1. Let K be an infinite field, V be a K-vector space, $f: V \rightarrow K$ be a function such that for all $v, w \in V$, the function $K \rightarrow K$ given by $x \mapsto f(x v+w)$ is a polynomial with coefficients in K. Show that f is a polynomial function over K.

Let k be a field. For any abelian variety A over k and any line bundle \mathcal{L} on A, we denote by $\phi_{\mathcal{L}}: A \rightarrow A^{\vee}$ the homomorphism given by $a \mapsto T_{a}^{*} \mathcal{L} \otimes \mathcal{L}^{\otimes-1}$, where T_{a} is the translation by a.
2. Let $h: B \rightarrow A$ be a homomorphism of abelian varieties. Show that $\phi_{h^{*} \mathcal{L}}=$ $h^{\vee} \circ \phi_{\mathcal{L}} \circ h$.

A polarized abelian variety is defined to be a couple (A, ϕ) consisting of an abelian variety A and a polarization ϕ of A (that is, an isogeny $A \rightarrow A^{\vee}$ such that $\phi_{\bar{k}}=\phi_{\mathcal{L}}$ for some ample line bundle \mathcal{L} on $A_{\bar{k}}$). A morphism of polarized abelian varieties $(B, \psi) \rightarrow(A, \phi)$ is a homomorphism $h: B \rightarrow A$ such that $\psi=h^{\vee} \circ \phi \circ h$.
3. Let (A, ϕ) be a polarized abelian variety. Show that the group of automorphisms of (A, ϕ) is finite. (Hint: rewrite the condition $\phi=h^{\vee} \circ \phi \circ h$ using Rosati involution and apply the positivity of the latter.)

