Let k be a field.

1. Let G be an abstract finite group, and $\underline{G}=\operatorname{Spec}(R)$ be the constant group scheme over k which associates to each k-scheme S the group G.
(i) Show that there exists a basis $\left(e_{\sigma}\right)_{\sigma \in G}$ of R over k such that the multiplication of R is given by

$$
e_{\sigma} e_{\tau}= \begin{cases}e_{\sigma} & \text { if } \sigma=\tau \\ 0 & \text { otherwise }\end{cases}
$$

(ii) Find the formula for the comultiplication $m^{*}\left(e_{\sigma}\right)$.
(iii) Assume G is commutative. Describe explicitly the algebra of the Cartier dual of \underline{G}.
2. Let G, \underline{G} be as in Problem 1, $X=\operatorname{Spec}(A)$ be an affine scheme of finite type over k, and $\mu: \underline{G} \times X \rightarrow X$ be an action of \underline{G} on X. So each $\sigma \in G$ gives an automorphism $\sigma: X \rightarrow X$. We denote by $\sigma^{*}: A \rightarrow A$ the induced automorphism on A.
(i) Show that for any $f \in A$, we have

$$
\mu^{*}(f)=\sum_{\sigma \in G} e_{\sigma} \otimes \sigma^{*}(f) \in R \otimes A
$$

(ii) For any $f \in A$, let $P_{f}(T)$ denote the characteristic polynomial of the multiplication by $\mu^{*}(f)$, i.e., $P_{f}(T)=N_{(R \otimes A)[T] / A[T]}\left(1 \otimes T-\mu^{*}(f)\right)$. Show that

$$
P_{f}(T)=\prod_{\sigma \in G}\left(T-\sigma^{*}(f)\right) .
$$

3. Let $G=\operatorname{Spec}(R)$ be a connected finite group scheme over k of order p^{h} (i.e., R is a local Artin k-algebra with residue field k and $\operatorname{dim}_{k}(A)=p^{h}$), $X=\operatorname{Spec}(A)$ be an affine k-scheme of finite type equipped with an action of $G: \mu: G \times X \rightarrow X$.
(i) Show that for any $f \in A$, we have $\mu^{*}(f)=1 \otimes f+g$ with $g \in \mathfrak{m}_{R} \otimes A$, where \mathfrak{m}_{R} is the maximal ideal of R.
(ii) Show there exists a basis $\left(e_{i}\right)_{1 \leq i \leq p^{h}}$ of R over k such that, for any $f \in A$, the matrix of the multiplication by $1 \otimes T-\mu^{*}(f) \in R \otimes A[T]$ under the basis $\left(e_{i} \otimes 1\right)_{1 \leq i \leq p^{h}}$ is lower triangular with all the diagonal entries equal to $T-f$. (Hint: note that there is an integer $m \geq 0$ such that $\mathfrak{m}_{R}^{m+1}=0$ since R is an Artin ring.)
(iii) Show that one has $P_{f}(T)=(T-f)^{p^{h}}$ for any $f \in A$.
4. Assume k is algebraically closed of characteristic 2 . Let E be an elliptic curve over k defined by the affine Weierstrass equation

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

and with origin at the infinity point ($0: 1: 0$).
(i) Show that we can't have $a_{1}=a_{3}=0$ (as E is non-singular).
(ii) Show that a point $P=\left(x_{0}, y_{0}\right) \in E(k)$ has order 2 if and only if $a x_{0}+a_{3}=0$. (Hint: P has order 2 if and only if the tangent line of E at P passes through the infinity point.)
(iii) Assume $E[2](k)=0$. Show that, up to change of variables, E is isomorphic to the elliptic curve of equation $y^{2}+y=x^{3}$.

