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The Milnor fibration

The Milnor fibration

Let f : (Cn+1, 0)→ (C, 0) be a germ of holomorphic function having an
isolated critical point at 0.

Theorem (Milnor 1967)

For ε > 0 small, and 0 < η � ε, the restriction of f to

Bε ∩ f −1(Dη)→ Dη,

where Bε ⊂ Cn+1 is the ball of radius ε centered at 0 and Dη ⊂ C is
the disk of radius η centered at 0, induces a fibration over Dη − {0}.

The fiber Mt = f −1(t)∩Bε is homotopy equivalent to a bouquet of µ
n-spheres Sn ∨ · · · ∨ Sn, where µ is the Milnor number:

µ = dimC{z0, . . . , zn}/(∂f /∂z0, . . . , ∂f /∂zn).
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The Milnor fibration

The monodromy action

We have

Φi := Coker(H i (pt)→ H i (Mt)) =

{
Zµ i = n

0 i 6= n.

Letting t turn around 0 gives the monodromy operator T ∈ Aut(Φi ).

Conjecture (Milnor)

T is quasi-unipotent: the eigenvalues of T are roots of unity.

Grothendieck proved this using his theory of nearby and vanishing cycles.
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Nearby cycles over one-dimensional bases Definition and functoriality

Grothendieck’s nearby and vanishing cycles

Grothendieck first mentioned vanishing cycles in a letter to Serre in 1964.

Given a family X → S over a one-dimensional base, Grothendieck (1967)
constructed in SGA 7 the complex of vanishing cycles, a complex of
sheaves measuring:

on the one hand, the singularity of the family; and,

on the other, the difference between H∗(Xs) and H∗(Xt).

He also constructed a closely related complex of sheaves, called the
complex of nearby cycles.

Settings: étale or complex analytic. We will concentrate on the étale
setting.
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Nearby cycles over one-dimensional bases Definition and functoriality

A dictionary

Let S be the spectrum of a Henselian discrete valuation ring.
For simplicity assume S strictly local (in other words, the closed point
s ∈ S is separably closed).

Dη: disk S

0 ∈ Dη: the center s ∈ S : the closed point

Dη − {0}: punctured disk η ∈ S : the generic point

t ∈ Dη − {0} η̄: a separable closure of η

π1(Dη − {0}, t) ' Z: the fund. group I = Gal(η̄/η): the inertia group

local systems on Dη − {0} sheaves on ηét

We have a short exact sequence 1→ P → I →
∏
6̀=p Z`(1)→ 1.

The wild inertia group P is a pro-p-group, where p is the char. of s.

Weizhe Zheng Nearby cycles over general bases November 2017 7 / 35



Nearby cycles over one-dimensional bases Definition and functoriality

Nearby cycle functor RΨ

Let X → S be a morphism of schemes. Consider Cartesian squares:

Xs
i //

��

X

��

Xη̄
joo

��
s // S η̄.oo

Let Λ = Z/mZ, m invertible on S (or Z`, Q`, etc., ` invertible on S). We
work with sheaves of Λ-modules in étale topoi. D(X ) := D(Shv(Xét,Λ)).

For K ∈ D+(Xη),

RΨK := i∗Rj∗(K |Xη̄) ∈ D+(Xs).

Equipped with an action of the inertia group I .
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Nearby cycles over one-dimensional bases Definition and functoriality

Vanishing cycle functor Φ

For K ∈ D+(X ), distinguished triangle on Xs :

K |Xs → RΨ(K |Xη)→ Φ(K )→ K |Xs [1].

For a geometric point x → Xs , distinguished triangle

Kx
// (RΨK )x // (ΦK )x // Kx [1].

RΓ(X(x),K ) // RΓ(X(x)η̄,K )

Bε: Milnor ball X(x): strict localization

Mt : Milnor fiber X(x)η̄
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Nearby cycles over one-dimensional bases Definition and functoriality

Functoriality

Let h : X → Y be a morphism of schemes over S .

For h smooth, the canonical map

h∗sRΨY → RΨXh
∗
η

is an isomorphism. In particular, (ΦXΛ)x = 0 at smooth points x of
X/S .

For h proper, the canonical map

Rhs∗RΨX → RΨYRhη∗

is an isomorphism. In particular, for X/S proper, long exact sequence:

H i (Xs ,K )
sp // H i (Xs ,RΨK ) // H i (Xs ,ΦK ) // H i+1(Xs ,K ).

H i (Xη̄,K )
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Nearby cycles over one-dimensional bases The quasi-semistable case

The quasi-semistable case

Assume X regular, flat and of finite type over S , Xη smooth and (Xs)red is
a divisor with normal crossings.

Theorem (Grothendieck, modulo absolute purity)

(RqΨΛ)Px ' Λ[It/nIt ](−q)⊗Z ∧qC ,

where x → Xs is a geometric point, C = Ker((n1, . . . , nr ) : Zr → Z). Here
n1, . . . , nr are the multiplicities of the branches of Xs passing through x,
and n = gcd(n1, . . . , nr ).

Absolute purity was known then for S/Q, and in general by Gabber 1994.

Topological model for the tame Milnor fiber X(x)ηt : p-prime homotopy
fiber of the homomorphism

(S1)r → S1 (x1, . . . , xr ) 7→
∏
i

xnii .
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Nearby cycles over one-dimensional bases The quasi-semistable case

Milnor’s conjecture

Corollary

In the quasi-semistable case, an open subgroup J of I acts trivially on
(RqΨΛ)P .

An analytic version of this + Hironaka’s resolution of singularities ⇒

Corollary (Milnor’s conjecture)

Let f : (Cn+1, 0)→ (C, 0) be a germ of holomorphic functions having an
isolated critical point at 0. Then T acts quasi-unipotently on Φi .
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Nearby cycles over one-dimensional bases The quasi-semistable case

Grothedieck’s local monodromy theorem

Theorem

Let Xη be a scheme of finite type over η. There exists an open subgroup
J ⊆ I such that for all i ∈ Z and all g ∈ J, (g − 1)i+1 = 0 on H i (Xη̄).

Grothendieck gave two proofs.

Arithmetic proof of quasi-unipotence without bound i + 1.

Geometric proof modulo absolute purity (Gabber 1994) and resolution
of singularities (which can be replaced by de Jong’s alterations,
Gabber-Illusie 2014). Uses RqΨΛ in the quasi-semistable case.

The bound i + 1 (i = 1) is crucial for Grothendieck’s proof of the
semistable reduction theorem for Abelian varieties.
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Nearby cycles over one-dimensional bases Constructibility and duality

Constructibility and duality

Assume X/S separated of finite type.

Theorem (Deligne 1974)

RΨ preserves bounded constructible complexes:

RΨ: Db
cons(Xη)→ Db

cons(Xs).

Theorem (Gabber 1981)

RΨ commutes with duality: For K ∈ Db
cons(Xη),

RΨDXηK ' DXsRΨK .

Corollary

RΨ preserves perverse sheaves.
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Nearby cycles over one-dimensional bases Constructibility and duality

Duality and Φ

Theorem (Beilinson 1987)

Φ commutes with duality up to twist: For K ∈ Db
cons(X ),

ΦDXηK ' τ−1DXs ΦK .

Here τ is the Iwasawa twist: for LP = 0, τ−1L = L; for L = LP ,

τ−1L = Hom×(It , L).

Proof uses Beilinson’s maximal extension functor Ξ.
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Nearby cycles over one-dimensional bases Constructibility and duality

Sliced nearby cycle functor RΨs (Deligne)

Recall the distinguished triangle:

K |Xs → RΨ(K |Xη)→ Φ(K )→ K |Xs [1].

K |Xs lives on Xs .

RΨ(K |Xη) lives on the product topos Xs × η := (Xs)ét × ηét. A sheaf
on Xs × η is a sheaf on Xs equipped with a continuous action of I .

The two can be glued together to form RΨs(K ) living on the product
topos Xs × S := (Xs)ét× Sét. A sheaf on Xs × S consists of a triple
(Fs ,Fη, sp) with Fs on Xs , Fη on Xs × η, and sp: p∗Fs → Fη.

Φ is the composition

D+(X )
RΨs

−−→ D+(Xs × S)
LC−−→ D+(Xs × η),

where C (Fs ,Fη, sp) = Coker(sp).
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Nearby cycles over one-dimensional bases Constructibility and duality

RΨs and duality

D+(Xη)

RΨ
��

D+(X )oo

Φ

''
RΨs

��
D+(Xs × η) D+(Xs × S)

j∗oo LC // D+(Xs × η).

Arrows ← are restrictions.

Conjecture (Deligne 1999, letter to Illusie)

RΨs commutes with duality: RΨsDXK ' DXs×SRΨsK for K ∈ Db
cons(X ).

Theorem (Lu-Z. 2017)

Deligne’s conjecture holds.

(LC )DXs×S ' τ−1DXs×η(LC ).

⇒ new proof of Beilinson’s theorem ΦDK ' τ−1DΦK for K ∈ Db
cons.
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Nearby cycles over one-dimensional bases Constructibility and duality

LC and duality

Adjoint functors:

Shv(Xs × η)

j!

⊥ **

j∗

DD
Shv(Xs × S)

j∗

⊥
jj

C

⊥

��

Adjoint functors between derived categories:

LC abb

D

<<j! a__

D

??j∗ aGG
D
WW Rj∗ a τLC
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Nearby cycles over general bases
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Nearby cycles over general bases Motivation

Motivation: the Sebastiani-Thom theorem

Let fi : (Cni+1, 0)→ (C, 0), i = 1, 2 be germs of holomorphic
functions with isolated critical point at 0.

Define f1 ⊕ f2 : (Cn+1, 0)→ (C, 0) by (x1, x2) 7→ f1(x1) + f2(x2),
where n = n1 + n2 + 1. It has isolated critical point at 0.

Theorem (Sebastiani-Thom 1971)

Φn1
f1
⊗ Φn2

f2
' Φn+1

f1⊕f2 ,

Tf1 ⊗ Tf2 = Tf1⊕f2 .

Deligne: An `-adic analogue compatible with Galois action could not hold
in characteristic > 0. Need to replace ⊗ by local convolution product ∗.
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Nearby cycles over general bases Motivation

Sebastiani-Thom theorem in characteristic ≥ 0

Let k be an algebraically closed field.
Let fi : Xi → A1

k be morphisms of schemes of finite type.
f1 ⊕ f2 is the composition

X1 ×k X2
f1×k f2−−−−→ A1

k ×k A
1
k

+−→ A1
k .

Theorem (Deligne 1980, Fu 2014)

Assume Xi smooth over k of dimension ni + 1, and fi has isolated
singularity at xi . Then

Φn1
f1

(Λ)x1 ∗ Φn2
f2

(Λ)x2 ' Φn1+n2+1
f1⊕f2 (Λ)(x1,x2).

Weizhe Zheng Nearby cycles over general bases November 2017 21 / 35



Nearby cycles over general bases Motivation

A generalization

Suggested by Deligne 2011, letter to Fu.

Theorem (Illusie 2017)

(No assumptions on Xi or fi .) For Ki ∈ D ft
cons(Xi ),

RΨf1(K1) ∗L RΨf2(K2) ' RΨf1⊕f2(K1 �
L K2).

Proof uses nearby cycles for f1 ×k f2 : X1 ×k X2 → A1
k ×k A

1
k over a

two-dimensional base.

Weizhe Zheng Nearby cycles over general bases November 2017 22 / 35



Nearby cycles over general bases Definition and properties

Oriented products of topoi (Deligne)

Deligne’s nearby cycles over general bases live on vanishing topoi, which
are a type of oriented products of topoi. Given morphisms of topoi

f : X → S and g : Y → S , the oriented product is a topos X
←
×S Y

together with a diagram

X
←
×S Y

����
X

f
��
⇐ Y

g��
S ,

universal for these data.

Example

The vanishing topos X
←
×S S .

The covanishing topos S
←
×S Y . A generalization (Falting’s topos) is

used in p-adic comparison theorems.
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Nearby cycles over general bases Definition and properties

Oriented product of topoi: Construction

Let X
f−→ S

g←− Y be morphisms of schemes.

Site for X
←
×S Y := Xét

←
×Sét

Yét:

Objects: Commutative diagrams

U //

ét.
��

W

ét.
��

Voo

ét.
��

X
f // S Y .

goo

Morphisms: Obvious.
Covering families:

(Ui →W ← V )i∈I above U →W ← V with (Ui )i∈I covering U;
(U →W ← Vi )i∈I above U →W ← V with (Vi )i∈I covering V .

U // W ′

��
�

V ′oo

��
U // W V .oo
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Nearby cycles over general bases Definition and properties

Nearby cycles over general bases (Deligne)

Let f : X → S be a morphism of schemes. Diagram of topoi:

X

f

��

Ψf��

X
←
×S S

""

p

||
X

f ##

⇐ S

S ,

For K ∈ D+(X ), distinguished triangle in D+(X
←
×S S):

p∗K → RΨfK → ΦfK → p∗K [1].
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Nearby cycles over general bases Definition and properties

Stalks

The points of X
←
×S S are triples (x , t, sp), where x → X , t → S are

geometric points, sp : t → S(f (x)) is a specialization.

(RΨfK )(x ,t) = RΓ(X(x) ×Sf (x)
S(t),K )

X(x)×Sf (x)
S(t) is the Milnor tube (containing the Milnor fiber X(x)×Sf (x)

t).

Example

Assume S is the spectrum of a strictly local discrete valuation ring
(one-dimensional). Then

X
←
×S S = Xη ∪ (Xs × η) ∪ Xs .

RΨfK on these three shreds are K |Xη , RΨ(K |Xη), K |Xs , respectively.
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×S S = Xη ∪ (Xs × η) ∪ Xs .

RΨfK on these three shreds are K |Xη , RΨ(K |Xη), K |Xs , respectively.
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A bad example

Let k be an algebraically closed field.
Let S = A2

k . Let f : X := BlO(S)→ S be blow-up at the origin O.
For geometric points x → XO , t → S(O) − {O} ' X − XO ,
the Milnor tube is a join:

X(x) ×S(O)
S(t) = X ′(x) ×X ′ X

′
(t),

which has infinitely many connected components. Here X ′ = X ×S S(O).
Thus

(Ψf Λ)(x ,t) = H0(X ′(x) ×X ′ X
′
(t),Λ)

is not a finitely generated Λ-module.

By a theorem of M. Artin, RΨf Λ = Ψf Λ.
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Constructibility and base change

Let X → S be a morphism of finite type of Noetherian schemes. Let
K ∈ Db

cons(X ).

Theorem (Orgogozo 2006)

There exists a modification S ′ → S such that RΨfS′ (K |XS′ )
commutes with base change T → S ′.

For S ′ as above, RΨfS′ (K |XS′ ) ∈ Db
cons.

Analytic analogue (Sabbah 1983):
Every morphism becomes “without blow-up” up to blowing up the base.

Corollary

Assume S regular of dimension 1. Then RΨfK commutes with base
change T → S.

Case T → S finite due to Deligne (with a gap found by Fu and fixed by
Deligne in 1999).
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Künneth formula for nearby cycles

Illusie’s generalization of the Sebastiani-Thom theorem follows from the
following Künneth formula.

Theorem (Illusie 2017)

Let fi : Xi → Yi be morphisms locally of finite type of schemes over a base
scheme S.
Let Ki ∈ Db(Xi ) such that RΨfiKi commutes with base change. Then

RΨf1K1 �
L RΨf2K2 ' RΨf1×S f2(K1 �

L K2).

Case Y1 = Y2 = S of dimension 1 due to Gabber (1981).
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Application: Global index formula (background)

Let k be an algebraically closed field. Let V be a variety over k .
Let F be a local system on V (Λ = Z/`Z or Q`).

Theorem (Deligne)

If char(k) = 0 or more generally if F is tamely ramified at infinity, then

χ(V ,F) = χ(V )rk(F)

Theorem (Grothendieck-Ogg-Shafarevich)

Let C be a projective smooth curve over k and let V ⊆ C be an open
subset. Then

χ(V ,F) = χ(V )rk(F)−
∑

x∈C−V
Swx(F).

The Swan conductor Swx(F) ∈ Z≥0 measures the wild ramification of F
at x .
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Application: Global index formula

Let X be a smooth variety of dimension d over k . Let F ∈ Shvcons(X ).

Beilinson (2016) defined the singular support SS(F) ⊂ T ∗X ,
a conic subset, equidimensional of dimension d .
(“F is holonomic”, but SS(F) not Lagrangian in general.)

T. Saito (2017) defined the characteristic cycle CC (F),
a d-cycle supported on SS(F).

Theorem (T. Saito 2017)

Assume X projective.

χ(X ,F) = (CC (F), 0).

Inspired by Kashiwara-Dubson index formula (analytic setting) and
conjectures of Deligne. Proof uses Künneth formula for nearby cycles.
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Nearby cycles and duality

Let f : X → S be a separated morphism of finite type of excellent schemes.

Question (Illusie)

Does RΨf commute with duality?

One can define D
X
←
×SS

such that RΨfDX ' D
X
←
×SS

RΨf .

No reasonable duality on X
←
×S S even if dim(S) = 1.
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Sliced nearby cycles and duality

For any geometric point s → S , Xs

←
×S S ' Xs × S(s).

Definition (Sliced nearby cycles)

RΨs
fK := (RΨfK )|Xs×S(s)

.

Theorem (Lu-Z. 2017)

Assume S finite-dimensional. Let K ∈ Db
cons(X ). Sliced nearby cycles

commute with duality up to modification: There exists a modification
S ′ → S such that for every morphism T → S ′ separated of finite type and
every geometric point t → T,

RΨt
fT
DXT

(K |XT
) ' DXt×T(t)

RΨt
f (K |XT

).
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Application to local acyclicity

Corollary

Assume S regular. Then (f ,K ) is universally locally acyclic if and only if
(f ,DXK ) is universally locally acyclic.

Theorem (Gabber)

Let f : X → S be a morphism of finite type of Noetherian schemes. If
(f ,K ) is locally acyclic, then it is universally locally acyclic.

This answers a question of M. Artin in SGA 4.
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The end

Thank you!

Acknowledgment: History of nearby cycles based on talks of Illusie
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