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Convention

Rings are assumed to be commutative.
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Chapter 7

UFDs

Theorem 7.1 (Fundamental theorem of arithmetic, cf. Euclid’s Elements 9.14).
Every nonzero integer n ∈ Z can be factorized uniquely (up to permutation of factors)
as a product of primes n = ±p1 · · · pm.

Definition 7.2. Let R be a domain.
(1) x ∈ R is irreducible if x 6= 0, x 6∈ R×, and x = yz implies y ∈ R× or z×.
(2) x, y ∈ R are associates if there exists u ∈ R× such that x = uy.
(3) R is a unique factorization domain (UFD, or factorial ring) if every x ∈ R

satisfying x 6= 0 and x 6∈ R admits a factorization x = a1 · · · am with ai
irreducible, and if x = b1 · · · bn with bj irreducible, thenm = n and there exists
a bijection σ : {1, . . . , n} → {1, . . . , n} such that ai and bσ(i) are associates for
every i).

We say that x ∈ R is prime if xR is a prime ideal. Prime elements are irreducible.
The converse holds in a UFD.

Theorem 7.3. Let R be a domain. Then R is a UFD if and only if the following
conditions are satisfied:
(1) The ascending chain condition for principle ideals of R.
(2) Irreducible elements in R are prime.

Lemma 7.4. Assume that the ascending chain condition holds for principle ideals
of a ring R. Then every x ∈ R satisfying x 6= 0 and x 6∈ R admits a factorization
x = a1 · · · am with ai irreducible.

Corollary 7.5. A PID is a UFD.

Example 7.6. (1) Z, Z[
√
−1] are PIDs, hence UFDs.

(2) Z[
√
−5] is not a UFD. Indeed, 2 · 3 = 6 = (1 +

√
−5)(1−

√
−5).

(3) If R is a UFD, R[X] is a UFD. Note however that neither Z[X] nor k[X, Y ]
(where k is a field) is a PID.

(4) If R is a nonzero UFD, R[X1, X2, . . . ] is a UFD, but not a Noetherian ring.
(5) In R = ⋃∞

n=1 k[X1/n], factorization does not exist in general. In particular, R
does not satisfy the ascending chain condition for principal ideals.

1



2 CHAPTER 7. UFDS



Chapter 8

Primary decomposition

We largely followed [AM, Chapters 4 and 7]. Most other sources define primes
associated to an ideal I of a ring R differently, as prime ideals of the form (I : x).
The two definitions coincide when R is Noetherian.
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Chapter 9

DVRs and Dedekind domains

We studied Artinian rings, which are Noetherian rings of dimension 0. In this
chapter, we study the next simplest case, Noetherian domains of dimension 1. We
start by applying primary decomposition to such domains.

Proposition 9.1. Let R be a Noetherian domain of dimension 1. Every nonzero
ideal I ⊆ R can be uniquely written as a product of primary ideals whose radicals
are distinct.

We would like to further decompose primary ideals into prime powers. We first
look at the local case.

Discrete valuation rings
Recall that the value group of a valuation ring R is K×/R×, where K = Frac(R).

Definition 9.2. A discrete valuation ring (DVR) is a valuation ring whose value
group is isomorphic to Z.

Proposition 9.3. Let R be a valuation ring. The following are equivalent:
(1) R is a DVR.
(2) R is a PID.
(3) R is Noetherian.

For (2) ⇒ (1), we use the following.

Lemma 9.4. Let R be a local ring of dimension > 0. Assume that the maximal
ideal m of R is principal and ⋂∞n=1 m

n = 0. Then R is a DVR. The assumption⋂∞
n=1 m

n = 0 holds if R is a Noetherian domain.

We will see later that the assumption ⋂∞n=1 m
n = 0 holds for R Noetherian.

A generator of the maximal ideal of a DVR is called a uniformizer.
Example 9.5. (1) Let K = Q and let p be a rational prime. The p-adic valuation

vp : K× → Z is defined by vp(pa uv ) = a, where a, u, v ∈ Z, (u, p) = (v, p) = 1.
Every valuation of K× is equivalent to vp (Ostrowski’s theorem).

5



6 CHAPTER 9. DVRS AND DEDEKIND DOMAINS

(2) Let k be a field and let K = k(X). Similarly to (1), for every irreduci-
ble polynomial f ∈ k[X], the f -adic valuation vf : K×× → Z is defined by
vf (fa uv ) = 1, where a ∈ Z, u, v ∈ k[X], (u, f) = (v, f) = 1. Every valuation of
K× is equivalent to vf or v1/X .

(3) Let k be a field and let K = ⋃
n k(X1/n). We have a non-discrete rank 1

valuation v : K× → Q whose restriction to k(X1/n) is 1
n
vX1/n with vX1/N defined

in (2). The valuation ideal m = (X1/n)n≥1 is not finitely generated.
(4) Let F be a field and let vF : F× → Γ. Let K = F (X) (or F ((X))). Then

K× → Z × Γ carrying f = ∑
n≥N anX

n with aN 6= 0 to (N, v(aN)) is a
valuation, of rank > 1 for vF nontrivial. Here Z × Γ is equipped with the
lexicographical order.

(5) Consider the particular case of (4) where F = k(Y ) and vF = vY . Let m be
the valuation ideal. Then m = Y R is principal, but ⋂nmn = (X/Y n)n≥1 is
not finitely generated.

Definition 9.6. We say that a ring R is normal if for every prime p, Rp is an
integrally closed domain.

A normal domain is synonymous to an integrally closed domain.

Proposition 9.7. Let R be a Noetherian local domain that is not a field. Let m be
the maximal ideal and let k = m/m2. The following conditions are equivalent:
(1) R is a DVR.
(2) R is normal of dimension one.
(3) m is principal.
(4) dimk(m/m2) = 1.
(5) Every nonzero ideal of R is a power of m.

For (2)⇒(3), we use the following.

Lemma 9.8. Let R be a normal local domain and assume that the maximal ideal
m is finitely generated and there exists a, b ∈ R such that m = (aR : b). Then m is
principal.

The proposition holds in fact for R a Noetherian local ring of dimension > 0.
The proof uses the Krull intersection theorem (Corollary 10.28).

Dedekind domains
Theorem 9.9. Let R be a Noetherian domain of dimension one. The following are
equivalent:
(1) R is normal.
(2) Every primary ideal of R is a power of a prime ideals.
(3) Every local ring Rp (p 6= 0) is a DVR.

Definition 9.10. A Dedekind domain is a Noetherian domain of dimension one
satisfying the above equivalent conditions.

Corollary 9.11. Every nonzero ideal of a Dedekind domain has a unique factori-
zation as a product of prime ideals.
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Remark 9.12. The following converse of Corollary 9.11 holds: An integral domain
of which every nonzero ideal is a product of prime ideals is a Dedekind domain
[M2, Theorem 11.6].
Example 9.13. A PID is a Dedekind domain.

More examples are given by taking integral closure.

Proposition 9.14. Let A be a normal domain. Let L be a finite separable extension
of K = Frac(A) and let B be the integral closure of A in L. Then B is contained in
a finitely generated A-submodule of L.

Corollary 9.15. Let A be Dedekind domain. Let L be a finite separable extension
of K = Frac(A). Then the integral closure B of A in L is a Dedekind domain.

Remark 9.16. More generally, if A is a Noetherian domain of dimension 1 (not
necessarily normal) and if L is a finite (not necessarily separable) extension of K =
Frac(A), then the normalization B of A in L is a Dedekind domain (even when B
is not finite over A). This follows from the Krull-Akizuki Theorem [M2, Theorem
11.7].
Example 9.17. Let K be a number field (namely, a finite extension of Q). Then the
ring of integers OK (namely, the integral closure of Z in K) is a Dedekind domain
by Corollary 9.15.
Example 9.18. In particular, for K = Q(

√
−5), R = Z[

√
−5] is a Dedekind domain.

The prime ideal p = (2, 1 +
√
−5) is not principal. Indeed, since p2 = 2R, if

p = αR for α = a + b
√
−5, a, b ∈ Z, then (NK/Qα)2 = NK/Q2 = 4, so that

a2 + 5b2 = NK/Qα = 2, which is impossible.
We have 3R = qq′, (1+

√
−5)R = pq, (1−

√
−5)R = pq′, where q = (3, 1+

√
−5),

q′ = (3, 1−
√
−5).

The maximal ideal of the DVR Rp is (1 +
√
−5)Rp.

Example 9.19. Let R = Z[
√

5]. This is a Noetherian domain of dimension one, but
not normal. The integral closure of R in Q(

√
5) is Z[1+

√
5

2 ]. Consider the prime ideal
p = (2, 1 +

√
5) of R. We have p2 = 2p ⊆ 2R ⊆ p. The ideal 2R is p-primary, but

not a power of p.

Definition 9.20. We say that a domain A is Japanese (or N-2) if for every finite
extension L of K = Frac(A), the integral closure of A in L if finite over A. We
say that a Noetherian ring R is Nagata (or universally Japanese) if every finitely
generated integral R-algebra is Japanese.

Grothendieck uses “Japanese” and “universally Japanese” [G, Sections 0.23,
IV.7.6, IV.7.7], while Matsumura uses “N-2” and “Nagata” [M1, Chapter 12].
Example 9.21. (1) Every normal domain of perfect fraction field is Japanese by

Proposition 9.14.
(2) Every field is Nagata. Every Dedekind domain of fraction field of characteristic

0 is Nagata.
(3) Nagata constructed a DVR that is not Nagata (not Japanese?).
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Invertible modules
The nonzero ideals of Dedekind domain is a free commutative monoid with maximal
ideals forming a basis. We now consider the associated free abelian group. There
are a number of generalizations to commutative rings.

Proposition 9.22. Let R be a ring M be a finitely presented module. The following
are equivalent:
(1) For every prime ideal p of R, the Rp-module Mp is isomorphic to Rp.
(2) For every maximal ideal m of R, the Rm-module Mm is isomorphic to Rm.
(3) The evaluation map u : M∗ ⊗R M → R is an isomorphism, where M∗ =

HomR(M,R).
(4) There exists an R-module N such that M ⊗R N is isomorphic to R.

Definition 9.23. A finitely generated R-module M is said to be invertible if it
satisfies the above conditions. The Picard group Pic(R) of a ring R is the abelian
group of isomorphism classes of invertible R-modules M with group law given by
tensor product. The class of M is denoted cl(M).

The identity element of Pic(R) is cl(R) and cl(M)−1 = cl(M∗).
Remark 9.24. The proposition holds more generally for M finitely generated. The
equivalent conditions then imply that M is projective and finitely presented. Inver-
tible R-modules are also called projective R-modules of rank 1. See [B2, II.5].
Remark 9.25. For a local ring R, Pic(R) = 0.

Let R be a domain and let K = Frac(R).

Lemma 9.26. Every invertible R-module M is an R-submodule of K.

Definition 9.27. An R-submodule of K is called a fractional ideal of R if there
exists x ∈ R, x 6= 0 such that xI ⊆ R.

Example 9.28. (1) Every ideal of R is a fractional ideal of R.
(2) For every x ∈ K, xR is a fractional ideal of R. Such fractional ideals are said

to be principal. A principal fractional ideal is free of rank ≤ 1. Conversely,
any free fractional ideal is principal.

Remark 9.29. Every finitely generated R-submodule of K is a fractional ideal. Con-
versely, if R is Noetherian, then every fractional ideal if finitely generated.

R-submodules of K form a commutative monoid, with identity element R and
IJ = {∑n

i=1 aibi | ai ∈ I, bi ∈ J}. We write I−1 = {x ∈ K | xI ⊆ R}.

Proposition 9.30. Let I be an R-submodule of K. The following are equivalent:
(1) I is finitely generated and for every prime ideal p, Ip ' Rp.
(2) I is finitely generated and for every maximal ideal m, Im ' Rm.
(1′) I is finitely generated and for every prime ideal p, Ip(Ip)−1 ' Rp.
(2′) I is finitely generated and for every maximal ideal m, Im(Im)−1 ' Rm.
(3) II−1 = R.
(4) There exists an R-submodule J of K such that IJ = R.
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Definition 9.31. An invertible (fractional) ideal is a fractional ideal satisfying the
above conditions. We let CaDiv(R) (for Cartier divisors) denote the abelian group
of invertible ideals.

Proposition 9.32. We have a exact sequence 1 → R× → K×
·R−→ CaDiv(R) cl−→

Pic(R)→ 1.

Remark 9.33. For K a number field, O×K is a finitely generated abelian group and
Pic(O×K) is a finite abelian group, called the class group of K.

Proposition 9.34. Let R be a UFD. Then Pic(R) = 1.

Lemma 9.35. Let R be a Noetherian domain and let p be an invertible prime ideal.
Then Rp is a DVR.

Theorem 9.36. Let R be a domain that is not a field. Then the following are
equivalent:
(1) R is a Dedekind domain.
(2) Every nonzero ideal of R is invertible.
(3) Every nonzero fractional ideal of R is invertible.

Corollary 9.37. A Dedekind UFD is a PID.

Proposition 9.38. Let R be a Dedekind domain. Then CaDiv(R) is a free abelian
group with maximal ideals forming a basis.

Definition 9.39. The height of a prime ideal p of a ring R is the supremum of the
length n of chains p0 ( p1 ( · · · ( pn = p of prime ideals.

Remark 9.40. We have ht(p) = dim(Rp), dim(R) ≤ ht(p)+dim(R/p), and dim(R) =
supp ht(p) = supp dim(R/p).
Remark 9.41. (1) For any ring R, one can define an abelian group CaDiv(R) and

there is an exact sequence 1→ R× → K× → CaDiv(R)→ Pic(R).
(2) For any ring R, the group Div(R) of Weil divisors is defined to the free abelian

group generated by the primes ideals of p of height 1. For R a Noetherian
domain, there is a homomorphism CaDiv(R)→ Div(R), which is injective for
R normal and an isomorphism for R locally factorial (namely, Rp is a UFD for
all p).

We end this chapter with a criterion of normality.

Proposition 9.42. Let R be a Noetherian domain. The following conditions are
equivalent:
(1) R is normal.
(2) For every prime ideal p associated to a nonzero principal ideal of R, Rp is a

DVR.
(3) R = ⋂

ht(p)=1Rp and for each p of height 1, Rp is a DVR.

For (2)⇒(3), we use the following.

Lemma 9.43. Let R be a Noetherian domain. Then R = ⋂
pRp, where p runs

through prime ideals associated to nonzero principal ideals of R.
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Chapter 10

Completions

Topologies and completions
Definition 10.1. A topological group is a group G equipped with a topology such
that the maps

G×G→ G (x, y) 7→ xy (multiplication)
G→ G x 7→ x−1 (inversion)

are continuous. A topological ring is a ring R equipped with a topology such that
the maps

R×R→ R (x, y) 7→ x+ y

R×R→ R (x, y) 7→ xy

are continuous. A topological R-module is an R-moduleM equipped with a topology
such that the maps

M ×M →M (x, y) 7→ x+ y

R×M →M (r, x) 7→ rx

are continuous.
Let G be a topological abelian group. In the sequel we write the group law

additively. For any a ∈ G, the translation map Ta : G → G, g 7→ g + a is a
homeomorphism.
Lemma 10.2. Let H be the intersection of neighborhoods of 0 in G. Then H is a
subgroup of G, closure of {0}. Moreover, the following conditions are equivalent:
(1) G is Hausdorff.
(2) Every point of G is closed.
(3) H = 0.

Proof. That H is a subgroup of G follows from the continuity of group operations.
For x ∈ G, x ∈ H if and only if 0 ∈ x − U for all neighborhoods U of 0, which is
equivalent to x ∈ {0}. Then (3) is equivalent to 0 being a closed point of G. Thus
(1)⇒(2)⇒(3). Conversely, if 0 is a closed point of G, then the diagonal ∆ ⊆ G×G
is a closed subset, namely G is Hausdorff. Indeed, ∆ = d−1(0), where d : G×G→ G
is the continuous map defined by d(x, y) = x− y.

11
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To define the completion of a topological abelian group in full generality, we need
the following generalization of sequences. We will soon restrict to cases where the
topology is first-countable, for which sequences suffices.

Definition 10.3. A directed set is a set I equipped with a preorder ≤ (a reflexive
and transitive binary relation: i ≤ i; i ≤ j and j ≤ k implies i ≤ k) such that for
each pair i, j ∈ I, there exists k ∈ I such that i ≤ k and j ≤ k.

A net in a set X is a collection (xi)i∈I of elements of X, where I is a directed
set. Given a subset U ⊆ X, we say that (xi)i∈I eventually belongs to U if there
exists i0 ∈ I such that xi ∈ U for all i ≥ i0. A net (xi)i∈I in a topological spaces X
converges to x ∈ X if for it eventually belongs to every neighborhood U of x in X.

Limits of nets in X are unique (whenever they exists) if and only if every point
of X is closed.

Definition 10.4. Let G be a topological abelian group. A net (xi)i∈I in G is called
a Cauchy net if for every neighborhood U of 0 ∈ G, there exists i0 ∈ I such that for
all i, j ≥ i0, xi − xj ∈ U (in other words, the net (xi − xj)(i,j)∈I×I converges to 0).
We say that G is complete if every Cauchy net converges to a unique point of G.

As usual, convergent nets are Cauchy nets. Our definition of complete includes
Hausdorff (unlike in Bourbaki).

Proposition 10.5. Let G be a topological abelian group. There exists a topological
abelian group Ĝ and a continuous homomorphism φ : G → Ĝ such that for every
continuous homomorphism f : G→ H of topological abelian groups with H complete,
there exists a unique continuous homomorphism g : Ĝ→ H such that f = gφ.

Ĝ is called the completion of G.
Remark 10.6. (1) Similar results hold for topological rings and modules, but not

for topological groups [B1, Exercice X.3.16].
(2) By the universal property, Ĝ is unique up to unique isomorphism (of topolo-

gical groups). The image of φ is dense. Moreover, the assignment G 7→ Ĝ is
functorial.

(3) By the proof, ker(φ) is the intersection of the neighborhoods of 0 ∈ G. Thus
G is Hausdorff if and only if φ is injective.

(4) By the proof, if H is a subgroup of G equipped with the subspace topology,
then Ĥ can be identified with a topological subgroup of Ĝ. The subgroup
Ĥ < Ĝ is closed (since Ĥ is complete and Ĝ is Hausdorff) and is the closure
of the image of H → Ĝ.

The following is an immediate consequence of the universal property.

Corollary 10.7. φĜ : Ĝ→ ˆ̂
G is an isomorphism (of topological groups).

Assume that 0 ∈ G admits a fundamental system of neighborhoods consisting of
subgroups (Gλ)λ∈Λ of G (indexed by inverse inclusion). Note that Gλ is open. The
projection G → G/Gλ induces Ĝ → G/Gλ, with G/Gλ equipped with the discrete
topology.
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Proposition 10.8. The map Ĝ → limλG/Gλ is an isomorphism of topological
groups.

Here limλG/Gλ ⊆
∏
λG/Gλ is equipped with the subspace topology.

Proposition 10.9. Let 0 → G′ → G
π−→ G′′ → 0 be an exact sequence of abelian

groups. Equip G′ with the subspace topology and G′′ with the quotient topology. Then
we have a an exact sequence of groups 0→ Ĝ′ → Ĝ

π̂−→ Ĝ′′. Moreover, π̂ is surjective
if Λ = Z≥0.

Assume Λ = Z≥0 in the sequel.

Corollary 10.10. We have G/Gn ' Ĝ/Ĝn.

Let R be a ring and letM be an R-module. The I-adic topology on R is given by
R ⊇ I ⊇ I2 ⊇ . . . , and the I-adic topology onM is given byM ⊇ IM ⊇ I2M ⊇ . . . .
Example 10.11. (1) For R = Z and I = pZ, R̂ = Zp is the ring of p-adic integers.
(2) For R = R0[X1, . . . , Xn] and I = (X1, . . . , Xn), R̂ = R0[[X1, . . . , Xn]] is the

ring of formal power series.
(3) For R = Zp[X1, . . . , Xn] and I = (p), R̂ = Zp〈X1, . . . , Xn〉 is the ring of

convergent power series ∑(i1,...,in)∈Zn
≥0
ai1,...,inX

i1
1 · · ·X in

n satisfying ai1,...,in → 0
for i1 + · · ·+ in →∞.

(4) Let k be field of characteristic 6= 2 and R = k[x, y]/(y2 − (1 + x)), I = (x).
Then R̂ ' k[[x]] ⊕ k[[x]], carrying y to (

√
1 + x,−

√
1 + x), where

√
1 + x =

1+ x
2−

x2

8 + · · · ∈ k[[x]]. An important generalization of this is Hensel’s Lemma
(exercise).

(5) Let k be as above and R = k[x, y]/(y2 − x2(1 + x)), I = (x). Then R̂ '
k[[x]][y]/(y − x

√
1 + x)(y + x

√
1 + x).

Proposition 10.12. Let R be a ring and let I ⊆ R be an ideal such that R is
I-adically complete. Then I ⊆ rad(R).

Filtrations
LetM be an R-module and letM = M0 ⊇M1 ⊇M2 ⊇ . . . be a decreasing filtration
by R-submodules.

Definition 10.13. Let I ⊆ R be a ideal. We say that the filtration (Mi) is an
I-filtration if IMn ⊆ Mn+1 for all n ≥ 0. We say that the filtration (Mi) is a stable
I-filtration if moreover there exists N such that IMn = Mn+1 for all n ≥ N .

Lemma 10.14. Let (Mn) and (M ′
n) be stable I-filtrations of M . Then they have

bounded difference: There exists an integer N ≥ 0 such that Mn+N ⊆ M ′
n and

M ′
n+N ⊆ Mn for all n ≥ 0. Hence stable I-filtrations determine the same topology

on M as the I-adic topology.

Proof. We may assume M ′
n = InM . Then InM = InM0 ⊆ Mn for all n ≥ 0. If

IMn = Mn+1 for all n ≥ N , then Mn+N = InMN ⊆ InM for all n ≥ N .
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Proposition 10.15 (Artin-Rees lemma). Let R be a Noetherian ring, I ⊆ R an
ideal, M a finitely generated R-module, (Mn) a stable I-filtration of M , M ′ ⊆ M
an R-submodule. Then (M ′ ∩Mn) is a stable I-filtration of M ′. In particular, there
exists an integer N ≥ 0 such that (IN+nM) ∩M ′ = In((INM) ∩M ′) for all n ≥ 0.

Corollary 10.16. The I-adic topology on M ′ coincides with the subspace topology
induced from the I-adic topology of M .

We will prove the Artin-Rees lemma after some constructions.

Definition 10.17. A graded ring is a ringR together with an isomorphism of abelian
groups R ' ⊕∞n=0 Rn such that RmRn ⊆ Rm+n for all m,n ≥ 0. A graded R-module
is an R-module together with an isomorphism of abelian groupsM '⊕∞n=0Mn such
that RmMn ⊆Mm+n.

It follows that R0 is a ring and each Rn and each Mn are R0-modules.
An element x ∈ M is said to be homogeneous if x ∈ Mn for some n. For

x = ∑
n xn with xn ∈Mn, the xn’s are called the homogeneous components of x.

Definition 10.18. Let R be a ring and let I ⊆ R be an ideal. The blowup algebra
is the graded ring (in fact a graded R-algebra) BIR = ⊕∞

n=0 I
n. For an R-module

and an I-filtration F = (Mn), we define the graded BIR-module BFM = ⊕∞
n=0Mn.

Proposition 10.19. (1) Assume Mn is finitely generated R-module for all n ≥ 0.
Then BFM is a finitely generated BIR-module if and only if F is I-stable.

(2) Assume that R is a Noetherian ring. Then BIR is a Noetherian ring.

The Artin-Rees lemma has many consequences.

Proposition 10.20. Let R be a Noetherian ring and let 0→M ′ →M →M ′′ → 0
be an exact sequence of finitely generated R-modules. For any ideal I ⊆ R, taking
I-adic completion gives an exact sequence 0→ M̂ ′ → M̂ → M̂ ′′ → 0.

Proposition 10.21. Let R be a ring, I ⊆ R an ideal, M a finitely generated
R-module. The homomorphism φ : M → M̂ induces a surjection ψ : R̂ ⊗R M →
M̂ , where ˆ denotes the I-adic completion. In particular, M̂ = R̂φ(M). For M
Noetherian, ψ is an isomorphism.

Corollary 10.22. Let R be a ring and I ⊆ R a finitely generated ideal. Then
În = În. Moreover, for any finitely generated R-module M , M̂ has the I-adic
topology as an R-module and the Î-adic topology as an R̂-module.

Corollary 10.23. Let R be a ring and let m ⊆ R be a finitely generated maximal
ideal. Then the m-adic completion R̂ is a local ring of maximal ideal m. Moreover,
R→ R̂ factorizes through Rm → R̂ that identifies R̂ as the mRm-adic completion of
Rm.

Corollary 10.24. Let R be a Noetherian ring and I ⊆ R an ideal. Then the I-adic
completion R̂ is a flat R-algebra.
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Theorem 10.25 (Krull). Let R be a Noetherian ring, I ⊆ R an ideal, M a finitely
generated R-module. Then Ker(M → M̂) = ⋂∞

n=0 I
nM consists of those x ∈ M

killed by some r ∈ 1 + I.

Corollary 10.26. Let R be a Noetherian domain and let I ( R be a proper ideal.
Then ⋂∞n=0 I

n = 0.

Corollary 10.27. Let R be a Noetherian ring, I ⊆ rad(R) and ideal of R, M
a finitely generated R-module. Then ⋂

n=0 I
nM = 0. In other words, the I-adic

topology on M is Hausdorff. Moreover, every R-submodule M ′ of M is closed.

Corollary 10.28. Let R be a Noetherian local ring and let m be the maximal ideal
of R. Then ⋂∞n=0 m

n = 0.

This allows to extend Proposition 9.7 to Noetherian local rings.

Proposition 10.29. Let R be a Noetherian ring and I ⊆ R an ideal. The following
conditions are equivalent:
(1) I ⊆ rad(R).
(2) Every ideal of R is closed for the I-adic topology.
(3) The I-adic completion R̂ of R is a faithfully flat R-algebra.

We conclude this chapter with the following.

Theorem 10.30. Let R be a Noetherian ring and I ⊆ R an ideal. The I-adic
completion R̂ of R is a Noetherian ring.

Corollary 10.31. Let R be a Noetherian ring. Then the ring R[[X1, . . . , Xn]] of
formal power series is Noetherian.

Associated graded rings
Definition 10.32. Let R be a ring, I ⊆ R an ideal. The associated graded ring
grIR = ⊕∞

n=0 I
n/In+1. For a graded R-module M with a I-filtration F = (Mn), the

associated graded grIR-module grFM = ⊕∞
n=0Mn/Mn+1.

Remark 10.33. The associated graded ring is related to the blowup algebra by grIR '
BIR⊗R R/I. Similarly, grFM ' BFM ⊗R R/I.

Proposition 10.34. (1) If every Mn is a finitely generated R-module and F is
I-stable, then grFM is a finitely generated grIR-module.

(2) If R is a Noetherian ring, then grIR is a Noetherian ring and grIR ' grÎR̂.

The proof of Theorem 10.30 relies on a partial converse of the implication R
Noetherian ⇒ grIR Noetherian.

Lemma 10.35. Let φ : A→ B be a homomorphism of filtered abelian groups.
(1) If gr(φ) is injective, then φ̂ is injective.
(2) If gr(φ) is surjective, then φ̂ is surjective.
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Proposition 10.36. Let R be a ring, I ⊆ R an ideal such that R is I-adically
complete, M an R-module, F = (Mn) an I-filtration of M such that ⋂nMn = 0. If
grFM is a finitely generated grIR-module, then M is a finitely generated R-module.

Corollary 10.37. If grFM is a Noetherian grIR-module, then M is a Noetherian
R-module.



Chapter 11

Dimension theory

Hilbert functions
Proposition 11.1. Let R = ⊕∞

n=0 Rn be a graded ring. Then R is Noetherian if
and only if R0 is Noetherian and R is a finitely generated R0-algebra.

Corollary 11.2. Let R = ⊕∞
n=0Rn be a Noetherian graded ring and M = ⊕∞

n=0Mn

a finitely generated graded R-module. Then Mn is a finitely generated R0 module
for each n ≥ 0.

Let R = ⊕∞
n=0Rn be a Noetherian graded ring and M = ⊕∞

n=0Mn a finitely
generated graded R-module.

Definition 11.3. Let λ be an additive function (namely λ(N) = λ(N ′) +λ(N ′′) for
every exact sequence 0→ N ′ → N → N ′′ → 0) on the class of finitely generated R0-
modules with values in Z. The Poincaré series of M with respect to λ is P (M, t) =∑∞
n=0 λ(Mn)tn ∈ Z[[t]].

It follows from additivity that λ(0) = 0.

Theorem 11.4 (Hilbert, Serre). We have P (M, t) ∈ Q(t). More precisely, if R =
R0[x1, . . . , xr] with xi ∈ Rki

, then P (M, t) = f(t)/∏r
i=1(1− tki) with f(t) ∈ Z[t].

We let D(M) denote the order of pole of P (M, t) at t = 1 (we put D(M) = 0 if
P (M, t) has no pole at t = 1). It is a measurement of the size of M . In the sequel
we assume ki = 1 for all i.

Definition 11.5. A numerical polynomial is a polynomial φ(z) ∈ Q[z] such that
φ(n) ∈ Z for n ∈ Z, n� 0.

Example 11.6. For d ∈ Z≥0,
(
z
d

)
= 1

d!z(z−1) · · · (z−d+1) is a numerical polynomial.
Remark 11.7. One can show that every numerical polynomial φ is a Z-linear com-
bination of the above. It follows that φ(n) ∈ Z for all n ∈ Z.

Corollary 11.8. Assume R = R0[R1]. Let D = D(M). Then there exists a unique
numerical polynomial φM of degree D−1 such that φM(z) = λ(Mn) for n ≥ N+1−D,
where N = deg(1− t)DP (M, t). We adopt the convention that deg(0) = −1.

17



18 CHAPTER 11. DIMENSION THEORY

Definition 11.9. The function n 7→ λ(Mn) is called the Hilbert function and φM is
called the Hilbert polynomial.

In the sequel we assume R0 is Artinian and we take λ(N) = lg(N) to be the
length of N .
Remark 11.10. In this case, for M 6= 0, P (M, t) is not zero and t = 1 is not a zero
of P (M, t). In fact, if D(M) = 0, P (M, 1) = ∑∞

n=0 lg(Mn) > 0.
Example 11.11. Let R0 be an Artinian ring and let R = R0[X0, . . . , Xr], graded by
degree. Then lg(Rn) = lg(R0)

(
n+r
r

)′
(where

(
a
b

)′
=
(
a
b

)
for a ≥ b and

(
a
b

)′
= 0 for

a < b.) We have φR(z) =
(
z+r
r

)
with leading term 1

r!z
r.

Example 11.12. Let k be a field and F ∈ k[X0, . . . , Xr] a homogeneous polynomial
of degree s. Let R = k[X0, . . . , Xr]/(F ), graded by degree. Then lg(Rn) =

(
n+r
r

)′
−(

n−s+r
r

)′
, so that φR(z) =

(
z+r
r

)
−
(
z−s+r
r

)
= ∑s

i=1

(
z−i+r
r−1

)
. The leading term is

s
(r−1)!z

r−1.

Proposition 11.13. Let R = ⊕∞
n=0Rn be a Noetherian graded ring with R0 Artinian

and R = R0[R1] and M 6= 0 a finitely generated graded module. Let k > 0 and x ∈
Rk an M-regular element (xm = 0 implies m = 0). Then D(M/xM) = D(M)− 1.

Remark 11.14. In algebraic geometry, to a Noetherian graded ring R = ⊕∞
n=0Rn

with R0 Artinian and R = R0[R1] and a finitely generated graded R-module M ,
one associates a scheme Proj(R) and a coherent sheaf M̃ on Proj(R). Then Mn '
H0(Proj(R), M̃(n)), where M(n)k = Mn+k, and

φM(n) =
∑
i

(−1)i lg(H i(Proj(R), M̃(n)))

is the Euler characteristic of M̃(n).

Dimension theory of Noetherian local rings
Proposition 11.15. Let R be a Noetherian local ring of maximal ideal m, q an m-
primary ideal of R, M a finitely generated R-module, F = (Mn) a stable q-filtration
of M .
(1) M/Mn has finite length for all n ≥ 0.
(2) There exists a unique numerical polynomial χMF such that lg(M/Mn) = χMF (n)

for n � 0. Moreover, deg(χMF ) = D(grFM) ≤ r, where r denotes the least
number of generators of q.

(3) The degree and leading coefficient of χMF depend only M and q, not on F .

For F = (qnM), we write χMq for χMF . For M = R, we write χq for χRq .

Corollary 11.16. There exists a unique polynomial of degree D(grqR) ≤ r such
that lg(R/qn) = χq(n) for n� 0.

Proposition 11.17. deg(χq) = deg(χm).
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Notation 11.18. We write d(R) for deg(χm) = D(grmR). We denote by δ(R) the
least number of generators of m-primary ideals of R.

Theorem 11.19. Let R be a Noetherian local ring. We have d(R) = dim(R) =
δ(R).

We will show dim(R) ≤ d(R) and δ(R) ≤ dim(R). We start with an analogue of
Proposition 11.13 for Noetherian local rings.

Proposition 11.20. Let M be a finitely generated R-module, x ∈ R such that
Ker(M ×x−→M) = 0, M ′ = M/xM . Then deg(χM ′q ) ≤ deg(χMq )− 1.

Corollary 11.21. Let x ∈ R that is not a unit or zero-divisor. Then d(R/xR) ≤
d(R)− 1.

We will show later that equality holds in this case (Corollary 11.33).

Proposition 11.22. dim(R) ≤ d(R).

Proposition 11.23. δ(R) ≤ dim(R).

This finishes the proof of Theorem 11.19. The dimension theorem has many
consequences.
Example 11.24. Let R0 be a nonzero Artinian ring and R = R0[X1, . . . , Xd], m =
(X1, . . . , Xd). We have grmRm

(Rm) ' grm(Rm) ' R. We have seen φR(z) =
lg(R0)

(
z+d−1
d−1

)
. Thus dim(Rm) = d(Rm) = D(R) = d.

Corollary 11.25. Let R be a Noetherian local ring of maximal ideal m, R̂ its m-adic
completion. Then dim(R) = dim(R̂).

Corollary 11.26. Every prime ideal in a Noetherian ring R has finite height. In ot-
her words, R satisfies the descending chain condition for prime ideals. In particular,
if R is a Noetherian local ring, then dim(R) <∞.

Remark 11.27. Nagata constructed a Noetherian ring R with dim(R) =∞.

Definition 11.28. The embedding dimension emb.dim(R) of a Noetherian local
ring R of maximal ideal m is dimk(m/m2), where k = R/m.

By Nakayama’s lemma, emb.dim(R) is the least number of generators of m.

Corollary 11.29. dim(R) ≤ emb.dim(R).

Corollary 11.30. Let R be a Noetherian ring, x1, . . . , xr ∈ R. Every isolated prime
ideal p belonging to (x1, . . . , xr) has height ≤ r.

The case r = 1 is called Krull’s principal ideal theorem.

Corollary 11.31. Let R be a Noetherian ring, x ∈ R not a zero-divisor. Then
every isolated prime ideal p belonging to (x) has height 1.
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Systems of parameters
Let R be a Noetherian local ring of dimension d, m the maximal ideal of R.
Definition 11.32. x1, . . . , xd ∈ R is called a system of parameters if (x1, . . . , xd) is
m-primary.
Corollary 11.33. Let x1, . . . , xr ∈ m. We have dim(R/(x1, . . . , xr)) ≥ dim(R)− r.
Equality holds if x1, . . . , xr is part of a system of parameters of R.
Proposition 11.34. Let x1, . . . , xd ∈ R be a system of parameters and q = (x1, . . . , xd).
Let f ∈ R[X1, . . . , Xd] be a homogeneous polynomial of degree s. Assume f(x1, . . . , xd) ∈
qs+1. Then f ∈ mR[X1, . . . , Xd].

Let A = R/q and α : A[X1, . . . , Xd]→ grq(R) the homomorphism carrying Xi to
xi mod q. The proposition says ker(α) ⊆ mA[X1, . . . , Xd].
Corollary 11.35. Assume that R has a subfield k. Then any system of parameters
x1, . . . , xd is algebraically independent over k.
Theorem 11.36. Let k be a field, R a finitely generated k-algebra that is a dom-
ain, K = Frac(R). Then for every maximal ideal m of R, dim(R) = dim(Rm) =
tr.deg(K/k), where tr.deg denotes the transcendence degree.
Lemma 11.37. Let A ⊆ B be an extension of integral domains with A integrally
closed and B integral over A. Let m be a maximal ideal of B and n = m ∩A. Then
n is maximal and dim(Bn) = dim(Am).

Regular local rings
Theorem 11.38. Let R be a Noetherian local ring of dimension d, m its maximal
ideal, k = R/m. The following conditions are equivalent:
(1) We have an isomorphism grm(R) ' k[X1, . . . , Xd] of k-algebras.
(2) dimk(m/m2) = d.
(3) m is generated by d elements.

Definition 11.39. A regular local ring is a Noetherian local ring R satisfying the
above conditions. A regular system of generators for R is x1, . . . , xd such that
(x1, . . . , xd) = m (where d = dim(R)).
Example 11.40. (1) Regular local rings of dimension 0 are precisely fields. Regular

local rings of dimension 1 are precisely DVRs.
(2) Let k be a field, R = k[X1, . . . , Xd], m = (X1, . . . , Xd). Then Rm is a regular

local ring. Indeed, grmRm
(Rm) ' R.

(3) Let R be a regular local ring of dimension d and x1, . . . , xd a regular system
of parameters. Then A = R/(x1, . . . , xr) is a regular ring of dimension d− r.
Indeed, x̄r+1, . . . , x̄d is a regular system of parameters for A.

Proposition 11.41. Let R be a ring, I an ideal satisfying ⋂∞n=0 I
n = 0. Assume

that grI(R) is a domain. Then R is a domain.
Corollary 11.42. A regular local ring is a domain.
Proposition 11.43. Let R be a Noetherian local ring of maximal ideal m. Then R
is regular if and only if the m-adic completion R̂ is regular.
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CM rings
Definition 11.44. Let R be a ring, M an R-module. A sequence x1, . . . , xn ∈ R is
called M-regular if it satisfies the following conditions:
(1) Multiplication by xi is an injection on M/

∑i−1
j=1 xjM for all 1 ≤ i ≤ n.

(2) M/
∑n
j=1 xjM 6= 0.

The depth of M is the supremum of the lengths of M -regular sequences.

We will only use M -regularity when R is a Noetherian local ring and M 6= 0 is
a finitely generated R-module. In this case, by Nakayama’s lemma, condition (2) is
equivalent to x1, . . . , xn ∈ m, where m is the maximal ideal of m.

Proposition 11.45. Let R be a Noetherian local ring, x1, . . . , xn an R-regular
sequence. Then dim(R/(x1, . . . , xn)) = dim(R) − n. In particular, depth(R) ≤
dim(R).

Definition 11.46. A Cohen-Macaulay (CM) local ring is a Noetherian local ring
satisfying depth(R) = dim(R).

Example 11.47. (1) Artinian local rings are CM local rings.
(2) Regular local rings are CM local rings. Indeed, any regular system of parame-

ters is an R-regular sequence.
Remark 11.48. One can show that if R is a regular (resp. CM) local ring, then Rp

is a regular (resp. CM) local ring for every prime ideal p.

Definition 11.49. A regular (resp. CM) ring is a Noetherian ring such that Rp is
a regular (resp. CM) local ring for every prime ideal p.

Remark 11.50. A regular ring is normal. More generally, Serre proved the following
criterion of normality: A Noetherian ring R is normal if and only if the following
conditions are satisfied:
(R1) For every prime ideal p of height ≤ 1, Rp is regular.
(S2) For every prime ideal p of height ≥ 2, depth(Rp) ≥ 2.
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Summary of properties of rings

field +3

��

DVR or field +3

��

valuation ring

%-

+3 local ring

PID or field +3

��

UFD +3 normal ring

Dedekind domain or field +3 regular ring

19

��
Artinian ring +3 CM ring +3 Noetherian ring
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