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Introduction

Introduction

Let k be an algebraically closed field of characteristic p ≥ 0,
X be a separated scheme of finite type over k ,
G be a finite group acting on X .
For any prime number ` 6= p, H i (X ,Q`) is a finite-dimensional `-adic
representation of G . For g ∈ G ,

t`(g) :=
∑
i

(−1)i Tr(g ,H i (X ,Q`)) ∈ Z`.

Problem

Is t`(g) in Z and independent of `?

Problem

Describe the virtual representation χ(X ,G ,Q`) :=
∑

i (−1)i [H i (X ,Q`)]
of G under suitable assumptions on the action of G.
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Generalization of Laumon’s theorem on Euler characteristics Compactly supported cohomology

Compactly supported cohomology

H i
c(X ,Q`) is also a finite-dimensional `-adic representation of G .

For g ∈ G ,

tc,X ,`(g) :=
∑
i

(−1)i Tr(g ,H i
c(X ,Q`)) ∈ Z`.

Additivity: If Z ⊂ X is a G -stable closed subscheme, then

tc,X ,`(g) = tc,Z ,`(g) + tc,X−Z ,`(g).

Theorem (Deligne-Lusztig 1976)

tc,`(g) is in Z and independent of `.
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Generalization of Laumon’s theorem on Euler characteristics Compactly supported cohomology

Theorem

(1) t`(g) = tc,`(g).

Corollary

t`(g) is in Z and independent of `.

If g = 1, (??) becomes

χ(X ,Q`) = χc(X ,Q`),

which follows from Laumon’s theorem.
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Generalization of Laumon’s theorem on Euler characteristics Laumon’s theorem

Laumon’s theorem

Let k be an arbitrary field of characteristic p.
For X separated of finite type over k ,
let Db

c (X ,Q`) be the category of (bounded) `-adic complexes,
K (X ,Q`) be the corresponding Grothendieck ring, K∼(X ,Q`) be the
quotient of K (X ,Q`) by the ideal generated by [Q`(1)]− [Q`].
For any morphism f : X → Y , the exact functors

Rf∗,Rf! : Db
c (X ,Q`)→ Db

c (Y ,Q`)

induce group homomorphisms

f∗, f! : K (X ,Q`)→ K (Y ,Q`),

f ∼∗ , f
∼

! : K∼(X ,Q`)→ K∼(Y ,Q`).

Theorem (Laumon 1981)

f ∼∗ = f ∼! .
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Generalization of Laumon’s theorem on Euler characteristics Equivariant complexes

Equivariant complexes

For X separated of finite type over k and G finite acting on X ,
let Db

c (X ,G ,Q`) be the category of (bounded) G -equivariant `-adic
complexes, K (X ,G ,Q`) be the corresponding Grothendieck ring,
K∼(X ,G ,Q`) be the quotient of K (X ,G ,Q`) by the ideal generated by
[Q`(1)]− [Q`].
Let (f , u) : (X ,G )→ (Y ,H), where u : G → H is a homomorphism and
f : X → Y is a u-equivariant morphism. The exact functors

R(f , u)∗,R(f , u)! : Db
c (X ,G ,Q`)→ Db

c (Y ,H,Q`)

induce group homomorphisms

(f , u)∗, (f , u)! : K (X ,G ,Q`)→ K (Y ,H,Q`),

(f , u)∼∗ , (f , u)∼! : K∼(X ,G ,Q`)→ K∼(Y ,H,Q`).
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Generalization of Laumon’s theorem on Euler characteristics Equivariant complexes

Theorem

(f , u)∼∗ = (f , u)∼! .

One key step of the proof is the following.

Proposition

Let S be the spectrum of a henselian discrete valuation ring, with closed
point s = Spec(k) and generic point η. Then for any
L ∈ Db

c (X ×s η,G ,Q`), the class in K∼(X ,G ,Q`) of

RΓ(I , L) ∈ Db
c (X ,G ,Q`)

is zero, where I is the inertia subgroup of the Galois group of η.
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Generalization of Laumon’s theorem on Euler characteristics Complexes on Deligne-Mumford stacks

Complexes on Deligne-Mumford stacks

Let S be a regular (Noetherian) scheme of dimension ≤ 1,
` be a prime invertible on S .
One can define, for every Deligne-Mumford stack X of finite type over S ,
a category Db

c (X ,Q`) of `-adic complexes on X , and,
for every morphism f : X → Y, exact functors

Rf∗,Rf! : Db
c (X ,Q`)→ Db

c (Y,Q`),

f ∗,Rf ! : Db
c (Y,Q`)→ Db

c (X ,Q`).

Under an additional condition of finiteness of cohomological dimension,
Laszlo-Olsson 2008 defined an `-adic formalism for unbounded complexes
on Artin stacks.
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Generalization of Laumon’s theorem on Euler characteristics Complexes on Deligne-Mumford stacks

For a Deligne-Mumford stack X of finite type over S ,
let K (X ,Q`) be the Grothendieck ring of Db

c (X ,Q`),
K∼(X ,Q`) be the quotient by the ideal generated by [Q`(1)]− [Q`].
For f : X → Y, Rf∗ and Rf! induce group homomorphisms

f ∼∗ , f
∼

! : K∼(X ,Q`)→ K∼(Y,Q`),

f ∗ and Rf ! induce group homomorphisms

f ∗∼, f !∼ : K∼(Y,Q`)→ K∼(X ,Q`).

f ∗∼ is a ring homomorphism.

Theorem

f ∼∗ = f ∼! .

Corollary

f ∗∼ = f !∼.
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Tameness at infinity Free actions

Free actions

From now on, k is an algebraically closed field of characteristic exponent
p ≥ 1. For X separated of finite type over k and G finite acting on X ,
t(g) := t`(g) = tc,`(g) ∈ Z for g ∈ G .

Theorem

If G acts freely on X , then RΓ(X ,Z`) and RΓc(X ,Z`) are perfect
complexes of Z`[G ]-modules and t(g) = 0 for every g ∈ G whose order is
not a power of p.

A complex of Z`[G ]-modules is said to be perfect if it is quasi-isomorphic
to a bounded complex of finite projective Z`[G ]-modules.
If P is a finite projective Z`[G ]-module, the theory of modular characters
implies that the character P ⊗Z`

Q` vanishes on `-singular elements of G ,
namely, elements of order divisible by `.
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Tameness at infinity Free actions

Corollary (Deligne-Lusztig (for χc))

If G acts freely on X , and the order of G is prime to p, then

χ(X ,G ,Q`) = χ(X/G )RegQ`
(G ),

where RegQ`
(G ) is the regular representation of G .

X/G is a separated algebraic space of finite type over k.

Corollary (Serre)

If G is an `-group acting on X , then

χ(XG ) ≡ χ(X ) mod `.

Example

If G is an `-group acting on X = An, then χ(XG ) ≡ 1 mod `.
In particular, XG 6= ∅.
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Tameness at infinity Free actions

Let Y be a connected normal separated scheme of finite type over k .
We say a finite Galois etale cover X → Y of group G is tamely ramified at
infinity, if there exists a normal compactification Ȳ of Y , such that,
at every point x of the normalization X̄ of Ȳ in X ,

X �
� //

��

X̄

��
Y �
� // Ȳ

the inertia subgroup of G has order prime to p.

Theorem (Deligne-Illusie 1981)

Under the above assumptions,

χ(X ,G ,Q`) = χ(X/G )RegQ`
(G ).
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Tameness at infinity Vidal’s group

Vidal’s group

Let Y be a connected normal separated scheme of finite type over k ,
ζ̄ be a geometric point of Y . Define the wild part EY of π1(Y , ζ̄):

EY =
⋂
Ȳ

EY ,Ȳ ,

where Ȳ runs over compactifications of Y , EY ,Ȳ is the closure of ∪ȳ∈Ȳ E ′ȳ ,

where E ′ȳ is the union of the images of the p-Sylows of π1(Ȳ(ȳ) ×Ȳ Y ) in

π1(Y , ζ̄).

For a ∈ Klisse(Y ,F`), the Brauer trace map

TrBr
a : π1(Y , ζ̄)`-reg → Z`

is defined on `-regular elements, namely, elements of profinite order prime
to `.
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Tameness at infinity Vidal’s group

Let Z be a scheme separated of finite type over k , K (Z ,F`) be the
Grothendieck group of constructible sheaves of F`-modules on Z .
Vidal 2004 defines

K (Z ,F`)
0
t ⊂ K (Z ,F`)

as the subgroup generated by classes of the form [i!a], where i : Y → Z is
a quasi-finite morphism, Y is a connected normal separated scheme,
a ∈ Klisse(Y ,F`), TrBr

a (s) = 0 for all s ∈ EY .

We extend this definition verbatim to algebraic spaces Z separated of
finite type over k .

Theorem (Gabber-Vidal 2005)

Let Y be a connected normal separated scheme of finite type over k,
a ∈ Klisse(Y ,F`). Then a is in K (Y ,F`)

0
t if and only if there exists a

compactification Ȳ of Y such that TrBr
a (s) = 0 for all s ∈ EY ,Ȳ .
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Tameness at infinity Virtual tameness

Virtual tameness

Let Z be an algebraic space separated of finite type over k .
The rank function is a homomorphism

rank: K (Z ,F`)→ C (Z ,Z),

where C (Z ,Z) is the group of constructible functions on Z .
It has a section c 7→ 〈c〉, sending the characteristic function of any locally
closed subspace Z ′ of Z to i!F`,Z ′ , where i : Z ′ → Z is the immersion.
We say a ∈ K (Z ,F`) is virtually tame if a− 〈rank(a)〉 ∈ K (Z ,F`)

0
t .

Proposition

Let Y be a connected normal separated scheme of finite type over k,
f : X → Y be a finite Galois etale cover. Then f is tamely ramified at
infinity if and only if [f∗F`] ∈ K (Y ,F`) is virtually tame.
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Tameness at infinity Virtual tameness

Let X be a scheme separated of finite type over k,
G be a finite group acting on X .
Then X/G is a separated algebraic space of finite type over k.
We say the action is virtually tame
if [f∗F`] ∈ K (X/G ,F`) is virtually tame, where f : X → X/G .

For H < G , let XH = XH − ∪H<H′<GXH′
be the locus of inertia H.

Let S be the set of conjugacy classes of subgroups of G .
For S ∈ S, G acts on XS :=

∐
H∈S XH .

Theorem

Assume that the action of G is virtually tame. Then

χ(X ,G ,Q`) =
∑
S∈S

χ(XS/G )IS ,

where IS = Q`[G/H] for H ∈ S.

Verdier 1976 proved an analogue for certain locally compact topological
spaces (for example X an, if k = C).
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Tameness at infinity Virtual tameness

Corollary

If G = 〈g〉 acts virtually tamely on X , then

t(g) = χ(X g ).

The case X affine smooth over C was known to Petrie-Randall 1986.

Weizhe Zheng Equivariant cohomology and traces ICCM 2010 20 / 26



Mod ` equivariant cohomology algebra
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Mod ` equivariant cohomology algebra Equivariant cohomology algebra

Equivariant cohomology algebra

Recall that k is an algebraically closed field.
Let X be a separated scheme of finite type over k,
G be a linear algebraic group over k . Then [X/G ] is an Artin stack.
BG := [Spec(k)/G ].
For L ∈ Db

c ([X/G ],F`), H i ([X/G ], L) is a finite-dimensional F`-vector
space.
If G is a finite group, H i ([X/G ], L) = H i (G ,RΓ(X , L)).

Example

For A ' (Z/`)r (such a group is called an elementary abelian `-group),

H∗(BA,F`) =

{
F`[x1, . . . , xr ] ` = 2,

∧(x1, . . . , xr )⊗ F`[y1, . . . , yr ] ` > 2,

where x1, . . . , xr form a basis of H1 = Hom(A,F`), y1, . . . , yr ∈ H2.
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Mod ` equivariant cohomology algebra Finiteness

Finiteness

Theorem

H∗([X/G ],F`) is a finitely generated F`-algebra and
H∗([X/G ], L) is a finite H∗([X/G ],F`)-module.

Topological setting (G compact Lie group, X certain topological space,
L = F`) known to Quillen 1971.
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Mod ` equivariant cohomology algebra The structure theorem

The structure theorem

Let A be the category of pairs (A, c), where A is an elementary abelian
`-subgroup of G , c ∈ π0(XA). A morphism (A, c)→ (A′, c ′) in A is a
g ∈ G (k) such that gAg−1 ⊂ A′, gc ⊃ c ′. BA× c → [X/G ] induces

H∗([X/G ],F`)→ H∗(BA× c ,F`)→ H∗(BA,F`).

Theorem

The homomorphism

H∗([X/G ],F`)→ lim←−
(A,c)∈A

H∗(BA,F`)

is a uniform F -isomorphism.

A homomorphism of F`-algebras is called a uniform F -isomorphism if
FN = 0 on the kernel and cokernel for N large enough. Here F : a 7→ a`.

Topological setting known to Quillen 1971.
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For A ⊂ A′, BA→ BA′, XA ⊃ XA′
.

Let B be the category of pairs (A,Z ), where A ⊂ Z ⊂ G are elementary
abelian `-subgroups. A morphism (A,Z )→ (A′,Z ′) in B is a g ∈ G (k)
such that gAg−1 ⊂ A′, gZg−1 ⊃ Z ′. 2-commutative diagram:

BA× XZ //

&&

BA′ × XZ ′

��
[X/G ]

Theorem

Let L ∈ Db
c ([X/G ],F`), endowed with a ring structure L⊗ L→ L. Then

the homomorphism

H∗([X/G ], L)→ lim←−
(A,Z)∈B

H∗(BA× XZ , L)

is a uniform F -isomorphism.
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The end

The end

Thank you.
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