Tsinghua 2010 Abelian Varieties Problem Set 4

Let k be a field. A variety over k is a geometrically integral and separated scheme of finite type over k.

1. Let X be a proper variety over k with a rational point $x \in X(k)$, and $\underline{\operatorname{Pic}}_{X / k}$ be the Picard functor of X relative to k.
(i) Let $S=\operatorname{Spec}\left(k[\epsilon] / \epsilon^{2}\right), e: \operatorname{Spec}(k) \rightarrow S$ be the zero section given by $e^{*}: \epsilon \mapsto 0$. We define the tangent space of the fuctor $\underline{\mathrm{Pic}}_{X / k}$ at 0 as

$$
T_{\mathrm{Pic}_{X / k}, 0}=\left\{[L] \in \underline{\operatorname{Pic}}_{X / k}(S) ; e^{*}(L)=\mathcal{O}_{X}\right\} .
$$

Show that we have a canonical isomorphism $T_{\operatorname{Pic}_{X / k}, 0} \simeq H^{1}\left(X, \mathcal{O}_{X}\right)$.
(ii) For any fpqc-morphism $f: T^{\prime} \rightarrow T$ of k-schemes, we have an exact sequence of abelian groups

$$
0 \rightarrow \underline{\operatorname{Pic}}_{X / k}(T) \xrightarrow{f^{*}} \underline{\operatorname{Pic}}_{X / k}\left(T^{\prime}\right) \xrightarrow{p_{1}^{*}-p_{2}^{*}} \underline{\operatorname{Pic}}_{X / k}\left(T^{\prime} \times_{T} T^{\prime}\right) .
$$

(Hint: use rigidified line bundles to represent elements in $\underline{\mathrm{Pic}}_{X / k}$, and the key point is the automorphism group of a rigidified line bundle is trivial. So by fpqc-descent, ...)
2. Let X be an abelian variety, and L be a line bundle on X. Show that $L \otimes\left(-1_{X}\right)^{*}\left(L^{-1}\right)$ is in $\underline{\operatorname{Pic}}_{X / k}^{0}(k)$.
3. Let $f: X \rightarrow Y$ be a proper morphism of locally noetherian schemes, and \mathcal{F} be a coherent sheaf on X flat over Y, and $y \in Y$. We denote by $X_{y}=f^{-1}(y)$ the fiber of f over y, and by \mathcal{F}_{y} the pullback of \mathcal{F} to X_{y}. Show that $H^{q}\left(X_{y}, \mathcal{F}_{y}\right)=0$ for any $q \geq n$ if and only if $\left(R^{q} f_{*} \mathcal{F}\right)_{y}=0$ for $q \geq n$.
4. Let X be an abelian variety of dimension n over k. Prove that $H^{n}\left(X, \mathcal{O}_{X}\right)$ is one dimensional. (Hint: use Serre daulity.)
5. (Koszul complex) This exercise will be used in the course of next week.

Let A be a noetherian local commutative ring with maximal ideal \mathfrak{m}_{A}. We say that a sequence of elements $x_{1}, \cdots, x_{n} \in \mathfrak{m}_{A}$ is regular, if for any $1 \leq i \leq n$ the image of x_{i} in $A /\left(x_{1}, \cdots, x_{i-1}\right)$ (with $x_{0}=0$) is non-zero divisor. Let x_{1}, \cdots, x_{n} be a regular sequence of A. The Koszul complex associated with $\left(x_{1}, \cdots, x_{n}\right)$, denoted by $\operatorname{Kos}^{\bullet}\left(x_{1}, \cdots, x_{n}\right)$, is defined as

$$
0 \rightarrow \wedge^{n}\left(A^{n}\right) \xrightarrow{d_{n}} \wedge^{n-1}\left(A^{n}\right) \xrightarrow{d_{n-1}} \cdots \xrightarrow{d_{2}} A^{n} \xrightarrow{d_{1}} A \rightarrow 0 .
$$

Here $\wedge^{r}\left(A^{n}\right)$ is placed at degree $-r$, and $d_{r}: \wedge^{r}\left(A^{n}\right) \rightarrow \wedge^{r-1}\left(A^{n}\right)$ is given by

$$
e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots \wedge e_{i_{r}} \mapsto \sum_{j=1}^{r}(-1)^{j-1} x_{i_{j}} e_{i_{1}} \wedge \cdots \wedge \hat{e}_{i_{j}} \wedge \cdots e_{i_{r}}
$$

where $\left(e_{i}\right)_{1 \leq i \leq n}$ is the standard basis of A^{n}, and $\hat{e}_{i_{j}}$ means it's omitted in the wedge.
(i) Show that $H^{q}\left(\operatorname{Kos}^{\bullet}\left(x_{1}, \cdots, x\right)\right)=0$ if $q \neq 0$ and $H^{0}\left(\operatorname{Kos}^{\bullet}\left(x_{1}, \cdots, x_{n}\right)\right)=A /\left(x_{1}, \cdots, x_{n}\right)$.
(ii) For a complex M^{\bullet} of A-modules, we denote by M^{r} the A-module at degree r. Let $L^{\bullet}=\operatorname{Kos}^{\bullet}\left(x_{1}, \cdots, x_{n}\right)^{\vee}$ be the dual complex of $K^{\bullet}=\operatorname{Kos}^{\bullet}\left(x_{1}, \cdots, x_{n}\right)$, i.e., L^{\bullet} is the complex concentrated in degrees $[0, n]$ such that $L^{r}=\operatorname{Hom}_{A}\left(K^{-r}, A\right)$ for any $r \in \mathbf{Z}$ and $d^{r}: L^{r} \rightarrow L^{r+1}$ is the morphism induced by $d_{r+1}: K^{-r-1}=\wedge^{r+1}\left(A^{n}\right) \rightarrow K^{-r}=\wedge^{r}\left(A^{n}\right)$. Show that one has a duality of the Koszul complex: $L^{\bullet}=K^{\bullet}[-n]$.

