY ⊗ (−1Y )∗LY is trivial. But −1Y is
an automorphism of Y and LY is ample, so LY ⊗ (−1Y )∗LY is also ample. This is a contradiction.

Assume L = OX(D) is effective. The implication (ii)⇒(iii) being trivial, we just need to prove
(iii)⇒(i). By Serre’s cohomological criterion of ampleness [EGA, III 4.4.2], it’s sufficient to prove
that the linear system |2D| has no base point, and defines a finite morphism X → PN . By 3.9, the
linear system |2D| contains the divisors Tx(D)+T−x(D) (addition for divisors) for all x ∈ X(k). For
any u ∈ X(k), we can find x ∈ X(k) such that u±x /∈ SuppD, i.e., we have u /∈ Tx(D) +T−x(D).
This shows that the linear system |2D| has no base point, and defines a morphism φ : X → PN .
If φ is not finite, we can find a closed irreducible curve C such that φ(C) is a point. It follows
that for any E ∈ |2D|, either E contains C or is disjoint with C. In particular, there are infinitely
many x ∈ X(k) such that Tx(D) + T−x(D) is disjoint from C. For such an x ∈ X(k), it follows
from Corollary 2.10 that every irreducible component of Tx(D) + T−x(D) is invariant under the
translation by a − b for any a, b ∈ C(k). In particular, D is invariant under translation by a − b
for any a, b ∈ C(k). This contradicts the assumption that the group {x ∈ X(k);Tx(D) ' D} is
finite. �

Theorem 3.13. Every abelian variety over k is projective.

Proof. Let X be an abelian variety over k of dimension d ≥ 1. We need to prove that there exists an
ample line bundle on X. First, we prove this in the case k = k. Let U be an affine open subscheme
of X such that each irreducible component of the complementary X\U has dimension d − 1. We
denote by D the divisor defined by the reduced closed subscheme X\U . Up to translation, we may
assume that 0 ∈ U . Consider the subgroup H ⊂ X defined by

H(k) = {x ∈ X(k);Tx(D) = D}.

It’s easy to see that H is closed in X. On the other hand, U is stable under translation Tx for
x ∈ H. Since 0 ∈ U , we have H ⊂ U . It follows that H is both proper and affine, hence finite.
The above proposition now implies that OX(D) is ample. In the general case, we can choose an
ample divisor D defined over a finite extension k′/k. If k′/k is separable, we may assume k′/k is
Galois. The divisor

D̃ :=
∑

σ∈Gal(k′/k)

σ(D)
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is then an ample divisor defined over k. If k′/k is purely inseparable, there exists an integer m
such that αp

m ∈ k for all α ∈ k′. Then pm ·D is an ample divisor defined on k. The general case
is a composition of these two special cases. �

4. Quotient by a finite group scheme

Definition 4.1. Let G be a group scheme over k, e ∈ G(k) be the unit element, and m denote its
multiplication. An action of G on a k-scheme X is a morphism µ : G×X → X such that

(i) the composite

X ' Spec(k)×X e×IdX−−−−→ G×X µ−→ X

is the identity;
(ii) the diagram

G×G×X
m×IdX //

IdX ×µ
��

G×X
µ

��
G×X

µ // X
is commutative.

The action µ is said to be free if the morphism

(µ, p2) : G×X → X ×X
is a closed immersion.

From the functorial point of view, giving an action of G on X is equivalent to giving for every
S-valued point f of G, an automorphism µf : X × S → X × S of S-schemes, functorially in S.
The two conditions in the definition above is equivalent to requiring that G(S) → AutS(X × S)
sending f 7→ µf is a homomorphism of groups.

Definition 4.2. Let X and Y be k-schemes equipped with a G-action. A morphism of k-schemes
f : Y → X is called G-equivariant, if the diagram

G×X
µX //

IdG×f
��

X

f

��
G× Y

µY // Y

is commutative. In particular, if the action of G on Y is trivial, a G-equivariant morphism f : X →
Y is called G-invariant. A G-invariant morphism f : X → A1

k is called a G-invariant function on
X.

Definition 4.3. Let X be a k-scheme equipped with an action of G, F be a coherent sheaf on
X. A lift of the action µ to F is an isomorphism λ : p∗2F

∼−→ µ∗F of sheaves on G×X such that
the diagram of sheaves on G×G×X

(4.3.1) p∗3F
p∗23(λ) // p∗23(µ∗F ) (IdG×µ)∗(p∗2F )

(IdG×µ)∗(λ)

��
(m× IdX)∗(p∗2F )

(m×IdX)∗(λ) // (m× IdX)∗(µ∗F ) (IdG×µ)∗(µ∗F )

is commutative, where p23 : G×G×X → G×X is the natural projection onto the last two factors,
pi is the projection onto the i-th factor.
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From the functorial point of view, a lift of µ on F is to require, for every S-valued point f of
G, an isomorphism of coherent sheaves

λf : F ⊗OS
∼−→ µ∗f (F ⊗OS)

on X × S, where µf : X × S → X × S is the automorphism determined by µ. The commutative
diagram (4.3.1) is equivalent to requiring that, for any S-valued points f, g of G, we have a
commutative diagram of coherent sheaves on X × S

F ⊗OS
λg //

λfg

��

µ∗g(F ⊗OS)

µ∗g(λf )

��
µ∗fg(F ⊗ S) µ∗gµ

∗
f (F ⊗OS),

where we have used the identification µfg = µf ◦ µg.

Theorem 4.4. Let G be a finite group scheme over k, X be a k-scheme endowed with an action
of G such that the orbit of any point of X is contained in an affine open subset of X.

(i) There exists a pair (Y, π) where Y is a k-scheme and π : X → Y a morphism, satisfying the
following conditions:

• as a topological space, (Y, π) is the quotient of X for the action of the underlying finite
group;

• the morphism π : X → Y is G-invariant, and if π∗(OX)G denotes the subsheaf of π∗(OX)
of G-invariant functions, the natural homomorphism OY → π∗(OX)G is an isomorphism.

The pair (Y, π) is uniquely determined up to isomorphism by these conditions. The morphism π
is finite and surjective. Furthermore, Y has the following universal property: for any G-invariant
morphism f : X → Z, there exists a unique morphism g : Y → Z such that f = g ◦ π.

(ii) Suppose that the action of G on X is free and G = Spec(R) with dimk(R) = n. The π is a
finite flat morphism of degree n, and the subscheme of X ×X defined by the closed immersion

(µ, p2) : G×X → (X,X)

is equal to the subscheme X ×Y X ⊂ X ×X. Finally, if F is a coherent sheaf on Y , π∗F has a
natural G-action lifting that on X, and

F 7→ π∗F

induces an equivalence of the category of coherent OY -modules (resp. locally free OY -module of
finite rank) and the category of coherent OX-modules with G-action (resp. locally free OX-modules
of finite rank with G-action).

Proof. (i) Let x be a point of X, and U be an affine neighborhood of x that contains the orbit of
x. We put V = ∩g∈G(k)gU , where g runs through the set of geometric points of G. Then V is an

affine neighborhood of x in X invariant under the action of G. Up to replacing X by V , we may
and do assume that X = Spec(A) is affine. Let R be the ring of G, ε : R→ k the evaluation map
at the unit element e, and m∗ : R→ R⊗R be the comultiplication map. Then giving an action µ
of G on X is equivalent to giving a map of k-algebras µ∗ : A→ R⊗k A such that the composite

(ε⊗ IdA) ◦ µ∗ : A
µ∗−→ R⊗A ε⊗IdA−−−−→ A
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is the identity map, and that the diagram

A
µ∗ //

µ∗

��

R⊗A

m∗⊗IdA

��
R⊗A

IdR⊗µ∗ // R⊗R⊗A
is commutative.

�

5. The Picard functor

Let S be a scheme, Sch/S be the category of S-schemes, and f : X → S be a proper and flat
morphism. For T ∈ Sch/S, we put XT = X ×S T . We denote by Pic(XT )/Pic(T ) the cokernel of
the natural homomorphism of groups f∗T : Pic(T )→ Pic(XT ) induced by the canonical projection
fT : XT → T . We denote by PicX/S be the abelian functor T 7→ Pic(XT )/Pic(T ) on Sch/S. Let

PicX/S be the associated sheaf of PicX/S with respect to the fppf-topology on Sch/S. In general,

for T ∈ Sch/S, PicX/S(T ) does not coincide with Pic(XT )/Pic(T ). But we have the following

Lemma 5.1. If f : X → S admits a section s, then PicX/S is a sheaf for the fppf-topology of

Sch/S, i.e., for any T ∈ Sch/S, we have PicX/S(T ) = Pic(XT )/Pic(T ).

Proof. Let p : T ′ → T be a fppf-morphism in Sch/S, T ′′ = T ′ ×T T ′, and pi : T ′′ → T ′ be the
canonical projections onto the i-th factor. We have to verify that there is an exact sequence of
abelian groups

0→ Pic(XT )/Pic(T )
p∗−→ Pic(XT ′)/Pic(T ′)

p∗2−p
∗
1−−−−→ Pic(XT ′′)/Pic(T ′′).

�
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