Odds and ends on equivariant cohomology and traces

Weizhe Zheng

Columbia University

International Congress of Chinese Mathematicians Tsinghua University, Beijing December 18, 2010

Joint work with Luc Illusie.

Equivariant cohomology and traces

ICCM 2010 1 / 26

Introduction

Introduction

Let k be an algebraically closed field of characteristic $p \ge 0$,

X be a separated scheme of finite type over k,

G be a finite group acting on X.

For any prime number $\ell \neq p$, $H^i(X, \mathbb{Q}_\ell)$ is a finite-dimensional ℓ -adic representation of G. For $g \in G$,

$$t_\ell(g) := \sum_i (-1)^i \operatorname{Tr}(g, H^i(X, \mathbb{Q}_\ell)) \in \mathbb{Z}_\ell.$$

Introduction

Let k be an algebraically closed field of characteristic $p \ge 0$,

X be a separated scheme of finite type over k,

G be a finite group acting on X.

For any prime number $\ell \neq p$, $H^i(X, \mathbb{Q}_\ell)$ is a finite-dimensional ℓ -adic representation of G. For $g \in G$,

$$t_\ell(g) := \sum_i (-1)^i \operatorname{Tr}(g, H^i(X, \mathbb{Q}_\ell)) \in \mathbb{Z}_\ell.$$

Problem

Is $t_{\ell}(g)$ in \mathbb{Z} and independent of ℓ ?

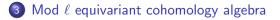
Problem

Describe the virtual representation $\chi(X, G, \mathbb{Q}_{\ell}) := \sum_{i} (-1)^{i} [H^{i}(X, \mathbb{Q}_{\ell})]$ of G under suitable assumptions on the action of G.

Plan of the talk

Generalization of Laumon's theorem on Euler characteristics

2 Tameness at infinity



< ロ > < 同 > < 三 > < 三

Plan of the talk

Generalization of Laumon's theorem on Euler characteristics

2 Tameness at infinity

3) Mod ℓ equivariant cohomology algebra

< ロ > < 同 > < 三 > < 三

Compactly supported cohomology

 $H^i_c(X,\mathbb{Q}_\ell)$ is also a finite-dimensional ℓ -adic representation of G. For $g \in G$,

$$t_{c,X,\ell}(g) := \sum_i (-1)^i \operatorname{Tr}(g, H^i_c(X, \mathbb{Q}_\ell)) \in \mathbb{Z}_\ell.$$

Additivity: If $Z \subset X$ is a *G*-stable closed subscheme, then

$$t_{c,X,\ell}(g) = t_{c,Z,\ell}(g) + t_{c,X-Z,\ell}(g).$$

Compactly supported cohomology

 $H^i_c(X,\mathbb{Q}_\ell)$ is also a finite-dimensional ℓ -adic representation of G. For $g \in G$,

$$t_{c,X,\ell}(g) := \sum_i (-1)^i \operatorname{Tr}(g, H^i_c(X, \mathbb{Q}_\ell)) \in \mathbb{Z}_\ell.$$

Additivity: If $Z \subset X$ is a *G*-stable closed subscheme, then

$$t_{c,X,\ell}(g) = t_{c,Z,\ell}(g) + t_{c,X-Z,\ell}(g).$$

Theorem (Deligne-Lusztig 1976) $t_{c,\ell}(g)$ is in \mathbb{Z} and independent of ℓ .

Theorem

(1)
$$t_{\ell}(g) = t_{c,\ell}(g).$$

Corollary

 $t_{\ell}(g)$ is in \mathbb{Z} and independent of ℓ .

If g = 1, (??) becomes

$$\chi(X,\mathbb{Q}_{\ell})=\chi_{c}(X,\mathbb{Q}_{\ell}),$$

which follows from Laumon's theorem.

ICCM 2010 6 / 26

Laumon's theorem

Let k be an arbitrary field of characteristic p. For X separated of finite type over k, let $D_c^b(X, \mathbb{Q}_\ell)$ be the category of (bounded) ℓ -adic complexes, $K(X, \mathbb{Q}_\ell)$ be the corresponding Grothendieck ring, $K^{\sim}(X, \mathbb{Q}_\ell)$ be the quotient of $K(X, \mathbb{Q}_\ell)$ by the ideal generated by $[\mathbb{Q}_\ell(1)] - [\mathbb{Q}_\ell]$. For any morphism $f: X \to Y$, the exact functors

$$Rf_*, Rf_! \colon D^b_c(X, \mathbb{Q}_\ell) \to D^b_c(Y, \mathbb{Q}_\ell)$$

induce group homomorphisms

$$f_*, f_! \colon \mathcal{K}(X, \mathbb{Q}_\ell) \to \mathcal{K}(Y, \mathbb{Q}_\ell),$$

 $f_*^{\sim}, f_!^{\sim} \colon \mathcal{K}^{\sim}(X, \mathbb{Q}_\ell) \to \mathcal{K}^{\sim}(Y, \mathbb{Q}_\ell).$

Laumon's theorem

Let k be an arbitrary field of characteristic p. For X separated of finite type over k, let $D_c^b(X, \mathbb{Q}_\ell)$ be the category of (bounded) ℓ -adic complexes, $K(X, \mathbb{Q}_\ell)$ be the corresponding Grothendieck ring, $K^{\sim}(X, \mathbb{Q}_\ell)$ be the quotient of $K(X, \mathbb{Q}_\ell)$ by the ideal generated by $[\mathbb{Q}_\ell(1)] - [\mathbb{Q}_\ell]$. For any morphism $f: X \to Y$, the exact functors

$$Rf_*, Rf_! \colon D^b_c(X, \mathbb{Q}_\ell) \to D^b_c(Y, \mathbb{Q}_\ell)$$

induce group homomorphisms

$$f_*, f_! \colon \mathcal{K}(X, \mathbb{Q}_\ell) \to \mathcal{K}(Y, \mathbb{Q}_\ell), \\ f_*^{\sim}, f_!^{\sim} \colon \mathcal{K}^{\sim}(X, \mathbb{Q}_\ell) \to \mathcal{K}^{\sim}(Y, \mathbb{Q}_\ell).$$

Theorem (Laumon 1981)

$$f_*^{\sim} = f_!^{\sim}$$

Equivariant complexes

For X separated of finite type over k and G finite acting on X, let $D_c^b(X, G, \mathbb{Q}_\ell)$ be the category of (bounded) G-equivariant ℓ -adic complexes, $K(X, G, \mathbb{Q}_\ell)$ be the corresponding Grothendieck ring, $K^{\sim}(X, G, \mathbb{Q}_\ell)$ be the quotient of $K(X, G, \mathbb{Q}_\ell)$ by the ideal generated by $[\mathbb{Q}_\ell(1)] - [\mathbb{Q}_\ell]$. Let $(f, u): (X, G) \to (Y, H)$, where $u: G \to H$ is a homomorphism and $f: X \to Y$ is a u-equivariant morphism. The exact functors

$$R(f, u)_*, R(f, u)_! \colon D^b_c(X, G, \mathbb{Q}_\ell) \to D^b_c(Y, H, \mathbb{Q}_\ell)$$

induce group homomorphisms

$$(f, u)_*, (f, u)_! \colon K(X, G, \mathbb{Q}_\ell) \to K(Y, H, \mathbb{Q}_\ell),$$

 $(f, u)_*^{\sim}, (f, u)_! \colon K^{\sim}(X, G, \mathbb{Q}_\ell) \to K^{\sim}(Y, H, \mathbb{Q}_\ell).$

Theorem

$$(f, u)_*^{\sim} = (f, u)_!^{\sim}.$$

・ロト ・聞ト ・ヨト ・ヨト

Theorem

$$(f,u)_*^{\sim}=(f,u)_!^{\sim}.$$

One key step of the proof is the following.

Proposition

Let S be the spectrum of a henselian discrete valuation ring, with closed point s = Spec(k) and generic point η . Then for any $L \in D_c^b(X \times_s \eta, G, \mathbb{Q}_\ell)$, the class in $K^{\sim}(X, G, \mathbb{Q}_\ell)$ of

$$R\Gamma(I,L) \in D^b_c(X,G,\mathbb{Q}_\ell)$$

is zero, where I is the inertia subgroup of the Galois group of η .

Complexes on Deligne-Mumford stacks

Let S be a regular (Noetherian) scheme of dimension ≤ 1 , ℓ be a prime invertible on S.

One can define, for every Deligne-Mumford stack \mathcal{X} of finite type over S, a category $D_c^b(\mathcal{X}, \mathbb{Q}_\ell)$ of ℓ -adic complexes on \mathcal{X} , and, for every morphism $f: \mathcal{X} \to \mathcal{Y}$, exact functors

$$\begin{aligned} & Rf_*, Rf_! \colon D^b_c(\mathcal{X}, \mathbb{Q}_\ell) \to D^b_c(\mathcal{Y}, \mathbb{Q}_\ell), \\ & f^*, Rf^! \colon D^b_c(\mathcal{Y}, \mathbb{Q}_\ell) \to D^b_c(\mathcal{X}, \mathbb{Q}_\ell). \end{aligned}$$

Complexes on Deligne-Mumford stacks

Let S be a regular (Noetherian) scheme of dimension ≤ 1 , ℓ be a prime invertible on S. One can define, for every Deligne-Mumford stack \mathcal{X} of finite type over S, a category $D_c^b(\mathcal{X}, \mathbb{Q}_\ell)$ of ℓ -adic complexes on \mathcal{X} , and, for every morphism $f: \mathcal{X} \to \mathcal{Y}$, exact functors

$$\begin{aligned} & Rf_*, Rf_! \colon D^b_c(\mathcal{X}, \mathbb{Q}_\ell) \to D^b_c(\mathcal{Y}, \mathbb{Q}_\ell), \\ & f^*, Rf^! \colon D^b_c(\mathcal{Y}, \mathbb{Q}_\ell) \to D^b_c(\mathcal{X}, \mathbb{Q}_\ell). \end{aligned}$$

Under an additional condition of finiteness of cohomological dimension, Laszlo-Olsson 2008 defined an ℓ -adic formalism for unbounded complexes on Artin stacks.

For a Deligne-Mumford stack \mathcal{X} of finite type over S, let $\mathcal{K}(\mathcal{X}, \mathbb{Q}_{\ell})$ be the Grothendieck ring of $D_c^b(\mathcal{X}, \mathbb{Q}_{\ell})$, $\mathcal{K}^{\sim}(\mathcal{X}, \mathbb{Q}_{\ell})$ be the quotient by the ideal generated by $[\mathbb{Q}_{\ell}(1)] - [\mathbb{Q}_{\ell}]$. For $f: \mathcal{X} \to \mathcal{Y}$, Rf_* and $Rf_!$ induce group homomorphisms

$$f^{\sim}_*, f^{\sim}_! \colon K^{\sim}(\mathcal{X}, \mathbb{Q}_\ell) \to K^{\sim}(\mathcal{Y}, \mathbb{Q}_\ell),$$

 f^* and $Rf^!$ induce group homomorphisms

$$f^{*\sim}, f^{!\sim} \colon K^{\sim}(\mathcal{Y}, \mathbb{Q}_{\ell}) \to K^{\sim}(\mathcal{X}, \mathbb{Q}_{\ell}).$$

 $f^{*\sim}$ is a ring homomorphism.

・ロト ・得ト ・ヨト ・ヨト

For a Deligne-Mumford stack \mathcal{X} of finite type over S, let $\mathcal{K}(\mathcal{X}, \mathbb{Q}_{\ell})$ be the Grothendieck ring of $D_c^b(\mathcal{X}, \mathbb{Q}_{\ell})$, $\mathcal{K}^{\sim}(\mathcal{X}, \mathbb{Q}_{\ell})$ be the quotient by the ideal generated by $[\mathbb{Q}_{\ell}(1)] - [\mathbb{Q}_{\ell}]$. For $f: \mathcal{X} \to \mathcal{Y}$, Rf_* and $Rf_!$ induce group homomorphisms

$$f^{\sim}_*, f^{\sim}_! \colon \mathcal{K}^{\sim}(\mathcal{X}, \mathbb{Q}_\ell) \to \mathcal{K}^{\sim}(\mathcal{Y}, \mathbb{Q}_\ell),$$

 f^* and $Rf^!$ induce group homomorphisms

$$f^{*\sim}, f^{!\sim} \colon K^{\sim}(\mathcal{Y}, \mathbb{Q}_{\ell}) \to K^{\sim}(\mathcal{X}, \mathbb{Q}_{\ell}).$$

 $f^{*\sim}$ is a ring homomorphism.

Theorem

$$f_*^{\sim} = f_!^{\sim}.$$

Corollary

$$f^{*\sim} = f^{!\sim}$$

Weizhe Zheng

Plan of the talk

2 Tameness at infinity

) Mod ℓ equivariant cohomology algebra

< ロ > < 同 > < 三 > < 三

Free actions

From now on, k is an algebraically closed field of characteristic exponent $p \ge 1$. For X separated of finite type over k and G finite acting on X, $t(g) := t_{\ell}(g) = t_{c,\ell}(g) \in \mathbb{Z}$ for $g \in G$.

▶ ◀ Ē ▶ Ē ∽) Q (C ICCM 2010 13 / 26

イロト イポト イヨト イヨト

Free actions

From now on, k is an algebraically closed field of characteristic exponent $p \ge 1$. For X separated of finite type over k and G finite acting on X, $t(g) := t_{\ell}(g) = t_{c,\ell}(g) \in \mathbb{Z}$ for $g \in G$.

Theorem

If G acts freely on X, then $R\Gamma(X, \mathbb{Z}_{\ell})$ and $R\Gamma_c(X, \mathbb{Z}_{\ell})$ are perfect complexes of $\mathbb{Z}_{\ell}[G]$ -modules and t(g) = 0 for every $g \in G$ whose order is not a power of p.

A complex of $\mathbb{Z}_{\ell}[G]$ -modules is said to be perfect if it is quasi-isomorphic to a bounded complex of finite projective $\mathbb{Z}_{\ell}[G]$ -modules. If P is a finite projective $\mathbb{Z}_{\ell}[G]$ -module, the theory of modular characters implies that the character $P \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell}$ vanishes on ℓ -singular elements of G, namely, elements of order divisible by ℓ .

イロト イポト イヨト イヨト 二日

Corollary (Deligne-Lusztig (for χ_c))

If G acts freely on X, and the order of G is prime to p, then

 $\chi(X, G, \mathbb{Q}_{\ell}) = \chi(X/G) \operatorname{Reg}_{\mathbb{Q}_{\ell}}(G),$

where $\operatorname{Reg}_{\mathbb{O}_{e}}(G)$ is the regular representation of G.

X/G is a separated algebraic space of finite type over k.

Corollary (Deligne-Lusztig (for χ_c))

If G acts freely on X, and the order of G is prime to p, then

 $\chi(X, G, \mathbb{Q}_{\ell}) = \chi(X/G) \operatorname{Reg}_{\mathbb{Q}_{\ell}}(G),$

where $\operatorname{Reg}_{\mathbb{O}_{e}}(G)$ is the regular representation of G.

X/G is a separated algebraic space of finite type over k.

Corollary (Serre) If G is an ℓ -group acting on X, then

$$\chi(X^G) \equiv \chi(X) \mod \ell.$$

Example

If G is an ℓ -group acting on $X = \mathbb{A}^n$, then $\chi(X^G) \equiv 1 \mod \ell$. In particular, $X^G \neq \emptyset$.

ICCM 2010 14 / 26 Let Y be a connected normal separated scheme of finite type over k. We say a finite Galois etale cover $X \to Y$ of group G is tamely ramified at infinity, if there exists a normal compactification \overline{Y} of Y, such that, at every point x of the normalization \overline{X} of \overline{Y} in X,

the inertia subgroup of G has order prime to p.

Let Y be a connected normal separated scheme of finite type over k. We say a finite Galois etale cover $X \to Y$ of group G is tamely ramified at infinity, if there exists a normal compactification \overline{Y} of Y, such that, at every point x of the normalization \overline{X} of \overline{Y} in X,

the inertia subgroup of G has order prime to p.

Theorem (Deligne-Illusie 1981)

Under the above assumptions,

$$\chi(X, G, \mathbb{Q}_{\ell}) = \chi(X/G) \operatorname{Reg}_{\mathbb{Q}_{\ell}}(G).$$

ICCM 2010 15 / 26

Vidal's group

Let Y be a connected normal separated scheme of finite type over k, $\overline{\zeta}$ be a geometric point of Y. Define the wild part E_Y of $\pi_1(Y, \overline{\zeta})$:

$$E_{Y} = \bigcap_{\bar{Y}} E_{Y,\bar{Y}},$$

where \bar{Y} runs over compactifications of Y, $E_{Y,\bar{Y}}$ is the closure of $\bigcup_{\bar{y}\in\bar{Y}}E'_{\bar{y}}$, where $E'_{\bar{y}}$ is the union of the images of the *p*-Sylows of $\pi_1(\bar{Y}_{(\bar{y})}\times_{\bar{Y}}Y)$ in $\pi_1(Y,\bar{\zeta})$.

Vidal's group

Let Y be a connected normal separated scheme of finite type over k, $\overline{\zeta}$ be a geometric point of Y. Define the wild part E_Y of $\pi_1(Y, \overline{\zeta})$:

$$E_{Y} = \bigcap_{\bar{Y}} E_{Y,\bar{Y}},$$

where \bar{Y} runs over compactifications of Y, $E_{Y,\bar{Y}}$ is the closure of $\bigcup_{\bar{y}\in\bar{Y}}E'_{\bar{y}}$, where $E'_{\bar{y}}$ is the union of the images of the *p*-Sylows of $\pi_1(\bar{Y}_{(\bar{y})}\times_{\bar{Y}}Y)$ in $\pi_1(Y,\bar{\zeta})$.

For $a \in K_{\text{lisse}}(Y, \mathbb{F}_{\ell})$, the Brauer trace map

$$\operatorname{Tr}_{a}^{\operatorname{Br}} \colon \pi_{1}(Y, \overline{\zeta})_{\ell\operatorname{-reg}} \to \mathbb{Z}_{\ell}$$

is defined on $\ell\text{-regular}$ elements, namely, elements of profinite order prime to $\ell.$

▲ロト ▲興ト ▲ヨト ▲ヨト ニヨー わえぐ

Let Z be a scheme separated of finite type over k, $K(Z, \mathbb{F}_{\ell})$ be the Grothendieck group of constructible sheaves of \mathbb{F}_{ℓ} -modules on Z. Vidal 2004 defines

$$K(Z,\mathbb{F}_{\ell})^0_t\subset K(Z,\mathbb{F}_{\ell})$$

as the subgroup generated by classes of the form $[i_!a]$, where $i: Y \to Z$ is a quasi-finite morphism, Y is a connected normal separated scheme, $a \in K_{\text{lisse}}(Y, \mathbb{F}_{\ell})$, $\text{Tr}_{a}^{\text{Br}}(s) = 0$ for all $s \in E_Y$.

We extend this definition verbatim to algebraic spaces Z separated of finite type over k.

Let Z be a scheme separated of finite type over k, $K(Z, \mathbb{F}_{\ell})$ be the Grothendieck group of constructible sheaves of \mathbb{F}_{ℓ} -modules on Z. Vidal 2004 defines

$$\mathsf{K}(Z,\mathbb{F}_\ell)^0_t\subset \mathsf{K}(Z,\mathbb{F}_\ell)$$

as the subgroup generated by classes of the form $[i_!a]$, where $i: Y \to Z$ is a quasi-finite morphism, Y is a connected normal separated scheme, $a \in K_{\text{lisse}}(Y, \mathbb{F}_{\ell})$, $\text{Tr}_{a}^{\text{Br}}(s) = 0$ for all $s \in E_Y$.

We extend this definition verbatim to algebraic spaces Z separated of finite type over k.

Theorem (Gabber-Vidal 2005)

Let Y be a connected normal separated scheme of finite type over k, $a \in K_{\text{lisse}}(Y, \mathbb{F}_{\ell})$. Then a is in $K(Y, \mathbb{F}_{\ell})_t^0$ if and only if there exists a compactification \overline{Y} of Y such that $\text{Tr}_a^{\text{Br}}(s) = 0$ for all $s \in E_{Y,\overline{Y}}$.

Virtual tameness

Let Z be an algebraic space separated of finite type over k. The rank function is a homomorphism

rank:
$$K(Z, \mathbb{F}_{\ell}) \rightarrow C(Z, \mathbb{Z})$$
,

where $C(Z, \mathbb{Z})$ is the group of constructible functions on Z. It has a section $c \mapsto \langle c \rangle$, sending the characteristic function of any locally closed subspace Z' of Z to $i_! \mathbb{F}_{\ell,Z'}$, where $i: Z' \to Z$ is the immersion. We say $a \in K(Z, \mathbb{F}_{\ell})$ is virtually tame if $a - \langle \operatorname{rank}(a) \rangle \in K(Z, \mathbb{F}_{\ell})^0_t$.

Virtual tameness

Let Z be an algebraic space separated of finite type over k. The rank function is a homomorphism

rank:
$$K(Z, \mathbb{F}_{\ell}) \rightarrow C(Z, \mathbb{Z})$$
,

where $C(Z, \mathbb{Z})$ is the group of constructible functions on Z. It has a section $c \mapsto \langle c \rangle$, sending the characteristic function of any locally closed subspace Z' of Z to $i_! \mathbb{F}_{\ell,Z'}$, where $i: Z' \to Z$ is the immersion. We say $a \in K(Z, \mathbb{F}_{\ell})$ is virtually tame if $a - \langle \operatorname{rank}(a) \rangle \in K(Z, \mathbb{F}_{\ell})^0_t$.

Proposition

Let Y be a connected normal separated scheme of finite type over k, f: $X \to Y$ be a finite Galois etale cover. Then f is tamely ramified at infinity if and only if $[f_*\mathbb{F}_\ell] \in K(Y, \mathbb{F}_\ell)$ is virtually tame.

Let X be a scheme separated of finite type over k,

G be a finite group acting on X.

Then X/G is a separated algebraic space of finite type over k. We say the action is virtually tame

if $[f_*\mathbb{F}_\ell] \in K(X/G, \mathbb{F}_\ell)$ is virtually tame, where $f: X \to X/G$.

Let X be a scheme separated of finite type over k,

G be a finite group acting on X.

Then X/G is a separated algebraic space of finite type over k. We say the action is virtually tame

if $[f_*\mathbb{F}_\ell] \in K(X/G, \mathbb{F}_\ell)$ is virtually tame, where $f: X \to X/G$.

For H < G, let $X_H = X^H - \bigcup_{H < H' < G} X^{H'}$ be the locus of inertia H. Let S be the set of conjugacy classes of subgroups of G. For $S \in S$, G acts on $X_S := \prod_{H \in S} X_H$.

Let X be a scheme separated of finite type over k,

G be a finite group acting on X.

Then X/G is a separated algebraic space of finite type over k. We say the action is virtually tame

if $[f_*\mathbb{F}_{\ell}] \in K(X/G, \mathbb{F}_{\ell})$ is virtually tame, where $f: X \to X/G$.

For H < G, let $X_H = X^H - \bigcup_{H < H' < G} X^{H'}$ be the locus of inertia H. Let S be the set of conjugacy classes of subgroups of G. For $S \in S$, G acts on $X_S := \prod_{H \in S} X_H$.

Theorem

Assume that the action of G is virtually tame. Then

$$\chi(X,G,\mathbb{Q}_{\ell})=\sum_{S\in\mathcal{S}}\chi(X_S/G)I_S,$$

where $I_{S} = \mathbb{Q}_{\ell}[G/H]$ for $H \in S$.

Verdier 1976 proved an analogue for certain locally compact topological spaces (for example X^{an} , if $k = \mathbb{C}$). イロト イポト イヨト イヨト = 900

Corollary

If $G = \langle g \rangle$ acts virtually tamely on X, then

 $t(g) = \chi(X^g).$

The case X affine smooth over \mathbb{C} was known to Petrie-Randall 1986.

< ロ > < 同 > < 三 > < 三

Plan of the talk

Generalization of Laumon's theorem on Euler characteristics

2 Tameness at infinity

< ロ > < 同 > < 三 > < 三

Equivariant cohomology algebra

Recall that k is an algebraically closed field.

Let X be a separated scheme of finite type over k,

G be a linear algebraic group over *k*. Then [X/G] is an Artin stack. BG := [Spec(k)/G].

For $L \in D_c^b([X/G], \mathbb{F}_{\ell})$, $H^i([X/G], L)$ is a finite-dimensional \mathbb{F}_{ℓ} -vector space.

If G is a finite group, $H^i([X/G], L) = H^i(G, R\Gamma(X, L))$.

Equivariant cohomology algebra

Recall that k is an algebraically closed field. Let X be a separated scheme of finite type over k, G be a linear algebraic group over k. Then [X/G] is an Artin stack.

 $BG := [\operatorname{Spec}(k)/G].$ For $L \in D_c^b([X/G], \mathbb{F}_\ell)$, $H^i([X/G], L)$ is a finite-dimensional \mathbb{F}_ℓ -vector space.

If G is a finite group, $H^{i}([X/G], L) = H^{i}(G, R\Gamma(X, L)).$

Example

For $A\simeq (\mathbb{Z}/\ell)^r$ (such a group is called an elementary abelian ℓ -group),

$$H^*(BA, \mathbb{F}_{\ell}) = \begin{cases} \mathbb{F}_{\ell}[x_1, \dots, x_r] & \ell = 2, \\ \wedge(x_1, \dots, x_r) \otimes \mathbb{F}_{\ell}[y_1, \dots, y_r] & \ell > 2, \end{cases}$$

where x_1, \ldots, x_r form a basis of $H^1 = \text{Hom}(A, \mathbb{F}_\ell)$, $y_1, \ldots, y_r \in H^2$.

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Finiteness

Theorem

 $H^*([X/G], \mathbb{F}_{\ell})$ is a finitely generated \mathbb{F}_{ℓ} -algebra and $H^*([X/G], L)$ is a finite $H^*([X/G], \mathbb{F}_{\ell})$ -module.

Topological setting (G compact Lie group, X certain topological space, $L = \mathbb{F}_{\ell}$ known to Quillen 1971.

The structure theorem

Let \mathcal{A} be the category of pairs (A, c), where A is an elementary abelian ℓ -subgroup of G, $c \in \pi_0(X^A)$. A morphism $(A, c) \to (A', c')$ in \mathcal{A} is a $g \in G(k)$ such that $gAg^{-1} \subset A'$, $gc \supset c'$. $BA \times c \to [X/G]$ induces

 $H^*([X/G], \mathbb{F}_\ell) \to H^*(BA \times c, \mathbb{F}_\ell) \to H^*(BA, \mathbb{F}_\ell).$

The structure theorem

Let \mathcal{A} be the category of pairs (A, c), where A is an elementary abelian ℓ -subgroup of G, $c \in \pi_0(X^A)$. A morphism $(A, c) \to (A', c')$ in \mathcal{A} is a $g \in G(k)$ such that $gAg^{-1} \subset A'$, $gc \supset c'$. $BA \times c \rightarrow [X/G]$ induces

$$H^*([X/G],\mathbb{F}_\ell) o H^*(BA imes c,\mathbb{F}_\ell) o H^*(BA,\mathbb{F}_\ell).$$

Theorem

The homomorphism

$$H^*([X/G], \mathbb{F}_\ell) \to \varprojlim_{(A,c) \in \mathcal{A}} H^*(BA, \mathbb{F}_\ell)$$

is a uniform F-isomorphism.

A homomorphism of \mathbb{F}_{ℓ} -algebras is called a uniform *F*-isomorphism if $F^N = 0$ on the kernel and cokernel for N large enough. Here $F: a \mapsto a^{\ell}$. Topological setting known to Quillen 1971.

Weizhe Zheng

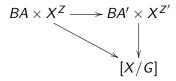
Equivariant cohomology and traces

ICCM 2010 24 / 26

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

For $A \subset A'$, $BA \to BA'$, $X^A \supset X^{A'}$.

Let \mathcal{B} be the category of pairs (A, Z), where $A \subset Z \subset G$ are elementary abelian ℓ -subgroups. A morphism $(A, Z) \to (A', Z')$ in \mathcal{B} is a $g \in G(k)$ such that $gAg^{-1} \subset A'$, $gZg^{-1} \supset Z'$. 2-commutative diagram:

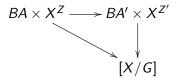


ICCM 2010 25 / 26

イロト イポト イヨト イヨト 二日

For $A \subset A'$, $BA \to BA'$, $X^A \supset X^{A'}$.

Let \mathcal{B} be the category of pairs (A, Z), where $A \subset Z \subset G$ are elementary abelian ℓ -subgroups. A morphism $(A, Z) \to (A', Z')$ in \mathcal{B} is a $g \in G(k)$ such that $gAg^{-1} \subset A'$, $gZg^{-1} \supset Z'$. 2-commutative diagram:



Theorem

Let $L \in D^b_c([X/G], \mathbb{F}_{\ell})$, endowed with a ring structure $L \otimes L \to L$. Then the homomorphism

$$H^*([X/G], L) \to \varprojlim_{(A,Z)\in\mathcal{B}} H^*(BA \times X^Z, L)$$

is a uniform F-isomorphism.

The end

The end

Thank you.

▶ < ≣ ▶ ≣ ∽ < @ ICCM 2010 26 / 26

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト