Mod ℓ cohomology algebras of quotient stacks Analogues of Quillen's theory

Weizhe Zheng

Columbia University and Chinese Academy of Sciences

Pan-Asian Number Theory

Morningside Center of Mathematics, Chinese Academy of Sciences, Beijing

August 23, 2011

Joint work with Luc Illusie.

Plan of the talk

- Introduction
- 2 Cohomology of Artin stacks; finiteness
- Structure theorems
 - Equivariant version with constant coefficients
 - Equivariant version with general coefficients
 - Stacky version
- 4 A localization theorem

Introduction

Fix a prime number ℓ . $\mathbb{F}_{\ell} := \mathbb{Z}/\ell\mathbb{Z}$. Let G be a compact Lie group, BG be a classifying space of G. Consider the graded \mathbb{F}_{ℓ} -algebra

$$H_G^*(\mathbb{F}_\ell) := H^*(BG, \mathbb{F}_\ell),$$

satisfying

$$a \cup b = (-1)^{ij}b \cup a$$

for $a \in H_G^i(\mathbb{F}_\ell)$, $b \in H_G^j(\mathbb{F}_\ell)$. The \mathbb{F}_ℓ -algebra $H_G^{\epsilon*}(\mathbb{F}_\ell)$ is commutative, where

$$\epsilon = \begin{cases} 1 & \ell = 2, \\ 2 & \ell > 2. \end{cases}$$

Definition

An elementary abelian ℓ -group is a finite dimensional \mathbb{F}_{ℓ} -vector space. The rank of the group is the dimension of the vector space.

Fact

Let $A \simeq (\mathbb{Z}/\ell\mathbb{Z})^r$.

$$H_A^*(\mathbb{F}_\ell) = \begin{cases} \mathbb{F}_\ell[x_1, \dots, x_r] & \ell = 2, \\ \wedge (\mathbb{F}_\ell x_1 \oplus \dots \oplus \mathbb{F}_\ell x_r) \otimes \mathbb{F}_\ell[y_1, \dots, y_r] & \ell > 2, \end{cases}$$

where x_1, \ldots, x_r form a basis of $H^1 = \text{Hom}(A, \mathbb{F}_\ell)$, $y_1, \ldots, y_r \in H^2$. In particular, $\text{Spec}(H_A^{\epsilon*}(\mathbb{F}_\ell))$ is homeomorphic to $\mathbb{A}_{\mathbb{F}_\ell}^r$.

Quillen's structure theorem

Let $\mathcal A$ be the category of elementary abelian ℓ -subgroups of G. A morphism $A \to A'$ in $\mathcal A$ is an element $g \in G$ such that $g^{-1}Ag \subset A'$.

Theorem (Quillen)

The homomorphism

$$H_G^*(\mathbb{F}_\ell) \to \varprojlim_{A \in \mathcal{A}} H_A^*(\mathbb{F}_\ell)$$

is a uniform F-isomorphism.

A homomorphism of \mathbb{F}_{ℓ} -algebras is called a uniform F-isomorphism if $F^N=0$ on the kernel and cokernel for N large enough. Here $F:a\mapsto a^{\ell}$.

Quillen's structure theorem

Let $\mathcal A$ be the category of elementary abelian ℓ -subgroups of G. A morphism $A \to A'$ in $\mathcal A$ is an element $g \in G$ such that $g^{-1}Ag \subset A'$.

Theorem (Quillen)

The homomorphism

$$H_G^*(\mathbb{F}_\ell) \to \varprojlim_{A \in \mathcal{A}} H_A^*(\mathbb{F}_\ell)$$

is a uniform F-isomorphism.

A homomorphism of \mathbb{F}_{ℓ} -algebras is called a uniform F-isomorphism if $F^N=0$ on the kernel and cokernel for N large enough. Here $F:a\mapsto a^{\ell}$.

Corollary

The Krull dimension of $H_G^{\epsilon*}(\mathbb{F}_\ell)$ is equal to the maximum rank of the elementary abelian ℓ -subgroups of G.

This was conjectured by Atiyah and Swan.

(□ > ◀畵 > ◀돌 > ◀돌 > _ 돌 · 쒸오)

More generally, Quillen considered the equivariant cohomology algebra $H_G^*(X, \mathbb{F}_\ell)$, where X is a topological space acted on by G.

Theorem (Quillen)

Assume X is paracompact and of finite ℓ -cohomological dimension. Then the homomorphism

$$H_G^*(X, \mathbb{F}_\ell) \to \varprojlim_{(A,C)} H_A^*(\mathbb{F}_\ell)$$

is a uniform F-isomorphism. Here the limit is taken over pairs (A, C), where A is an elementary abelian ℓ -subgroup of G, C is a connected component of the fixed point set X^A .

Algebraic setting

Fix an algebraically closed base field k of characteristic $\neq \ell$.

• Structure theorem for $H^*([X/G], \mathbb{F}_\ell)$, where X is a scheme over k, G is an algebraic group over k acting on X, [X/G] is the quotient stack.

Algebraic setting

Fix an algebraically closed base field k of characteristic $\neq \ell$.

- Structure theorem for $H^*([X/G], \mathbb{F}_\ell)$, where X is a scheme over k, G is an algebraic group over k acting on X, [X/G] is the quotient stack.
- Stacky interpretation of $H^*(\mathcal{M}, \mathbb{F}_{\ell})$, where \mathcal{M} is a moduli stack over k.

Algebraic setting

Fix an algebraically closed base field k of characteristic $\neq \ell$.

- Structure theorem for $H^*([X/G], \mathbb{F}_\ell)$, where X is a scheme over k, G is an algebraic group over k acting on X, [X/G] is the quotient stack.
- Stacky interpretation of $H^*(\mathcal{M}, \mathbb{F}_{\ell})$, where \mathcal{M} is a moduli stack over k.
- $H^*(\mathcal{M}, R^*f_*\mathbb{F}_\ell)$, where $f: \mathcal{T} \to \mathcal{M}$ is a universal family.

Plan of the talk

- Introduction
- 2 Cohomology of Artin stacks; finiteness
- Structure theorems
 - Equivariant version with constant coefficients
 - Equivariant version with general coefficients
 - Stacky version
- A localization theorem

Plan of the talk

- Introduction
- 2 Cohomology of Artin stacks; finiteness
- Structure theorems
 - Equivariant version with constant coefficients
 - Equivariant version with general coefficients
 - Stacky version
- 4 A localization theorem

Cartesian sheaves

Let \mathcal{X} be an Artin stack.

$$\mathsf{Mod}_{\mathsf{Cart}}(\mathcal{X}, \mathbb{F}_\ell) := \varprojlim \mathsf{Mod}(X_{\mathrm{\acute{e}t}}, \mathbb{F}_\ell),$$

where the limit is taken over smooth morphisms $X \to \mathcal{X}$, where X is a scheme. If $X_0 \to \mathcal{X}$ is a smooth presentation (i.e. a smooth surjection such that X_0 is a scheme),

$$\mathsf{Mod}_{\mathsf{Cart}}(\mathcal{X}, \mathbb{F}_\ell) \simeq \varprojlim_n \mathsf{Mod}((X_n)_{\mathrm{\acute{e}t}}, \mathbb{F}_\ell),$$

where $X_{\bullet} = \operatorname{cosk}_0(X_0/\mathcal{X})$ (X_n is the fiber product of n+1 copies of X_0 above \mathcal{X}).

Cartesian sheaves

Let \mathcal{X} be an Artin stack.

$$\mathsf{Mod}_{\mathsf{Cart}}(\mathcal{X},\mathbb{F}_\ell) := \varprojlim \mathsf{Mod}(X_{\mathrm{\acute{e}t}},\mathbb{F}_\ell),$$

where the limit is taken over smooth morphisms $X \to \mathcal{X}$, where X is a scheme. If $X_0 \to \mathcal{X}$ is a smooth presentation (i.e. a smooth surjection such that X_0 is a scheme),

$$\mathsf{Mod}_{\mathsf{Cart}}(\mathcal{X}, \mathbb{F}_\ell) \simeq \varprojlim_n \mathsf{Mod}((X_n)_{\mathrm{\acute{e}t}}, \mathbb{F}_\ell),$$

where $X_{\bullet} = \operatorname{cosk}_0(X_0/\mathcal{X})$ (X_n is the fiber product of n+1 copies of X_0 above \mathcal{X}).

Example

If $\mathcal X$ is a Deligne-Mumford stack, $\mathsf{Mod}_{\mathsf{Cart}}(\mathcal X,\mathbb F_\ell)\simeq \mathsf{Mod}(\mathcal X_{\mathrm{\acute{e}t}},\mathbb F_\ell).$

- イロト イ御 ト イミト イミト ミーの

Example

Let X be a scheme over k, G be an algebraic group over k acting on X. The quotient stack [X/G] is an Artin stack and $\mathsf{Mod}_{\mathsf{Cart}}([X/G], \mathbb{F}_\ell)$ is the category of G-equivariant \mathbb{F}_ℓ -sheaves on $X_{\mathrm{\acute{e}t}}$.

Example

Let X be a scheme over k, G be an algebraic group over k acting on X. The quotient stack [X/G] is an Artin stack and $\mathsf{Mod}_{\mathsf{Cart}}([X/G], \mathbb{F}_\ell)$ is the category of G-equivariant \mathbb{F}_ℓ -sheaves on $X_{\mathrm{\acute{e}t}}$.

Example

 $BG = [\operatorname{Spec}(k)/G]$. $\operatorname{\mathsf{Mod}}_{\operatorname{\mathsf{Cart}}}(BG, \mathbb{F}_\ell)$ is the category of \mathbb{F}_ℓ -representations of G. In particular,

$$\mathsf{Mod}_{\mathsf{Cart}}(\mathit{BG},\mathbb{F}_\ell) \simeq \mathsf{Mod}_{\mathsf{Cart}}(\mathit{B}\pi_0(\mathit{G}),\mathbb{F}_\ell).$$

 $\mathsf{Mod}_{\mathsf{Cart}}(\mathcal{X}, \mathbb{F}_{\ell})$ does not determine $H^*(\mathcal{X}, \mathbb{F}_{\ell})$.

Derived category of Cartesian sheaves

Two approaches:

1 (Laumon-Moret-Bailly) Consider the site whose objects are smooth morphisms $X \to \mathcal{X}$ where X is a scheme and whose covering families are smooth surjective families. It defines a topos \mathcal{X}_{sm} . Mod $_{\mathsf{Cart}}(\mathcal{X}, \mathbb{F}_\ell)$ is a full subcategory of $\mathsf{Mod}(\mathcal{X}_{sm}, \mathbb{F}_\ell)$. Define $D_{\mathsf{Cart}}(\mathcal{X}, \mathbb{F}_\ell)$ to be the triangulated full subcategory of $D(\mathcal{X}_{sm}, \mathbb{F}_\ell)$ consisting of complexes with cohomology sheaves in $\mathsf{Mod}_{\mathsf{Cart}}(\mathcal{X}, \mathbb{F}_\ell)$.

Derived category of Cartesian sheaves

Two approaches:

- 1 (Laumon-Moret-Bailly) Consider the site whose objects are smooth morphisms $X \to \mathcal{X}$ where X is a scheme and whose covering families are smooth surjective families. It defines a topos \mathcal{X}_{sm} . $\mathsf{Mod}_{\mathsf{Cart}}(\mathcal{X}, \mathbb{F}_\ell)$ is a full subcategory of $\mathsf{Mod}(\mathcal{X}_{sm}, \mathbb{F}_\ell)$. Define $D_{\mathsf{Cart}}(\mathcal{X}, \mathbb{F}_\ell)$ to be the triangulated full subcategory of $D(\mathcal{X}_{sm}, \mathbb{F}_\ell)$ consisting of complexes with cohomology sheaves in $\mathsf{Mod}_{\mathsf{Cart}}(\mathcal{X}, \mathbb{F}_\ell)$.
- (Behrend, Gabber) \mathcal{X}_{sm} is not functorial. For a morphism $f: \mathcal{X} \to \mathcal{Y}$ of Artin stacks, $f^*: \mathcal{Y}_{sm} \to \mathcal{X}_{sm}$ is not left exact in general.
- (Olsson, Laszlo-Olsson) Define

$$f^* \colon D_{\mathsf{Cart}}(\mathcal{Y}, \mathbb{F}_{\ell}) \to D_{\mathsf{Cart}}(\mathcal{X}, \mathbb{F}_{\ell})$$

using smooth presentations and cohomological descent.

40 14 14 14 14 1 1 100

2 (Liu-Zheng in progress)

$$\mathcal{D}_{\mathsf{Cart}}(\mathcal{X}, \mathbb{F}_{\ell}) := \varprojlim_{n} \mathcal{D}((X_{n})_{\mathrm{\acute{e}t}}, \mathbb{F}_{\ell})$$

is a presentable stable ∞ -category, independent (up to equivalences) of the choice of the smooth presentation $X_0 \to \mathcal{X}$. Here $\mathcal{D}((X_n)_{\mathrm{\acute{e}t}}, \mathbb{F}_\ell)$ is the derived ∞ -category of $\mathsf{Mod}((X_n)_{\mathrm{\acute{e}t}}, \mathbb{F}_\ell)$ defined by Lurie.

 Advantages: base change in derived categories (instead of on the level of sheaves); fewer finiteness assumptions We define $D_c(\mathcal{X}, \mathbb{F}_\ell)$ to be the full subcategory of $D_{\mathsf{Cart}}(\mathcal{X}, \mathbb{F}_\ell)$ consisting of complexes with constructible cohomology sheaves. Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of Artin stacks of finite presentation (a fortiori quasi-separated) over k. We have functors

$$f^* \colon D_c^+(\mathcal{Y}, \mathbb{F}_{\ell}) \to D_c^+(\mathcal{X}, \mathbb{F}_{\ell}),$$

$$Rf_* \colon D_c^+(\mathcal{X}, \mathbb{F}_{\ell}) \to D_c^+(\mathcal{Y}, \mathbb{F}_{\ell}),$$

$$- \otimes - \colon D_c^+(\mathcal{X}, \mathbb{F}_{\ell}) \times D_c^+(\mathcal{X}, \mathbb{F}_{\ell}) \to D_c^+(\mathcal{X}, \mathbb{F}_{\ell}).$$

Proposition

Let
$$G = GL_{n,k}$$
, $T = \mathbb{G}_m^n \subset G$. Then

$$R\Gamma(BT, \mathbb{F}_{\ell}) = \bigoplus_{q} H^{2q}(BT, \mathbb{F}_{\ell})[-2q],$$

 $H^{*}(BT, \mathbb{F}_{\ell}) = \mathbb{F}_{\ell}[t_{1}, \dots, t_{n}],$

where $t_i = c_1(\mathcal{L}_i) \in H^2(BT, \mathbb{F}_{\ell})$, \mathcal{L}_i is the i-th tautological line bundle on BT, and

$$R\Gamma(BG, \mathbb{F}_{\ell}) = \bigoplus_{q} H^{2q}(BG, \mathbb{F}_{\ell})[-2q],$$

 $H^{*}(BG, \mathbb{F}_{\ell}) = (\mathbb{F}_{\ell}[t_{1}, \dots, t_{n}])^{\mathfrak{S}_{n}} = \mathbb{F}_{\ell}[x_{1}, \dots, x_{n}],$

where $x_i = c_i(\mathcal{E}) \in H^{2i}(BG, \mathbb{F}_{\ell})$, \mathcal{E} is the tautological vector bundle on BG.

This follows from approximation by finite Grassmannians (Deligne).

A finiteness theorem

Theorem

Let X be a scheme of finite type over k, G be a linear algebraic group over k acting on X, $K \in D^b_c([X/G], \mathbb{F}_\ell)$. Then $H^*(BG, \mathbb{F}_\ell)$ is a finitely generated \mathbb{F}_ℓ -algebra and $H^*([X/G], K)$ is a finite $H^*(BG, \mathbb{F}_\ell)$ -module.

This is an analogue of Quillen's finiteness theorem (for G a compact Lie group).

Plan of the talk

- Introduction
- 2 Cohomology of Artin stacks; finiteness
- Structure theorems
 - Equivariant version with constant coefficients
 - Equivariant version with general coefficients
 - Stacky version
- 4 A localization theorem

Equivariant version with constant coefficients

Let X be a separated scheme of finite type over k, G be a linear algebraic group over k acting on X. Let $\mathcal B$ be the category of pairs (A,C), where A is an elementary abelian ℓ -subgroup of G, $C \in \pi_0(X^A)$. A morphism $(A,C) \to (A',C')$ in $\mathcal B$ is an element $g \in G(k)$ such that $g^{-1}Ag \subset A'$, $Cg \supset C'$.

18 / 37

Equivariant version with constant coefficients

Let X be a separated scheme of finite type over k, G be a linear algebraic group over k acting on X. Let $\mathcal B$ be the category of pairs (A,C), where A is an elementary abelian ℓ -subgroup of G, $C \in \pi_0(X^A)$. A morphism $(A,C) \to (A',C')$ in $\mathcal B$ is an element $g \in G(k)$ such that $g^{-1}Ag \subset A'$, $Cg \supset C'$. Such a morphism induces a 2-commutative diagram

$$BA \times C' \longrightarrow BA \times C$$

$$\downarrow \qquad \qquad \downarrow$$

$$BA' \times C' \longrightarrow [X/G]$$

which in turn induces a commutative diagram

$$H^{*}([X/G], \mathbb{F}_{\ell}) \longrightarrow H^{*}(BA' \times C', \mathbb{F}_{\ell}) \longrightarrow H^{*}(BA', \mathbb{F}_{\ell})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$H^{*}(BA \times C, \mathbb{F}_{\ell}) \longrightarrow H^{*}(BA \times C', \mathbb{F}_{\ell}) \longrightarrow H^{*}(BA, \mathbb{F}_{\ell})$$

Weizhe Zheng Mod ℓ cohomology algebras PANT 2011 18 / 37

Theorem

The homomorphism

$$H^*([X/G], \mathbb{F}_\ell) \to \varprojlim_{(A,C) \in \mathcal{B}} H^*(BA, \mathbb{F}_\ell)$$

is a uniform F-isomorphism.

Finiteness of orbit types

Let G be an algebraic group over k, A be a finite group, X = Hom(A, G) (a closed subscheme of $\prod_{a \in A} G$). G acts on X by conjugation.

Theorem (Serre)

Assume that the order of A is indivisible by the characteristic of k. Then the orbits of X are open and the number of orbits is finite.

Finiteness of orbit types

Let G be an algebraic group over k, A be a finite group, X = Hom(A, G) (a closed subscheme of $\prod_{a \in A} G$). G acts on X by conjugation.

Theorem (Serre)

Assume that the order of A is indivisible by the characteristic of k. Then the orbits of X are open and the number of orbits is finite.

Corollary

There are only finitely many conjugacy classes of elementary abelian ℓ -subgroups of G.

It follows that there are only finitely many isomorphism classes of objects of \mathcal{B} . Moreover, the limit in the preceding structure theorem is isomorphic to a limit indexed by a finite category.

Toward general coefficients

In $BA \times X^A$, BA is covariant with respect to A and X^A is contravariant with respect to A.

Ends

Let $F: \mathcal{C}^{\mathsf{op}} \times \mathcal{C} \to \mathcal{D}$ be a functor.

Definition

• Let E be an object of \mathcal{D} . A wedge $w: E \to F$ is a family $(w_A: E \to F(A, A))_{A \in \mathcal{C}}$ of morphisms in \mathcal{D} such that for every morphism $f: A \to A'$ in \mathcal{C} , the following square commutes

$$E \xrightarrow{w_A} F(A, A)$$

$$\downarrow^{w_{A'}} \qquad \downarrow^{F(1,f)}$$

$$F(A', A') \xrightarrow{F(f,1)} F(A, A')$$

Ends

Let $F: \mathcal{C}^{\mathsf{op}} \times \mathcal{C} \to \mathcal{D}$ be a functor.

Definition

• Let E be an object of \mathcal{D} . A wedge $w: E \to F$ is a family $(w_A: E \to F(A, A))_{A \in \mathcal{C}}$ of morphisms in \mathcal{D} such that for every morphism $f: A \to A'$ in \mathcal{C} , the following square commutes

$$E \xrightarrow{w_A} F(A, A)$$

$$\downarrow^{w_{A'}} \qquad \downarrow^{F(1,f)}$$

$$F(A', A') \xrightarrow{F(f,1)} F(A, A')$$

• An end of F is an object $E = \int_{A \in \mathcal{C}} F(A, A)$ of \mathcal{D} endowed with a wedge $w: E \to F$ such that for every wedge $w': E' \to F$ there exists a unique morphism $h: E' \to E$ such that $w' = w \circ h$.

4 □ > 4 □ > 4 □ > 4 □ > 3 □

Define a category \mathcal{C}^{\flat} as follows. An object of \mathcal{C}^{\flat} is a morphism $A \to A'$ in \mathcal{C} . A morphism in \mathcal{C}^{\flat} from $A \to A'$ to $B \to B'$ is a commutative diagram in \mathcal{C} of the form

$$\begin{array}{ccc}
A \longrightarrow A' \\
\downarrow & & \uparrow \\
B \longrightarrow B'
\end{array}$$

We have

$$\int_{A\in\mathcal{C}} F(A,A) \simeq \varprojlim_{(A\to A')\in\mathcal{C}^{\flat}} F(A,A').$$

Reformulation of the structure theorem

Let $\mathcal A$ be the category of elementary abelian ℓ -subgroups of $\mathcal G$. A morphism $A \to A'$ in $\mathcal A$ is an element $g \in \mathcal G(k)$ such that $g^{-1}Ag \subset A'$.

We have

$$\varprojlim_{(A,C)\in\mathcal{B}}H^*(BA,\mathbb{F}_\ell)\simeq\int_{A\in\mathcal{A}}H^0(X^A,R^*\pi_*\mathbb{F}_\ell),$$

where $\pi \colon BA \times X^A \to X^A$ is the projection.

Reformulation of the structure theorem

Let $\mathcal A$ be the category of elementary abelian ℓ -subgroups of G. A morphism $A \to A'$ in $\mathcal A$ is an element $g \in G(k)$ such that $g^{-1}Ag \subset A'$.

We have

$$\varprojlim_{(A,C)\in\mathcal{B}} H^*(BA,\mathbb{F}_\ell) \simeq \int_{A\in\mathcal{A}} H^0(X^A,R^*\pi_*\mathbb{F}_\ell),$$

where $\pi: BA \times X^A \to X^A$ is the projection.

 The structure theorem for constant coefficients is equivalent to the assertion that the homomorphism

$$H^*([X/G], \mathbb{F}_\ell) o \int_{A \in \mathcal{A}} H^*(BA \times X^A, \mathbb{F}_\ell) \simeq \varprojlim_{(A \to A') \in \mathcal{A}^\flat} H^*(BA \times X^{A'}, \mathbb{F}_\ell)$$

is a uniform F-isomorphism.

4 D > 4 A > 4 B > 4 B > B 9 Q C

Let \mathcal{A}^{\natural} be the category of pairs (A,A'), where $A\subset A'\subset G$ are elementary abelian ℓ -subgroups. A morphism $(A,A')\to (Z,Z')$ in \mathcal{A}^{\natural} is an element $g\in G(k)$ such that $g^{-1}Ag\subset Z$, $g^{-1}A'g\supset Z'$. The inclusion $\mathcal{A}^{\natural}\subset \mathcal{A}^{\flat}$ is cofinal, so that for any functor $F\colon (\mathcal{A}^{\flat})^{\mathrm{op}}\to \mathcal{D}$, we have

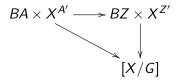
$$\varprojlim_{(A\to A')\in \mathcal{A}^{\flat}} F(A\to A') \simeq \varprojlim_{(A,A')\in \mathcal{A}^{\natural}} F(A\subset A').$$

Equivariant version with general coefficients

A morphism $(A,A') \to (Z,Z')$ in \mathcal{A}^{\natural} induces a 2-commutative diagram:

Equivariant version with general coefficients

A morphism $(A, A') \rightarrow (Z, Z')$ in \mathcal{A}^{\natural} induces a 2-commutative diagram:



Theorem

Let $K \in D_c^+([X/G], \mathbb{F}_\ell)$, endowed with a ring structure $K \otimes K \to K$. Then the homomorphism

$$H^*([X/G],K) o \varprojlim_{(A,A') \in \mathcal{A}^\natural} H^*(BA \times X^{A'},K)$$

is a uniform F-isomorphism.

Weizhe Zheng

Geometric points of Artin stacks

Let X be a scheme. The category of points of $X_{\text{\'et}}$ is equivalent to the category of geometric points of X. A geometric point of X is a morphism $x \to X$, where x is the spectrum of a separably closed field. A morphism of geometric points from $x \to X$ to $y \to X$ is an X-morphism $X_{(x)} \to X_{(y)}$ of the strict henselizations. This construction extends trivially to Deligne-Mumford stacks. For Artin stacks we proceed as follows.

Geometric points of Artin stacks

Let X be a scheme. The category of points of $X_{\mathrm{\acute{e}t}}$ is equivalent to the category of geometric points of X. A geometric point of X is a morphism $x \to X$, where x is the spectrum of a separably closed field. A morphism of geometric points from $x \to X$ to $y \to X$ is an X-morphism $X_{(x)} \to X_{(y)}$ of the strict henselizations. This construction extends trivially to Deligne-Mumford stacks. For Artin stacks we proceed as follows.

Definition

Let $\mathcal X$ be an Artin stack. We denote by $\mathcal P'_{\mathcal X}$ the category of morphisms $S \to \mathcal X$ where S is a strictly local scheme (spectrum of a strictly henselian local ring). The category $\mathcal P_{\mathcal X}$ of geometric points of $\mathcal X$ is the category obtained from $\mathcal P'_{\mathcal X}$ by inverting local morphisms.

Example

Let G be an algebraic group scheme over k. Then $\mathcal{P}_{BG} \simeq \mathcal{P}_{B\pi_0(G)}$ is a connected groupoid of fundamental group $\pi_0(G)$.

Example

Let G be an algebraic group scheme over k. Then $\mathcal{P}_{BG} \simeq \mathcal{P}_{B\pi_0(G)}$ is a connected groupoid of fundamental group $\pi_0(G)$.

Proposition

Let \mathcal{X} be an Artin stack, $\mathcal{F} \in \mathsf{Mod}_c(\mathcal{X}, \mathbb{F}_\ell)$. The homomorphism

$$H^0(\mathcal{X},\mathcal{F}) \to \varprojlim_{x \in \mathcal{P}_\mathcal{X}} \mathcal{F}_x$$

is an isomorphism.

We didn't find any reference even for the case of a scheme.

Stacky version

Let \mathcal{X} be an Artin stack of finite presentation over k.

• A morphism $\mathcal{Y} \to \mathcal{X}$ of Artin stacks is representable if for every geometric point y of \mathcal{Y} , the group homomorphism $\operatorname{Aut}_{\mathcal{Y}}(y) \to \operatorname{Aut}_{\mathcal{X}}(y)$ is a monomorphism.

Stacky version

Let \mathcal{X} be an Artin stack of finite presentation over k.

- A morphism Y → X of Artin stacks is representable if for every geometric point y of Y, the group homomorphism Aut_Y(y) → Aut_X(y) is a monomorphism.
- We denote by $\mathcal{Q}'_{\mathcal{X}}$ the category of representable morphisms $\mathcal{S} \to \mathcal{X}$, where $\mathcal{S} \simeq [S/A]$, S is a strictly local scheme, A is an elementary abelian ℓ -group acting on S and acting trivially on the closed point S of S. An X-morphism $S \to S'$ induces a monomorphism of groups

$$A = \operatorname{\mathsf{Aut}}_{\mathcal{S}}(s) \to \operatorname{\mathsf{Aut}}_{\mathcal{S}'}(s).$$

We denote by $\mathcal{Q}_{\mathcal{X}}$ the category obtained from $\mathcal{Q}'_{\mathcal{X}}$ by inverting local morphisms whose induced monomorphisms of groups are isomorphisms.

Theorem

Assume that either $\mathcal X$ has finite inertia, or $\mathcal X\simeq [X/G]$, where X is a separated scheme of finite type over k and G is a linear algebraic group over k acting on G. Let $K\in D^+_c(\mathcal X,\mathbb F_\ell)$, endowed with a ring structure $K\otimes K\to K$. Then the homomorphism

$$H^*(\mathcal{X}, K) \to \varprojlim_{\mathcal{S} \in \mathcal{Q}_{\mathcal{X}}} H^*(\mathcal{S}, K)$$

is a uniform F-isomorphism.

Note that $H^*(S, K) = H^*(BA_s, K_s)$.

Theorem

Assume that either $\mathcal X$ has finite inertia, or $\mathcal X\simeq [X/G]$, where X is a separated scheme of finite type over k and G is a linear algebraic group over k acting on G. Let $K\in D^+_c(\mathcal X,\mathbb F_\ell)$, endowed with a ring structure $K\otimes K\to K$. Then the homomorphism

$$H^*(\mathcal{X}, K) \to \varprojlim_{\mathcal{S} \in \mathcal{Q}_{\mathcal{X}}} H^*(\mathcal{S}, K)$$

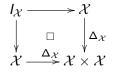
is a uniform F-isomorphism.

Note that $H^*(S, K) = H^*(BA_s, K_s)$.

Remark

The three structure theorems also hold for [X/G], where G is an abelian variety.

The inertia stack $I_{\mathcal{X}}$ of \mathcal{X} is the fiber product



The fiber of $I_{\mathcal{X}} \to \mathcal{X}$ at a geometric point $x \to \mathcal{X}$ is the group scheme $\underline{\operatorname{Aut}}_{\mathcal{X}}(x)$. We say \mathcal{X} has finite inertia if $I_{\mathcal{X}} \to \mathcal{X}$ is finite. If \mathcal{X} is a separated Deligne-Mumford stack, then \mathcal{X} has finite inertia.

One step of the proof

Assume \mathcal{X} has finite inertia. Let $\pi \colon \mathcal{X} \to Y$ be the projection to the coarse moduli space. The edge homomorphism

$$H^*(\mathcal{X},K) \to H^0(Y,R^*\pi_*K)$$

of the Leray spectral sequence of π

$$E_2^{pq} = H^p(Y, R^q \pi_* K) \Rightarrow H^{p+q}(\mathcal{X}, K)$$

is a uniform F-isomorphism.

Plan of the talk

- Introduction
- 2 Cohomology of Artin stacks; finiteness
- Structure theorems
 - Equivariant version with constant coefficients
 - Equivariant version with general coefficients
 - Stacky version
- A localization theorem

A localization theorem

Let k be an algebraically closed field of characteristic $p \ge 0$ (possibly equal to ℓ), X be a separated scheme of finite type over k, $A \simeq (\mathbb{Z}/\ell\mathbb{Z})^r$. Recall

$$H^*(BA, \mathbb{F}_{\ell}) = \begin{cases} \mathbb{F}_{\ell}[x_1, \dots, x_r] & \ell = 2, \\ \wedge (\mathbb{F}_{\ell}x_1 \oplus \dots \oplus \mathbb{F}_{\ell}x_r) \otimes \mathbb{F}_{\ell}[y_1, \dots, y_r] & \ell > 2, \end{cases}$$

where x_1, \ldots, x_r form a basis of $H^1 = \text{Hom}(A, \mathbb{F}_{\ell})$; $y_i = \beta x_i \in H^2$, $\beta \colon H^1 \to H^2$ is the Bockstein.

A localization theorem

Let k be an algebraically closed field of characteristic $p \ge 0$ (possibly equal to ℓ), X be a separated scheme of finite type over k, $A \simeq (\mathbb{Z}/\ell\mathbb{Z})^r$. Recall

$$H^*(BA, \mathbb{F}_{\ell}) = \begin{cases} \mathbb{F}_{\ell}[x_1, \dots, x_r] & \ell = 2, \\ \wedge (\mathbb{F}_{\ell}x_1 \oplus \dots \oplus \mathbb{F}_{\ell}x_r) \otimes \mathbb{F}_{\ell}[y_1, \dots, y_r] & \ell > 2, \end{cases}$$

where x_1, \ldots, x_r form a basis of $H^1 = \text{Hom}(A, \mathbb{F}_{\ell})$; $y_i = \beta x_i \in H^2$, $\beta \colon H^1 \to H^2$ is the Bockstein.

Theorem

For any action of A on X, the homomorphism

$$H^*([X/A], \mathbb{F}_\ell)[e^{-1}] \to H^*(X^A \times BA, \mathbb{F}_\ell)[e^{-1}]$$

is an isomorphism, where $e = \prod_{0 \neq x \in H^1} \beta x \in H^{2\ell^r - 2}$.

Definition

X is mod ℓ acyclic if $H^q(X,\mathbb{F}_\ell)=0$ for $q \neq 0$ and $H^0(X,\mathbb{F}_\ell)\simeq \mathbb{F}_\ell$.

If $\ell \neq p$, X is mod ℓ acyclic if and only if $H^q(X, \mathbb{Z}_\ell) = 0$ for $q \neq 0$ and $H^0(X, \mathbb{Z}_\ell) \simeq \mathbb{Z}_\ell$.

Corollary

Assume X is mod ℓ acyclic. Let G be a finite group acting on X. Then

- X/G is mod ℓ acyclic;
- (Serre) X^G is mod ℓ acyclic if G is an ℓ -group.

The reduced cohomology $\tilde{H}^q(X, \mathbb{F}_\ell)$ is defined by $\tilde{H}^q(X, \mathbb{F}_\ell) = H^q(X, \mathbb{F}_\ell)$ for $q \neq -1, 0$ and the exact sequence

$$0 \to \tilde{H}^{-1}(X, \mathbb{F}_{\ell}) \to \mathbb{F}_{\ell} \to H^0(X, \mathbb{F}_{\ell}) \to \tilde{H}^0(X, \mathbb{F}_{\ell}) \to 0.$$

Definition

X is a cohomological sphere of dimension N if $\tilde{H}^q(X, \mathbb{F}_\ell) = 0$ for $q \neq N$ and $\tilde{H}^N(X, \mathbb{F}_\ell) \simeq \mathbb{F}_\ell$.

X is a cohomological sphere of dimension -1 if and only if X is empty.

The reduced cohomology $\tilde{H}^q(X, \mathbb{F}_\ell)$ is defined by $\tilde{H}^q(X, \mathbb{F}_\ell) = H^q(X, \mathbb{F}_\ell)$ for $q \neq -1, 0$ and the exact sequence

$$0 \to \tilde{H}^{-1}(X,\mathbb{F}_{\ell}) \to \mathbb{F}_{\ell} \to H^0(X,\mathbb{F}_{\ell}) \to \tilde{H}^0(X,\mathbb{F}_{\ell}) \to 0.$$

Definition

X is a cohomological sphere of dimension N if $\tilde{H}^q(X, \mathbb{F}_\ell) = 0$ for $q \neq N$ and $\tilde{H}^N(X, \mathbb{F}_{\ell}) \simeq \mathbb{F}_{\ell}$.

X is a cohomological sphere of dimension -1 if and only if X is empty.

Corollary

Assume that an ℓ -group G acts on X and X is a cohomological sphere of dimension N. Then X^G is a cohomological sphere of dimension M < Nand $\ell(N-M)$ is even.

This is an analogue of a theorem of Borel (which generalizes a theorem of Smith).

The end

Thank you!