Note on "Parity and symmetry in intersection and ordinary cohomology" [SZ16]

As mentioned before [SZ16, Proposition 3.3.12], the results of [SZ16, Section 3.2] have analogues over an arbitrary field k in which ℓ is invertible.

Definition. Let X be a Deligne-Mumford stack of finite presentation over k. We say that $A \in \mathrm{D}_{c}^{b}\left(X, \overline{\mathbb{Q}}_{\ell}\right)$ is split admissible if it is split [SZ16, Definition 3.2.1] and if the pullback of A to $X \otimes_{k} \bar{k}$ is admissible semisimple [SZ16, Definition 3.3.1].

Let $\sigma= \pm 1, w \in \mathbb{Z}$. We denote by $\mathrm{D}_{\sigma}^{w}\left(X, \overline{\mathbb{Q}}_{\ell}\right) \subseteq \mathrm{Ob}\left(\mathrm{D}_{c}^{b}\left(X, \overline{\mathbb{Q}}_{\ell}\right)\right)$ the subset consisting of split admissible complexes A such that ${ }^{p} \mathcal{H}^{i} A$ is $(-1)^{w+i} \sigma$-self-dual with respect to $K_{X}(-w-i)$ for all i. We denote by $\mathrm{D}_{\mathrm{d}}^{w}\left(X, \overline{\mathbb{Q}}_{\ell}\right) \subseteq \mathrm{Ob}\left(\mathrm{D}_{c}^{b}\left(X, \overline{\mathbb{Q}}_{\ell}\right) \times \mathrm{D}_{c}^{b}\left(X, \overline{\mathbb{Q}}_{\ell}\right)\right)$ the subset consisting of pairs (A, B) of split admissible complexes such that ${ }^{p} \mathcal{H}^{i} A$ is isomorphic to $\left(D_{X}{ }^{p} \mathcal{H}^{i} B\right)(-w-i)$ for all i.

The following is a generalization of [SZ16, Theorems 3.2.3, 3.3.7]. The proof is the same as in [SZ16], with the relative hard Lefschetz theorem provided by [SZ16, Proposition 3.3.10].

Theorem. Let $f: X \rightarrow Y$ be a proper morphism of Deligne-Mumford stacks of finite presentation over k, where Y has finite inertia. Then $\mathrm{R} f_{*}$ preserves D_{σ}^{w} and $\mathrm{D}_{\mathrm{d}}^{w}$.

In particular, $\mathrm{R} f_{*}$ preserves split admissible complexes.

Corrections to [SZ16]. Definition A.2.1: Read "equal" for "isomorphic".
In the proof of Proposition 4.3.1, instead of [Del80, 1.7.9] which depends on global equations, one should use the more canonical construction of [Del80, 1.7.10]. The assumption on the existence of global equations is thus superfluous. In the definition of U_{n}, read " $\# K>n$ " for " $\# K \geq n$ ". See [SZ18, Proposition 4.3.1] for details.

Reference

[Del80] P. Deligne, La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137-252 (French). MR601520 (83c:14017)
[SZ16] S. Sun and W. Zheng, Parity and symmetry in intersection and ordinary cohomology, Algebra Number Theory 10 (2016), no. 2, 235-307, DOI 10.2140/ant.2016.10.235.
[SZ18] , Parity and symmetry in intersection and ordinary cohomology (2018). arXiv:1402.1292v7.

